
CHARGE —EXCHANGE SCATTERI NG

be less than 0.5 percent in CH& and may be much smaller. If it
occurred for 1 out of 200 stopped x=mesons, and as many as
.5 percent of the ~ 's stopped in the target, this would contribute
only 2.5 counts per million 3f counts to the observed CH2-C
difference. This source of error is therefore negligible.

That nuclear gamma-rays cannot contribute much to the
CH&—C difference is also shown by the fact that the results

obtained with a 15-Mev minimum detectable electron energy
agree with those for 8-Mev minimum, assuming the xo-decay
gamma-ray spectrum (i.e., high energy gamma-rays). The s.=
capture gamma-rays would be expected to be much lower in
energy, and the change in detection eKciency much more than
the observed factor of two. In addition, there is the angular
correlation demonstrated by the two quantum coincidences.
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On the assumption of central charge-independent two particle nuclear forces, the wave function
(E+X)~(bE+X)~ with E the binding energy, E the kinetic energy, and b=5.3 is found to be a better
wave function, in the sense of a variational principle, for the He nucleus than the optimum Gaussian.
With this wave function, the ratios of the numbers of protons to deuterons to tritons in final states resulting
from the absorption of m. mesons from E shells of mesic helium atoms are found to be 1:1.3:0.7. For
reasonable values of the I'5(PU) coupling constant, 20 percent of the absorptions take place directly from
the 2P level. The number of high energy y-rays is less than 1 percent of the number of nonradiative absorp-
tions. Charge-exchange absorption is energetically forbidden.

INTRODUCTION

HEN a negative pion is absorbed by a He4

nucleus, three types of final states are available
for the nuclear system, namely,

P+3rt, d+2N, t+rt,

to which we shall refer as the proton, deuteron, and
triton final states, respectively. The transition to any
of these states may be accompanied by the emission of
electromagnetic radiation but not, because of the
conservation of energy, by the emission of neutral pions.
A calculation of the relative probabilities of transitions
to these final states is of interest not only to corroborate
the information concerning the m-meson which is gained
by a study of its interaction with the proton and the
deuteron, ' but also because, through the dependence of
the relative probabilities on the nuclear wave function,
it sheds light on the structure of the nucleus. The He4

nucleus is the nucleus next in complexity to the deuteron
that is available in sufficient quantity to make an
experiment practicable. It is also the lightest nucleus
with structural resemblance to heavier nuclei in that
both the binding per energy nucleon and the average
kinetic energy per nucleon are close to the corresponding
figures for heavy nuclei.

For these reasons it was thought worth while to
extend to the He4 nucleus the calculation on the
absorption of slow negative pions by nuclei carried out

*This paper is based upon a thesis submitted to the University
of Rochester in partial fulfillment of its requirements for the
degree Doctor of Philosophy.' R. K. Marshak, Revs. Modern Phys. 23, 137 (1951).

at this laboratory by Marshak, ' Tamor, ' and Messiah. 4

In addition to these calculations, several others of
similar scope precede ours, namely, two calculations of
Bruno, '.and one of Clark and Ruddlesden. ' Besides the
use of a less carefully chosen wave function for the He4

nucleus and diGerences in the detailed treatment of the
anal states, the latter calculations difr'er from ours in
several important respects, The 6rst calculation of
Bruno employed a meson mass of 100 Mev in accordance
with the experimental data at that time. Moreover,
transitions to the triton final state alone were calcu-
lated. In his next calculation Bruno revised the meson
mass, and because the larger mass is expected to lead
to a larger yield for the proton final states, he calculated
the transition rate to such states (for vector mesons)
and found it to be larger than the triton rate. In the
calculation of Clark and Ruddlesden the nucleons are
taken to be infinitely heavy in calculating the inter-
action Hamiltonian (not, of course, in the kinematics)
and the electromagnetic radiation accompanying the
absorption is not considered.

The present calculation resembles in many respects
the calculation of Messiah for He'. Section I describes
the method of calculation in general terms and allows
the construction in Sec. II of the wave functions both
of the initial He4 nucleus and of the final nuclear

~R. E. Marshak and A. S. Wightman, Phys. Rev. 76, 114
(1949).

s S. Tamor, Phys. Rev. 82, 38 (1951).' A. M. L. Messiah, Phys. Rev. 87, 639 (1952).' B. Bruno, Arkiv Mat. Astron. Fysik 36A, No. 8 (1948) and
Arkiv Fysik 1, 19 (1949).

6 A. C. Clark and S. N. Ruddlesden, Proc. Phys. Soc. (I ondon)
64, 1064 (1951).
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fragments. Section III contains the principal part of
the calculation, including a calculation of the relative
frequency of the three 6nal states for absorption from
s and p states of the s.-mesic helium atom, an estimate
of the ratio of optical transitions from the p state to
direct nuclear absorption from it, and an upper limit to
the number of gamma-rays accompanying nuclear
absorption from s states. Finally, Sec. IV presents an
evaluation of the results and a discussion of the validity
of some of the approximations employed in their
calculation.

