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direct comparison between these two pulse-height
distributions were obtained. Figure 1 shows 'a super-
position of the two spectra measured simultaneously.
It can be seen that the difference in the end-point
values of the two distributions is less than 5 percent
of the a-particle energy.

Since this surface eGect is so small, it cannot be
responsible for nonlinearity of response of (chemically
cleaned) NaI crysta1s to rr-particles. An incidental
result is that trace amounts of polonium in a NaI(Tl)
crystal do not affect its characteristic performance as a.
scintillation crystal.
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The scattering of slow neutrons by 02 is due to nuclear interaction as well as magnetic forces arising
from two magnetically active electrons. The molecular (nuclear) scattering is subdivided into elastic
(coherent and incoherent) transitions and inelastic (mostly hyperelastic) transitions. The magnetic scat-
tering is purely incoherent and essentially elastic. Numerical values are obtained for the integral cross
sections of these various scattering processes in dependence upon the wavelength. The case of very long
neutron wavelength is of greatest physical interest, since only then can a sizable magnetic effect be expected.
The analysis requires careful consideration of the thermal motion of the 02 molecules, which sometimes
infIuences the order of magnitude of the result. More accurate experiments can be expected to lead to an
independent measurement of the distribution of the magnetically active shell of valence electrons.

1. INTRODUCTION

'HE present paper contains a detailed theoretical
analysis of the scattering of very slow neutrons

by Os molecules. One of us (O.H.) has announced some
time ago, in very brief form, some theoretical esti-
mates. ' We present here a full quantitative discussion
of this problem which will justify previous expectations
that more refined experiments may lead to an analysis
of the distribution of valence electrons in O~.

The interaction between a neutron and the 02
molecule is essentially twofold. There exists first the
customary nuclear interaction. caused by the two nuclei.
In addition to it, the paramagnetic 02 gives rise to a
magnetic type of neutron scattering caused by the
interaction between the magnetic moment of the neu-
tron and the molecule.

This magnetic interaction, which has previously been
analyzed in great detail, ' has so far been studied
experimentally mostly through observation on the salts
of elements of the iron group in polycrystalline form.
While very recent experiments' seem to lead to a
satisfactory agreement between experiment and even
finer points of the theory, it must be kept in mind that
scattering experiments with solid targets are often
accompanied by some disturbing features. The para-
magnetic scattering of a neutron by 02 can be expected
to be essentially undisturbed; one can therefore hope
to draw conclusions from a comparison of calculation

* Supported in part by the U. S. Ofhce of Naval Research.
' O. Halpern, Phys. Rev. 72, 746 (1947).
2 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' Smith, Taylor, and Havens, Phys. Rev. 88, 163 (1952).

and experiment which will lead to information con-
cerning the distribution of the magnetically active shell.

It is, of course, necessary for this purpose clearly to
isolate the magnetic scattering from the purely nuclear
scattering. As shown before, ' the magnetic scattering
does not interfere with the nuclear scattering so that
the latter may be calculated quite independently and
the resulting total cross section can be subtracted from
the observed cross section to obtain a value for the
paramagnetic cross section.

Since, on the other hand, the earlier theory' of para-
magnetic scattering leads us to expect that only neu-
trons of very long wavelength will have sufficiently
large a form factor so that a sizable magnetic scattering
can be expected, the analysis must be carried out for a
range of wavelengths which make the calculations of
inelastic transitions somewhat complicated. It will turn
out that the change in the neutron energy accompanying
inelastic (mostly hyperelastic) transitions will be, in
general, large compared with the orignial neutron energy.
This fact requires an individual study of all the matrix
elements of significance, which are very numerous,
since 02 at room temperature occupies rotational states
with quantum numbers 1 to 23 with appreciable
frequency. Customary simplifications in the theory of
neutron scattering by molecules are, therefore, no longer
applicable.

It will also turn out that the thermal velocity of 02 is
comparable with the neutron velocity. The thermal
motion of 02 needs to be taken into account rather
accurately in the study of the various contributions.
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The- experimental side of the question will be dis- system of neutron and molecule, the expression:
cussed in Sec. 7 of this paper.