I. GENERAL METHOD OF CALCULATION

Throughout this calculation we shall assume that the
pseudoscalar nature of the meson is established. '
Furthermore only pseudovector coupling is considered
in order to allow a phenomenological treatment of the
nuclear force. '

The wave function of the initial He4 nucleus is
calculated as a wave function of four Schrodinger
particles bound by two-particle nuclear forces which
are taken to be central and charge independent. The
effect of the tensor component of the nuclear forces on
the wave function is taken into account in the calcu-
lation of the absorption of mesons from the mesic p
state, where it is most important. The range of the
nuclear forces is taken from the two-particle scattering
data, while the strength is adjusted to give the proper
binding energy for the alpha-particle.

Subsequent to the calculation of the wave function
the nucleus is treated as an assemblage of Dirac
particles whose momentum distribution is given by the
Schrodinger wa, ve function. ' This and the next approxi-
mation are both valid in the limit s/c«1. The maximum
s/c of interest occurs for the free neutron in the triton
final states and is (s/c)'=0. 19.

The interaction between the meson and the nucleons
is taken to be the nonrelativistic limit of the pseudo-
vector interaction, namely,

where @ is the meson wave function, f, the coupling
constant, p, the meson mass, and e,, ~;, P; the spin,
isotopic spin, and momentum of the ith nucleon, respec-
tively. The units used throughout are A=c=3f=1.
Occasionally, the second term in Eq. (1) has been
neglected. ' ' Not only does this term arise quite natur-
ally in taking the nonrelativistic limit of the I'S(I'V)
theory but it is necessary to preserve the Galilean
invariance and the two-particle nature of the meson-

' K. Brueckner, Phys. Rev. 82, 598 (1951). Pseudoscalar
coupling may, however, give similar results. See, for instance,
S. D. Drell and E. M. Henley, Stanford Microwave Laboratory
Report 165 (unpublished).' J. M. Blatt and J. D. Jackson, Phys. Rev. ?6, 18 (1949),
J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 7/ {1950).

'Chew, Goldberger, Steinberger, and Yang, Phys. Rev. 84,
581 (1951).

nucleon interaction. Galilean invariance requires that
the interaction depend only on a relative velocity, and
the two-particle nature of the interaction requires that
this be the relative velocity of the meson and one
nucleon, rather than some other relative velocity, such
as that of the meson and the entire nucleus, for in-
stance. An estimate of the relative importance of the
two terms may be obtained by assuming that the
meson is in the Coulomb 6eld of the nucleus and that
this field is cut o6 at some small radius. The ratio of
the first term in Eq. (1) to the second is of the order
1/60 for absorption from s states. In case the meson is
absorbed from a P state the first approximation to the
6rst term in the interaction is a constant rather than
zero. The relative importance of the two terms is
nevertheless maintained in He4 because of a selection
rule associated with operators independent of position.
The higher approximations to the 6rst term are then
roughly of the same order as for the s state.

In view of these remarks, it is a good approximation
to take the meson wave function to be a constant
within the nucleus for s states and to have a constant
gradient for p states. Wherever it is necessary to assign
a value to this constant it is chosen to agree with the
wave function corresponding to a pure Coulomb field.

In calculating the emission of radiation resulting from
the nuclear absorption of a slow m. meson, three terms
in the interaction Hamiltonian must be taken into
account: the coupling between the radiation field and
the free meson and nucleons; the triple term in the
meson-nucleon-radiation interaction introduced to main-
tain gauge invariance; and, finally, the coupling between
the radiation 6eld and the mesons responsible for the
nuclear forces. The 6rst part of the interaction is easily
discarded since it is of higher order in s/c than the
second. Several reasons may be put forward for neg-
lecting the third part of the interaction also: first, it is
of higher order in the coupling constant and would
therefore not appear in a consistent weak coupling
calculation; second, in the impulse approximation
(which is, however, quite hard to justify for a structure
as tightly bound as the He' nucleus) terms of this
nature are neglected; and, third, it is possible to
compare the importance of these terms with their
importance in other processes. In the photodisinte-
gration of the deuteron this type of term becomes
important in the vicinity of 80 Mev because of the
rapid fall-off of the deuteron wave function at high
energies. " In our case such high momenta are not
involved (in addition they are abundant in the He'
nuclear wave function) and the third interaction is
being compared with the second rather than the 6rst
as is the case in the photodisintegration. On the other
hand, there are of course more mesons in transit at
any one time in the He' nucleus than in the deuteron.
It is difficult to evaluate the merits of these arguments,

+ B. Bruno and S. Depken, Phys. Rev. 86, 1054 (1952).