2. THE NVCLEAR INTERACTION

The neutron is characterized by its wave vectors k
and k', referring to the momentum before and after the
collision in the mass center system of neutron and
molecule. To describe the nuclear interaction we
introduce, as is customary, the simplified Fermi
potential for use in Born approximation:

—(2vrk'/m)((P (r—r&)+8 (r—r2),

in which ns= neutron mass, r= position vector of neu-
tron, and r~, r2 ——position vectors of nuclei. The single
atom potential gives for scattering by an atom of
infinite mass the cross section 4+a. Experimentally, it
has been found by Melkonian' that the cross section of
a free oxygen atom amounts to 3.73 barns. This means
that 4+a' for the case of oxygen must be put equal to
3.73(17/16)' to account for the reduction in cross
section due to the reduced mass of the system of neutron
and oxygen atom. The molecule is characterized by its
rotational and magnetic quantum numbers l and m.
The vibrational eigenfunction is treated as a delta-
function, which introduces the equilibrium nuclear
separation of the ground state, denoted by d. This
assumption is modified later when a correction to d
due to vibrational motion is discussed.

The matrix element leading, for the neutron, from
the state k to the state k' and, for the molecule, from

the state l, I to the state l', m' is then proportional to
the quantity

(k, /, m
i
M

i
k', /', m')

&& P [ (k, /, m
~

M
j
k', /', m')

~

'dQ,
2/+1 m, m'

in which p, is the reduced mass of neutron and oxygen
molecule and dQ=sinOdOdC is the element of solid
angle of the sphere of scattering. Because of the
orthogonality of the 7'&, „in (t( and the (/(-independence
of our operator, the sum over m' of the squares of
expression (2) reduces to

(T

sin0doP~, cos8
0

&(cos(-', d
~

k —k'
~

cosg)P(, „(cosg), (4)

in which P( (cosg) are the normalized 8-dependent
parts of I'(, „(8,p). The total cross section for the
transition k, t to k', l' becomes

k'
sfngdgP& P(

2/+1 m k ~p

&(cos(-,'dik —k'i cosg), (5)

2 7I

dy
dpJp

singdg Y~, m*(g, (/()

&&cos(-', dik —k'i cosg) 7'~, ~ (8, (/), (2)

' J. Schwinnger and E. Teller, Phys. Rev. 52, 286 {1937).
5 K. Melkonian et al. , Phys. Rev. 76, 1750 {1949).

in which F~, (8, (/) are normalized spherical harmonics

and in which (k—k') has been chosen as the Z axis of
the internal coordinates of the molecule, as is permitted

by the principle of spectroscopic stability. The elec-

tronic eigenfunction of 02 is antisymmetric in the
nuclear coordinates; this limits 1 to odd integers in

order that the total eigenfunction be symmetric in the
nuclear coordinates. For calculation of the total cross
.section (i.e., both coherent and incoherent), we must
;sum the squares of the matrix elements over the final,
.and average over the initial degeneracies in the magnetic
quantum number to obtain for the di8erential cross
:section (via the Born formula), in the center-of-mass

in which k'/k= (p'+2@DE)'/p and p=M denotes the
initial neutron momentum, and AE is the energy change
of the neutron which is positive for hyperelastic and
negative for inelastic transitions. The strength factor
4 4mu'(p/m)' has the value of 15.84 barns.

Since the number of neutrons removed from the
beam per unit time is invariant with respect to Galilei
transformations, we have, for our case of a gas target in:

which the neutron has initial laboratory velocity v
and the molecule initial laboratory velocity u, the
following expression for the cross section at a given gas
temperature for the above transition:

(T(v, /)( (, (, , &'=
)~ l

v ul/n(A' (u)(T(p, /)~, (;(:., &,du( (6)

in which p=p~ v —u~ and 1V(u) is the normalized
Maxwell velocity distribution in u. This Doppler cor-
rection is an average, with multiplication by the factor

~

v —u~/v, over all p's. For a given laboratory neutron
wavelength X=h/mv, the cross section at a given gas
temperature will be an average over / of expression (6).
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3. ELASTIC TRANSITIONS