ABSORPTION OF SLOW m. M ESONS B Y He4 NUCLE I 96i

but it does seem reasonable to assume that the third
interaction should be somewhat less than the second
for the 100-Mev photons that are of interest for our
case. Therefore, only the second part of the interaction
will be considered. The transition is then a 6rst-order
process taking place through the operator,

0„;=fy(2+/p) (e'/pk)4; rr; s-A, (k), (2)

where k is the photon momentum, a its polarization,
and 6;(k) the transfer of momentum k to the ith
nucleon.

The final states are calculated neglecting the forces
between unbound particles. A discussion of this approx-
imation is deferred until Sec. IV.

Finally, the matrix element for a transition is given

by

(3)

where P and fp are the initial and final wave functions,
respectively.

Osj Okm Oim ~jk~rty

and their Hermitian conjugates are given by

. .rfo,; '=o;;.

Finally, if p is a normalized wave function symmetric
in the exchange of m particles and orthogonal to itself
upon any other exchange, then a wave function trans-
forming according to the representation s and also
normalized is

(g'/yg I) 'o,y' ~

with 0' the ratio of the number of elements in the
permutation group to the dimension of s.

Operating with o' and o, i+ on the coordinate R4 and
momentum P4 of the fourth particle generates our

"A. Gamba, Nuovo cimento 9, 605 (1951).
'2 D. E. Littlewood, The Theory of Group Characters (Clarendon

Press, Oxford, 1940). In order to obtain detailed agreement with
Gamba, the natural order of the integers has been taken to be
2314 and some of the operators have been rearranged.

II. THE WAVE FUNCTIONS

In this section the wave functions of the initial and
final states will be discussed. In order to facilitate this
discussion we begin by discussing the symmetry group
on four letters. Much of this discussion has been carried
out by Gamba, " whose notation we have adopted,
except for trivial changes. The operators T given by
Gamba form part of the normal representation" of the
group. These operators obey the multiplication table,

coordinate system,

1 2 3 4 )

Qi=-', 3 l(3R4—Ri—Rs—Rs),
I

Q& ——2--'(R2 —Rs),

Qs ——6—l(2Ri —R,—R,),

II= s (Pi+ Ps+ Ps+ P4),

II,= —',3—* (3P4—P,—P2 —P,),

ns ——2—l(P,—Ps),

II,=6—l(2P,—P,—Ps),

where the normalization has been chosen so that Q; is
conjugate to II; and so that the kinetic energy. in the
center-of-mass system is E= rs+IIP.

It can be shown" that in a reasonable zeroth approxi-
mation the space wave function of the ground state of
the He4 nucleus has spin and isotopic spin 0 and is a
completely symmetric S state in space. The assumption
that this is a sufficient approximation for our calcula-
tions will now be justified. Irving'4 has calculated, using
the forces of Pease and Feshbach, the admixture of D
state to the wave function to the He4 nucleus and finds
it to be only 3 percent. The principal effect of the tensor
forces is to reduce the binding energy through this
coupling to the D state. That the spin-exchange char-
acter of the nuclear forces cannot be neglected in all
cases is best illustrated in the calculation below of the
wave function for final states involving deuterons.
On the other hand, a minimal principle is relied upon
to determine the excellence of the space dependence of
the wave function, and may equally well be relied upon
to determine whether the assumption of space sym-
metry is satisfactory or not.

If the space part of the wave function is to be sym-
metric the spin )& isotopic spin part must be completely
antisymmetric. From reference 11 it is deduced that
the spin and isotopic spin must both transform in E',
that they therefore correspond to spin 0 and isotopic
spin 0, and that a separate assumption about the
eigenvalues of these operators is not necessary. It can
be seen from the matrices corresponding to the elements
of the permutation group given in reference 11 that the
determinant of the matrix corresponding to any odd
permutation is —1 and that therefore the antisym-
metric combination of the spin and isotopic spin wave
functions is the determinant

& x'

I1 t.ll

"J.M. Blatt and V. F. Weisskopf, Theoretical nuclear Physics
(J. Wiley and Sons, Inc. , New York, 1952) p. 202."J.Irving, Phys. Rev. 87, 519 (1952).
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It is evident that a unitary transformation may be
carried out on x', y" to give one wave function that is
singlet in 1, 2 and one that is triplet. For these wave
functions the form of the antisymmetric wave function
is unchanged,

record the results below:

X of Svartholm with Gaussian wave function is 1.73;
X for wave function (E+K) '(bE+K) '

at I5 =0.4 is 2.00;
X for wave function (E+K) '(bE+K) '

at 6= 5.3 is 1.66.

With this form of the wave function it is simple to
calculate the matrix element of a potential of arbitrary
exchange character, yielding

($. I
&+b&1'0'o+«s'&o+d&1'&o&1'~ol $ )= a b c 3d

This is the same as the corresponding result of Mes-
siah, 4 so that any diQerence in the strength of the forces
required for H' and He4 nuclei cannot be explained
in this approximation by adjusting the exchange
character of the forces.

The spin and isotopic spin part of the wave function
having been separated out and the exchange character
of the potential eliminated, the problem of ending a
wave function for the He4 nucleus reduces to 6nding a
satisfactory space dependence of the wave function.
In order that the overlap integrals which will appear
later in our calculations be reasonably simple, a wave
function with a simple dependence on the momenta is
desired. The method chosen was a simple variational
method in momentum space such as the zeroth approxi-
mation of Svartholm" (an iteration of the zeroth
approximation is clearly at variance with the require-
ment of simplicity) using wave functions similar to
those of Messiah. This method has the sizable disad-
vantage that there is no way of predicting the analytic
form of the wave function that is necessary in order to

- obtain a satisfactory minimum and the compensating
advantage that the form of the wave function is
imposed at the beginning of the calculation and may
therefore be taken as simple as desired.

The procedure consists of inserting the chosen wave
function into the expression

~=(~IK+EI o)/(o I
1'I o»,

where E is the kinetic energy, E the binding energy,
and V the space dependence of the potential energy
which we take to be a Yukawa well,

V= e ""/~r, 1/z= 5.54.

The parameter X gives the strength of the potential
and is minimized with respect to whatever adjustable
parameters may be contained in the wave function.
The integrals that appear in the ratio above are quite
tedious but in contrast to those arising in the three-body
problem may all be evaluated in terms of elementary
functions for our wave function. We have calculated
the minimum for two different wave functions and

' N. Svartholm, Thesis, Lund, 1945.

We have therefore chosen as the wave function of
the He4 nucleus

k.=2 :(x'i—-'-x'f')(E+K) '(bE-+K) 'b-=5.3, (5)

which is somewhat better than the optimum Gaussian
wave function.

For the final state wave functions we proceed as
follows: According to Sec. I the operator responsible
for the transitions in which we are interested is (1) or
(2), which clearly transforms as a vector in both spin
and isotopic spin space and must therefore lead from
the initial state to a state in which both of these
operators have the' eigenvalue one. Furthermore, the
space part of the operator transforms under permuta-
tions in R' and R+'. Then because of the transformation
character of the spin and isotopic spin wave functions,
and because E' is excluded for the space part of the
wave function by the over-all antisymmetry require-
ment, all three wave functions transform in E+'. The
determinants of the matrices of odd permutations in
this representation are all —1 just as they are in E',
and therefore the three wave functions,

x'
6—

& oo' x' t' j=1 2 3
x'

(6)

oo= &(Px—Pao)b(P2+Po —Pdo)b(P4 —P4o) pd(Po Po)

=b(rr, —n„)b(n,,—~») o d(~,), (7a,)

are completely antisymmetric. Since R+'XR+'XR~'
- contains R only once, these three wave functions also

exhaust the possibilities. We have chosen to neglect
internuclear forces except in bound systems, and there-
fore the wave function y on which the operators o

operate to generate the p,' is simply the product of
Dirac 6 functions. Here and also in the deuteron and
triton wave functions we have used q, '= 8'o;,+p, which
is not properly normalized because of Eq. (4). The
improper normalization is corrected in the numerical
factors in the wave functions.

In the case that the Anal state includes a bound
deuteron it is necessary to take into account spin-
dependent forces; otherwise, singlet arid triplet "deu-
terons" would appear with equal frequency. Since the
spin wave functions are not eigenfunctions of all the
operators o;.e, that then appear in the Hamiltonian of
the system, a wave function may no longer be written
arbitrarily as a product of space, spin, and isotopic
spin wave functions. The wave function y is now
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which is symmetric in 2, 3 and has been chosen so that space,
o;2+ vanishes when applied to it. It is easily shown that
the most general antisymmetric wave function is

6 $Ayt'0 '+Bus'& '+Cy '( '

+ (3/2)'D(~'5" —
~ 'Y)], (7b)

with

q =exp( —E/Su),

tpd
——exp (—E/4a),

ipr
——exp (—E/6a),

u:= 18.8.