Our procedure is to calculate 0 (p, /) of expression (5)
for the various types of transitions as a function of
p=p~v —u~ and then to perform the Maxwell aver-
aging as indicated in (6). We obtain the elastic cross
section by setting l= P and k=k'. It should be empha-
sized that all of the result wi11 not be coherent. Only
transitions involving no change in the magnetic quan-
tum number m are in this category. Ke will see, however,
that the coherent part of the elastic scattering is large
compared with the incoherent. Our calculation proceeds
by expanding cos(—,'d ~

k—k'
~
cos8) to the fourth power

in cose. The validity of this expansion is justi6ed by
the long wavelengths considered. It should be remarked
that the fourth-power contributions are significant in
the range 5 to 10A only because of an effective wave-
length shortening due to the thermal motion of the
molecules. Our calculation of expression (5) for the
total elastic cross section (averaged over the thermal
distribution in l) leads to

o (p, /) g, g = 15.84L1——', (kd)'+0. 01682 (kd)4
—9.00X10 '(kd)'+2. 08X10 '(kd)'$. P)

The above formula is derived in the Appendix where
also the Maxwell averaging is discussed. Ke have
tabulated the total and coherent values for the elastic
cross section at a gas temperature of 300'K in Table I.
The distinction between coherent and incoherent elastic
scattering, with formulas for the former, is presented
in the Appendix. '

4. INELASTIC TRANSITIONS

It will turn out that among the inelastic transitions
only the hyperelastic are of quantitative significance in
the wavelength range studied. If we again use the
simplihcations introduced in Sec. 3 of replacing the
cosine operator by its power expansion, then obviously
the first term gives no contribution on account of the
orthogonality of the rotational eigenfunctions referring
to l. The second term which is proportional to cos29

permits only transitions between rotational states I
and 3~2. The third term, proportional to cos48, has
matrix elements for j LU~ =2 and 4. We shall here only
discuss transitions l—&l—2; the Appendix shows that,
for all wavelengths, the quantitative contribution com-
ing from transitions l—+l—4 is small. Expression (5)
for the case l~l —2 is

t
dg r 1 (p'y2phE)'*

~(P, ~)~, ~;v, i-2=15.84 I—
~ 4m. 2l+1 m p

sinedgP~ (cos8)
J(

2-

TABLE I. Total elastic and coherent cross sections in barns at a
gas temperature of 300'K.

Total elastic cross section
Coherent cross section

11.01
10.89

7.5A

14.59
14.46

10.0A

17.95
1.7.84

S. DISCUSSION OF SOME CORRECTIONS

The treatment given so far is incomplete, since
inelastic transitions accompanied by an energy loss of
the neutron have not yet been included. YVe shall here
refrain from presenting in detail the quantitative
justification for the omission. They can obviously be
calculated in perfect analogy with the hyperelastic
collisions which were treated in detail, but one sees
almost by inspection that their contribution to the
cross section will be small.

One finds easily that, for the wavelength range studied,
inelastic transitions can only occur as far as k=5. These
first rotational states are not very strongly occupied.
Furthermore, the factor k'/k in front of any inelastic

TABLE II. Total hyperelastic cross section in barns
at a gas temperature of 300'K.

with the elastic is the appearance of the factor
(p'+2@hZ)'/p. It arises from the energy increase of the
scattered neutron, which carries away some of the
rotational energy of the 02 molecules. This factor must
not be confused with the factor

~

v —u~/v of expression
(6), which is exclusively caused by the translational
thermal motion of the 02 molecules.

The method of evaluation of (8) and its averaging
over the various states of the 02 molecules is shown in
the Appendix. One sees from the results given in
Table II that the hyperelastic transitions make a very
substantial contribution to the total nuclear cross
section. It is perhaps surprising at first to notice that
the hyperelastic cross section increases slightly if the
wavelength of the incident neutron increases from 5 to
10A. One would have expected, from the expansion of
the cosine operator in (8), that hyperelastic transitions
become less significant with longer wavelengths. The
reason for the opposite behavior is to be found in the
energy acquired by the neutron in a hyperelastic
collision which is usually much larger than the original
energy of the incident neutron. The ~k —k'~ factors in
(8), therefore, are not very much influenced by the fact
that p decreases strongly if X increases from 5 to 10A.
It is kept almost constant by the large value of P'
while the factors k'/k and

~
v —u~/v of formula (6) in

front of the cross section increase with decreasing
neutron velocity. This explains qualitatively the
quantitatively obtained increase of the hyperelastic
cross section.

)&cos(2dik —k'i cosg)Pg ~, ~(cose) . (8)

The essential difference occurring in (8) as compared

5.1A
1.11

7.5A
1.22

10.0A
1.38
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cross section is considerably. smaller than 1. One can
so readily believe the result of a closer calculation which
makes the inelastic cross section less than 1 percent of
the total.

We should here also mention the justification of our
treatment of vibrational eigenfunctions. At room
temperature, most 02 molecules will be in the lowest
vibrational state and transitions to a higher state are
energetically impossible. Taking the vibrational motion
into account means eventually an increase of the square
of the interatomic distance, as it occurs in the matrix
elements, by about one percent. The small diminution
of the elastic scattering thereby occasioned is about
balanced by the equally small addition of the inelastic
transitions. This was observed to be the case for 5.1A.
At longer wavelengths the percentage infIuence of both
these effects is still less.

6. MAGNETIC TRANSITIONS

Having thus determined the total nuclear cross
section (see Table III), we now have to add the contri-
bution due to the magnetic interaction. No calculations
are required for this, since the result is contained in a
general form in reference 2. We only have to comment
on the transfer of the expression 5.41 of that paper,
which was derived under the assumption of a free

TABLE III. Total nuclear cross section in barns at
a gas temperature of 300'K.

nuclear magnetons. The differential form factor F is

2

exp(i(k —k') r)p(r)dr

in which p(r) is the distribution function of the mag-
netically active electrons which is so normalized as to
give unit form factor in the limit of long wavelengths.

. The only remaining problem then is given by the
expression of the form factor; i.e., the distribution of
the magnetically active shell which leads us back to
the starting point of the whole investigation. It will,
of course, be necessary to establish experimentally the
dependence of the total magnetic cross section on the
wavelength of the incident neutron. One can then
empirically obtain an expression for the form factor
due to the distribution of the magnetic moment.

To assist such future evaluations, we are here pre-
senting form factors as functions of the incident wave-
length under the undoubtedly arbitrary assumption
that the magnetic shell is very thin and thus essentially
characterized by its radius. If the description on this
basis should, as we expect, not be quite satisfactory
one can always obtain a better one by the superposition
of a number of such shells.

It is shown in the Appendix that the integral form
factor (in the mass center system) for a shell of radius
d'/2 can be given rigorously by the expression

5.1A
12.12

7.5A
15.81

10.0A
19.33

FdQ/4

= (kd') 'Llog, (2kd') —Ci(2kd')+0. 57727, (10)

magnetic moment, to the case of O~, where the electronic
spin is coupled to the rotational momentum of the
molecule. This procedure can be justified by referring
to investigations by Van Vleck' and Kramers, who
first determined the coupling energy for the present
case. It turns out that this coupling energy is small
compared to the energy of the slowest neutron (s of
the average neutron energy at 10.0A and 300'K); it
therefore seems correct to use the results of reference 2
as if the electron spin would be completely free. We
must correct for our case of a free target the result 5.41
calculated for a rigidly bound target. We give below
the corrected form for the diGerential magnetic cross
section.

do. (magnetic)
f= (p/m)'(2/3)

~
S(S+1)$e'y/m, C'7'FdQ (9)

in which S is the total spin of the molecule; e, m„ t." are
electronic charge and mass, and light speed in absolute
units; and y is the magnetic moment of the neutron in

6Van Vleck, E/ectric and Magnetic Susceptibilities (Oxford
University Press, London, 1932).

r H. A. Kramers, Z. Physik SB, 422 (1927).

in which

Ci(x) = —" (cost/t)dt.

For our wavelength range (X)5.1A), the laboratory
form factor can be expressed with sufFicient accuracy
by the formula given in Table VI of the Appendix.

'7. GENERAL DISCUSSION

There exist two groups of observations on the
scattering of slow neutrons by 02. In the experiments.
of Fermi and Marshall, ' the scattering cross section of
02 was found to be in excess of 16 barns; the wavelength
was not sharply determined but was stated to be
closely centered near 5.1A.

Later experiments by Melkonian' extend over a.
large wavelength range up to about 5.3A. The points.
of longest wavelength should undoubtedly fall within
the range of our theory. Melkonian's value is about 2
barns smaller than that of Fermi and Marshall. No
explanation is given for this experimental disagreement.
Since, according to our formulas (see Table III), the
total nuclear cross section at 5.1A amounts to 12.12.

s E. Fermi and L. Marshall, Phys. Rev. 71, 666 (1947}.
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barns, the experiments give widely diGerent values for
the residue, which is interpreted by us as the magnetic
cross section. It seems clear that no successful determi-
nation of the size of the magnetic shell can be attempted
under these circumstances. We would be somewhat
inclined to think that the effective wavelength in the
experiment of Fermi and Marshall has been underrated.
If their value should be correct the magnetic form
factor would be about 80 to 90 percent, which would
mean that the magnetic shell is essentially contained
within the sphere described by the molecular radius.
This result seems to us somewhat unlikely, but we prefer
to refrain from any quantitative discussion until future
experiments have established more accurate values for
the total scattering cross section.