(5a)

(7e)

(Sb)

&-'=2-*(x'i-' —x'i.s)

S-'=2-'(x't'-i'x')

r '=2-~(x't-'-x'l-'),

&+'=6—:I—2x'i-'+x'i-s+x'Vj,

2 —6—ssL xtf-2+ xtf1+v2 (xs(2+x2(t)j
. &+'=6 Lx'f'+x'f'+~&(x'f'-x'f') j

v=6-&I ~2(x t'+xV)-(x'i'+"i') J,
~"=6 ~L~&(x'r'+. 'f')+. x'f' x't'-j

Then if it is possible to choose the constants so that y
which occurs in some of the p, ' is multiplied only by
triplet spin wave functions (i.e., x' or x') and singlet
isotopic spin wave functions (i.e., l ), a proper wave
function for the deuteron final state is achieved. The
antisymmetry ensures that any permutation I'p of p
is multiplied by proper spin and isotopic spin wave
functions. There are two wave functions that satisfy
the requirements, to wit,

The average kinetic energy for this He4 nuclear wave
function is 48 Mev, which is much less than the value
130 Mev obtained for our wave function.

An attempt is made elsewhere to assess the e8ect
upon the absorption of mesons of the forces between
unbound systems which have been neglected in calcu-
lating the wave functions above, but the following
remark may be in order. Since no forces are taken into
account in calculating the wave functions of the proton
final states, forces between only two particles are taken
into account in calculating the wave functions of the.
deuteron final states, while the forces between three
'particles are taken into account in calculating the wave
functions of the triton final states, the three kinds of
wave functions are not eigenfunctions of the same
Hamiltonian and are therefore not automatically
orthogonal. That they are in fact orthogonal results
from the stability of the bound systems which ensures
that

(Dt ) tritons) (ill )deuterons
and

Ã1 +lie ]deuterons+ [lit +lie jprotonsr

A=O 8=2 ' C=6 '
) D——3—'.

(7c)
which, in turn, is sufhcient to ensure the orthogonality
of the wave functions that are here considered.

In the case of tritons in the anal state the'situation
is much simpler. The space part of the triton wave
function transforms in E'+E+' and only the latter part
of the wave function (R+') can enter into an anti-
symmetric wave function with the spin and isotopic
spin parts, and only in the following manner:

x'
sH x'

x'

which gives the 6nal state wave function for a triton.
For the deuteron and triton wave functions, we have

used the Hulthen

III. THE TRANSITION PROBABILITIES

The evaluation of the various transition probabilities
now proceeds in a perfectly straightforward manner.
Except for the differences in the normalization of the
space wave functions indicated in Eq. (4) and the
di6erences in the amplitude of that part of the 6nal
wave function that transforms in E+', both of which
have been incorporated into the numerical factors
appearing in Eqs. (6)—(8), the calculation of the matrix
elements for the direct absorption of mesons is inde-
pendent of the final state.

In particular, the square of matrix element for
absorption from an s state of the pi-mesic helium atom
leading to the proton final state is given by

qd= (7'+E) ' —(a'+E) 'r u=0.0485, y=0.326, (7d)

and the Messiah

tot= (E+E) '(bE+E) ' b=8 (Sa)

,t xl gl
1

qP x' P (~oZ~; P;; (q.
12

~s X3 gs

x8 g8 s

x' P
wave functions, respectively. Here, E is internal kinetic
energy of the deuteron or triton.

In order to determine the effect of the wave function
on the results of the calculations, some of them have
been repeated using the wave functions of Bruno, and
of Clark and Ruddlesden which read, in momentum

The scalar product appearing here may be written

e P=20 P++0,P,+2o+P, P+=-,'(P,at'P„).
Written in this way it is evident that each of the terms
leads to a distinct final state (with spin magnetic
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quantum number 1, 0, —1, respectively), and because
of, the zero spin of the initial system all of the matrix
elements may be calculated from symmetry when one
of them is known. It is therefore only necessary to
calculate

x'
c2 Xs fs 2

X f I
Zp'i ~~ r~'I 'P~

3 x"
x'

Finally, summation over j and over the spin magnetic
quantum number of the 6nal state, and an evaluation
of the space part of the matrix element give

(ME) p' ——32Epcppp2 '(Ep) (10p)

where Eo is the kinetic epergy of the 6nal states.
The formulas derived on exactly the same basis for

the deuteron and triton final states give, after evalu-
ation of the space part of the matrix elements,

2

(ME)q2 ——8Edco' p2 (Eq+221122) p2q(221122)dII2, (10d)

(ME) P= (16/3)Egco2 „.(E,+ -', rr22+-;rrp)

&& p, (-,'11,2+-,'II,2)dII,dII, , (10t)

where Ed, E~ are the kinetic energies available in the
6nal states, and the wave functions have been assumed
to depend on the kinetic energies alone, as ours do.

In this method of calculation the sum over the final
spin states has already been performed, and therefore
the density of states is calculated without taking into
account the possible 6nal spin orientations. The 6nal
formulas for the transition rates are

(T.R.)„=(2048/315)pr'V2Cp'Eo ~'pp '(Ep) = 4.0Cp (11p)

(T.R.)a ——322r4co2E~2 I
pp (Ea+ l21122)

2

)& ppd(-,'II2')dII =5.2c,', (11d)

(T R ) (128/3)~2v2c 2E I )I ~ (E + 1112+ 111 2)

)C pp, (-,'ll, '+-,'ll, ')dII,dII, =2.8c,'.

The total transition rate is 2.4&(10"sec ' at j2= —'

or, upon evaluation of the spin and isotopic spin matrix
elements,

(4co'/9) &Z«~l" I
IIi+I p -))'=32co'(p IIIJ+I p -)' (9)

In considering the absorption of mesons from the p
state of the +-mesic helium atom, somewhat more care
is necessary. In the first place, since the spin of the
He4 nucleus is zero, the magnetic quantum number of
the mesic p state is evidently irrelevant, and will be
taken zero in what follows. The meson wave function
may now be written to good approximation, as we
have already indicated, as p=s grad&, grad& being
taken constant, and the interaction becomes

0;= (2m/p) l(f/p) grad&Lo.„—iso; P,s,j2;—.

The first part of the above operator gives zero if the
initial wave function is completely symmetric as we
have assumed but there may be an appreciable contri-
bution from the D state of the He4 nucleus. The esti-
mate of this contribution is rendered uncertain by the
fact that the momentum dependence of the S and D
parts of the wave function are not identical, as we
have been forced to assume below. The D state is a
quintet and therefore the spin wave function is com-
pletely symmetric. If it has zero isotopic spin, that is,
if the tensor force is charge independent, then it must
have space part in R2. Since the operator being con-
sidered does not a6ect the space coordinates, the 6nal
state also has space part in E2 and therefore no tritons
are possible. Moreover, since a given initial symmetry
must be preserved, there is only one possible 6nal space
symmetry. This materially reduces the number of
possible 6nal states. Departing for a moment from the
assumption that the initial meson is in an m=0 state,
consider the part of the He4 nuclear D state with
m, = —mL, =2. Evidently'only a, not 0-, or 0.+, lead to
acceptable 6nal states; therefore 3 of the m. mesons
are absorbed by this 6nal state or, alternately, only 3
of the D state is eGective in the absorption of a x
meson. The amount of D state initially present is
3 percent (see above) so that finally the ratio of the
squares of the matrix elements-for transitions from the
D and S states of the He4 nucleus is

0.01iP2 @2''P;P (diP/dE)2=1 1

Therefore, because of the difference in the number of
available final states, the absorption from the p state
through the small part of the operator dominates by a
factor of 2—3.

%e have therefore performed the calculation only for
the small part of the interaction operator and the S
state of the initial He' nucleus. Inasmuch as the
absorption from the p state is not a large effect, certain
additional approximations have been made. In dis-
cussing them we shall refer to the momenta within
bound systems in the 6nal states as internal momenta,
and to the momenta between bound systems as external
momenta. In the calculation for the absorption from s
states only external momenta appeared, while for p
states the internal momenta appear as well, Upon
integration over the internal momenta, because of the
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spherical symmetry of the wave functions, the internal
momenta remain in only -', of the matrix elements (they
tend to reduce the matrix elements). Furthermore,
since the wave functions decrease quite rapidly with
increasing energy, the average square of the internal
momenta is less than the square of the external mo-
menta. Therefore, the terms involving the internal
momenta have been neglected. Finally, again because
of the rapid variation of the wave function, the factor

'dp /dK in the integrals may be treated as a
constant. This again overestimates slightly the matrix
elements. The above approximations together should not
introduce an error above 25 percent in the relative
numbers of protons, deuterons, and tritons arising in
the absorption from the p state. Even a larger error in
these ratios makes, however, very little difference in
the observed ratios because of the small amount of
absorption taking place from the p state.

The result of the calculation of the absorption from
the p state gives for the transition rates

1024 8.72 ('~-)'
(T.R.)„= — p4elsf 2~5~2Ko11/21

315 9 (dK) xs

=7 3X10"f'sec ', (12p)

)1 de. ys
(T R )e 1.6—. Is—'e"f r'sKsg'1~—

9 &9~ dKI I-g

X ~"&.(K,+ sslrss) «(-.', rrss)diIs

128 16 t'1 dp )s
(T.R.),~ —@seessrs~gKssis1

3 9 Ep dK) mes

6nal nuclear states regardless of whether or not they
conserve energy, and the sum and the density of states
by which it is multiplied are both evaluated at their
maximum with respect to the photon momentum. This
approximation certainly gives an upper limit to the
number of photons to be expected. In the case of
deuterium and He', where the final states include no
more than two similar particles so that the matrix

- elements leading to low excitations of the nuclear
system are large and where, because of the large
amount of energy taken away by the photon, the
nuclear forces are strong and tend to bind the final
particles and thus increase the average photon energy
further, the closure approximation is very good. In
He' on the other hand, the final states contain three
neutrons and the eRect of the Pauli principle-is to give
nuclear wave functions of low energy small values near
the origin, thus depressing the nuclear matrix elements
for small excitations of the nucleons. Therefore, for
large photon energies, matrix elements leading to
nuclear states of high excitation which conserve energy
badly are prominent and also in a correct calculation
there would be no peak for high energy photons. Both
these eRects mean that the closure approximation is no
longer a good approximation to the actual transition
rate but rather an upper limit.