It should be mentioned that the method here used
can be equally applied to the treatment of paramagnetic

, XO. In this case, the calculation will be more compli-
cated. In computing the contributions coming from
inelastic transitions, one will have to remember that all
rotational states will be present in XO. Furthermore,
the active magnetic moment as shown by Van Vleck'
is due to a complicated super position of quantum
states. It does not seem doubtful, on the other hand,
that a similar analysis will lead to interesting informa-
tion concerning the active magnetic shell in NO.

It will equally be possible to extend the line of
reasoning here presented to an analysis of the magnetic
scattering by solid 02.

(a) Elastic Form Factors

In formula (11) we set ik —k'I =2k sin(0~/2) and
expand the cosine to the fourth power in its argument
to obtain

pdD 1 r~ 1 (
sin8d8(Pi, )' 1——

I
kd sin

~ 4~ 2l+1~ ~6 2& 2)

Representing

( ) 4 - 2

Xcos'8+—
I

kd sin —
I

cos'8 (14)

sin8d8(Pi, )'cos'8 by (l, micos'8il, m),
0

and so forth, we have

dQl 1 (
1—

I
kd sin—

I
(l, micos'8il, m)

4n. l2l+1 ~ . ( 2 3

(11), then average over the molecular velocity according
to (16). In the second part, the coherent elastic and the
magnetic form factors are shown to be equal except for
di8erences in the shell diameter, and the magnetic form
factor (as a function of d' and li) is obtained from the
coherent expression. Finally, the hyperelastic form
factors are calculated.

APPENDIX

The following discusses our procedure of evaluation
of the various integral form factors. For the nuclear
scattering, we require

rdQ 1
sin8d8Pi,

& 4m. 2l+1 ~ ~6

Xcos(-,'AIR —k'I cos8)Pi,

from formula (5) for the elastic scattering,

dn
I

1 (p +2&az)
sin8dOE'~

4 4ir 2l+1 m p ~p

+—
I

kd sin—,
I (l, m

I
cos'8

I l, m)'
2)

( Qg)4
+—

I
kd sin—I (l, micos'8il, m)

12& 2i
6

——
I

kd sin—
I (l, m, icos'8il, m)(l, micos'8ll m)

24k 2i

(1 )6( 0+)6
+I —

I I
kd»n —

I (l mlc»'8il, m)' (»)
&243 L. 2 )

The averages over the sphere of scattering are given by

tdQ 0 1
sjn2R

Xcos(-,'dik —k
I

cos8)Ei 6 (12)
so that our formula becomes

from formula (8) for l~l —2, and a similar factor for
l—+l—4. The magnetic form factor, under our assump-
tion of a thin shell distribution, is

2

(dQ/4ir) ~' dr exp(6'(k k') r]8(r——2d')/4', (13)

where 8 (r yd')/4~ is the ap—propriately normalized
p(r). We first calculate the total elastic form factor

1——,'(kd)'((l, mi cos'8il) m))„
+ (1/12) (kd)'((l, m

I
cos'8

I l, m)') „
+ (1/36) (kd)'((l, m

I
cos'8

I l, m) )
—(1/96) (kd)'((l, mi cos'8il, m) (l, mi cos48i l, m))~

+ (1/5) (1/24)'(kd)'((l, mi cos'8i l, m)'), (16)

in which ( )„denotes the m average, L1/(2l+1) jg„.
The terms ((l, micos'8il, m)) and ((l, micos'8il, m))
are 3 arid —,', respectively. The other terms require the
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TAmz IV. Cosine matrix element factors for elastic and hyperelastic form factors. Except where noted, the arguments for the functions
A, B, and C are l and m. The numerical values in the elastic case are averages over the thermal distribution in l for a temperature of
300'K. The hyperelastic values are for t,=15.