The actual calculation is quite simple. The square of
the matrix element

8 lp, o„ly.& =Q„lp,o„+Z,o„l4.)
is rewritten, by taking advantage of the antisymmetry
of the He' nuclear wave function, in the form

4Q. I o„,+Lo„+3o„114.&.

The polarization sums and spin and isotopic spin
matrix elements are calculated to give

&.(K,y-', rr, '+-,'rr, s) 2cs'(2sre'/p'k)(q.
i
1 —as( —k) hs(k) i s .&

X y, (ssifss+-ssifss)diI. dIIs = 4sr (e'c s/Ijssk) 1— «(Iig, rIs+v2k, Iis)

= g.sX 10ufs sec-~. (12t)

The optical transition rate from the p to the s state
of the mesic atom is"

28)&10" sec '

so that if f' is ss, 20 percent of the absorptions of sr

mesons take place from the p state of the mesic helium
atom.

In calculating the electromagnetic radiation accom-
panying the absorption from the s state, we have used
the closure approximation. In this approximation the
square of the matrix element (3) is summed over all

'6A. M. L. Messiah and R. E. Marshak, Phys. Rev. 88, 678
(1952).

&«.(Ir„II„II,)dII,dII,dIIs . (14)

Equation (14) yields for the transition rate

4cs'e p sk(1+k/4) ' 1— y (IIq, IIs+V2k, IIs)
f

X g.(II„II„II,)diI,diI, drr, =0.113css, (15)

which is 1 percent of the total nonradiative transition
rate,

Some of the calculations here reported, have been
repeated using the wave functions of Bruno, Ruddles-
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protons

deuteron s

tritons

0.76cp'

0.30cp'

0.019cp'

(»'p)

(11'd)

and for absorption from the p state,

protons

deuterons

tritons

6.2X10"f' sec '

3.6X10"f' sec '
(12'p)

(12'd)

0.066X10"f' sec '. (12't)

The reasons for the difference between (11) (12) and
(11') (12') are quite evident. First, the low average
kinetic energy of the Gaussian wave function means
that this wave function is quite smal1. at the final
kinetic energy of the fragments, so that the rate of
absorption from the s state is reduced. The rapid
decrease of the wave function for higher kinetic energies
means that the matrix elements that depend on the
value of the wave function there are depressed even
relative to the matrix elements for pure absorption.
Since the triton is more tightly bound than the deuteron,
this aRects the triton transition rate more strongly
than the deuteron rate.

The small values of the Gaussian wave function at
the final kinetic energy of the fragments is compensated
to some extent, for the absorption from p states, by a
large logarithmic derivative so that the transition rates
leading to free particles. are quite comparable for the
two wave functions. For the same reason as above,
deuterons and tritons are much less frequent.

IV. DISCUSSION

Qualitatively, the results of the preceding calculations
are hardly surprising. As pions are absorbed in larger
and larger nuclei with greater and greater binding

energies, the eRect of the nuclear forces should become
more prominent and lead to larger and larger propor-
tions of bound fragments until ultimately in the vicinity
of neon the absorption of a pion to produce a com-

pletely unbound system becomes energetically im-

possible. In particular, the kinetic energy available in

the final state for absorption by He4 nuclei is less by
20 Mev than in the case of He' because of the larger
binding energy of the He4 nucleus and must be shared

by three degrees of freedom, as opposed to two for He'.
The ratio of free to bound products, based on the
preceding calculations and the similar calculations of
Messiah is 1:2 for He4 and 3:1for He'.

The number of photons that is calculated is also in

agreement with the trend from deuterium through He'
(deuterium, 47 percent; tritium, 4.5 percent; He', 10

. percent of nonradiative absorption). The reason for

den, and Clark. The results of these calculations, in
which only the integrations are d~Rerent from ours, are,

for absorption from the 5 state,

this decrease in the amount of radiation is due to the
fact that as the nucleus gets heavier the high energy
part of the wave function is accentuated and augments
the pure absorption whereas the low energy part is
unaRected; hence, the radiative absorption is unable to
keep pace. This trend is expected to continue for larger
nuclei and appears to be in agreement with an estimate
in the literature" that the radiative absorption is less
than 1.3 percent of the total absorption in heavy nuclei.

A word might be said about the absorption of
negative pions leading to final states involving neutral
pions. According to the calculation of Messiah, upon
which reliance will be placed for all the relevant facts,
the transition rate is proportional to the momentum
of the emitted pion and to the square of a matrix
element that does not involve the spin but is propor-
tional to the overlap of the wave functions of the initial
and Anal nuclei, for negligible momentum transfers.
Inasmuch as the emission of p-rays also involves low

momentum transfers, the neutral pion emission may
profitably be compared with it. Because of the large
rest energy of the neutral pion, less than 5 Mev is
available for the reaction and only low-lying final
nuclear states are important. This is not so for photon
emissions as has already been pointed out in connection
with the closure calculation.

The rate of neutral pion emission is comparable to
the rate of photon emission for He' ~ It is evident that
the number of neutral pions will be negligible ((0.1)
with respect to the number of photons, which is already
small, unless the nucleus in which the negative pion is
absorbed is the decay product of a negatron beta-decay
superallowed with Fermi selection rules. Since the only
two such nuclei are the proton and He', absorption
leading to neutral pions will be completely negligible
for any other nucleus. An equivalent formulation of
this result without recourse to beta-decay theory may
be given as follows: In order for the overlap integral
mentioned above to be large, it is necessary that the
initial and final nuclei belong to the same supermultiplet
and have the same spin. Two nuclei in the same
supermult'iplet. wj.th the same spin must have the same

isotopic spin. However, the only stable nuclei that can
decrease their charge by 1 without changing their
isotopic spin are the proton and He'.

The eRect of the nuclear forces on the nonradiative
processes is brought in evidence more clearly by con-
sidering only states whose symmetry is such that they
admit the bound states. In the case of the He4 nucleus
this state is the one with space symmetry 0,~+ and the
ratio of protons to deuterons to tritons is 1:2:2.1,
while for He' it is one of the states with spin ~ and the
ratio of protons to deuterons is 1:1.

It is, however, a disturbing feature of calculations of
this nature that, although it is evident from the number
of bound systems occu'rring in the disintegration

'r Brneckner, Serber, and Watson, Phys. Rev. 84, 258 (1951).
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products that nuclear forces play an important part in
the reactions, the nuclear forces have been completely
neglected except within bound systems. Bruno has
argued that the binding forces are equivalent to an
increase in the kinetic energy of the disintegration
products and that therefore the number of unbound
products is overestimated by neglecting the forces.
This seems a reasonable idea upon which to base at
least an estimate of the order of magnitude of the effect
of nuclear forces. Irving" gives about 60 Mev for the
potential energy of the triton. On the assumption of
Serber forces the potential energy in a proton 6nal state
is probably somewhat less because of the poorer
correlation between the particles. The transition rate
to proton states would be about halved if the effective
final kinetic energy were increased by 40 Mev. Actually,
it is by no Ineans evident that such an estimate has a
sound basis.

Another disturbing approximation that has been
made is the neglect of higher powers of (e/c)'=0. 19.
There does not even appear to be any basis for esti-
mating the effect of this approximation, except to
assert that it is probably quite good for radiative
absorption where the momentum transfers are small.

Finally, serious consideration must be given to
possible inadequacies in the He4 nuclear wave function
besides those involving neglect of ejc. Inasmuch as the
part of the wave function relevant to the absorption
calculation is in the vicinity of the average kinetic
energy and the part of the wave function near the
average kinetic energy is the part that enters most
importantly into the variational calculation of the
wave function, the present wave function appears
quite well founded for use in this problem. It is far
better founded than the deuteron wave function, tg

"J.Irving, Phil. Mag. 42, 338 (1951).

mention an extreme case. No account has been taken
of possible correlations among the nucleons leading to
a wave function that is not a function of E alone. Here
again, there is no basis for estimating in what direction
the results of the calculation might be changed.

At this time no extensive comparison with experiment
is possible. A preliminary experiment (involving the
observation of 23 absorptions in a high pressure helium
cloud chamber") on the absorption of negative pions in
helium has led to the following results: the number of
tritons per absorption is O.I&0.1, as evidenced by one
possible triton final state observed. Also, low energy
charged nuclear fragments seem to be much more
abundant than one would expect from a statistical
spectrum; in fact, the observed spectrum of charged
fragments has no maximum above 5 Mev. The number
of tritons observed appears to be within range of our
calculations, but the distortion of the spectrum cannot
be explained since our calculations always lead to a
statistical spectrum (the sum of the squares of the
matrix elements Eq. (10) is independent of the distri-
bution of momenta) with an average energy of about
30 Mev. In order to obtain a momentum distribution
diRerent from the statistical distribution, it is necessary
to use a wave function which does not depend only on
the total kinetic energy.
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