Elastic transitions

((l, m~cos'. Oil, m)')

((l, m[cos'all, m)(l, m[cos'S~l, m)),„

((l, m ) c os'8
[ l, m)')

((l, m)cos'e~l 2, m)—')

((l, micos'eil —2, m)(l, mac ossil 2, m))~—

((l, mlcos4ail —2, m)')

((l, mjcos'8', l —4 m)')

t Z LA'B+Bs+C'B5
m

2l+1
Hyperelastic transitions

2 E(l—1)
15 4P —1

Z LC'B+C'B(l —2, m)5

Z PCB+CB (l 2, m) 5'—1

77'

Z LC(l —2, m) C (l, m) 5'
1

0.1352

0.0864

0.063

0.027

0.025

0.002

We tra, nsform (kd) to laboratory quantities. Since X=k/
me, k may be expressed as k=(1/k)lrlv —ul (k/m9, )
which gives kd= (27rdli/mX) (l v —ul/v). This form facili-
tates the Maxwell averaging procedure and the numer-
ical evaluation. We define A {)t)= {27rdp/m)t) and
f„= l

v —ul "/e Form. ula (11) now appears in abbrevi-
ated notation as

following evaluation procedure. By successive appli-
cation of the expansion formula,

coss8Pi (cos8) =A (l, m) P~+s (cos8)

+B(l, m)Pi, „(cos8)+C(l, m)Pi s, (cos8), (17)

in which
[(l+1)'—m'][(1+2)'—m'j f

(2l+1) (2l+3)'{2l+5)
A(l, m)=

1—re A'fs+0. 01682A'f4
—9 00X10 4A'fs+2 08X10 'A'fs

2ls+ 2l 1—2m'—
B(l, m)=

(2l+ 3) (2l—1)

[ls—m'$[(l —1)'—m']
C(l, m)=

(2l+ 1) (2l—1)'(2l —3) fi sA'fs+0 0—1—682A'fs.
—9.00X10 'Asfr+2. 08X10 'A'fo, (19)

(18) If we denote by f„ the Maxwell average over u of

l
v —u

l
"/o, then the effective form factor of expression

(6) reads

one obtains algebraic expressions in /. For example,

(l, ml cos'8ll, m)'= [B(l,m)]'.

Hence, ((l, m
l
cos'8l l, m)') = [1/(2l+1)j+ B'. All

such expressions are reduced to algebraic functions of l

by means of the formulas for the sums of even powers
of the integers in terms of the upper limit.

The cosine matrix element factors are given as
functions of A, 8, and C in Table IV. Terms appearing
in the hyperelastic form factor are included. The num-
bers for the elastic terms are averages over the thermal
distribution in / for a gas temperature of 300'K. The
6rst two elastic factors are exact, but the third is in
error by about 20 percent. Since this latter appears in
the eighth power term of the form factor expansion, it
introduces negligible error into the cross section. The
form factor now appears as a power series in (kd),
formula (7) of the text:

1——,
' (kd)'+ 0.01682 (kd) 4

—9.00X10 '(kd)'+2. 08X10 '(kd)'.

in which, of course, the average over l has already
been performed.

We now develop formulas for the f„expressions for
odd e, in terms of the dimensionless variable n defined

by o.'=Mes/2kT, in which M is the mass of Os and
T is the gas temperature. One has the integral
J'dulV(u)

l
v —u

l
"/r, in which cV(u) is normalized

by the condition J'dudV (u) = 1 to be (M/2x. kT) '*

Xexp( —Mn'/2kT). Our integ'ral under the transfor-
mation"' u= v+ w becomes

( M q
-', tIsx ~n ~&e

sin8d8
~

w'dw
I 27rkT) "O & O ~O

p
—Ml v+wl'~

X expl lw"/~" . (20)
2kT

9 These integrals can be done in u space without this transfor-
mation, but then one must reduce by partial integrations integrals
of the form jo'exp( —u'x')x~dx end J'j" exp( —cPxs)x&dx for
higher powers of x than are required by the method described.
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(2n/Qv-) ' exp( —n'x')
I

Ix"dx, , ( p

( M )l t" (w") ( Mv Mw)
~" w'dw

(

—
)
exp)—

t 2~kT) ~s (v" J L, 2kT 2kT)

Choosing the Z axis along v and using the transfor- even powers, terms of the form
formation x= —cos8, one gets

jr 2Mvwxi
&«expl ldx , (21)

2kT ]
which equals

M ll(kT) e" (1)
(.27rkT] L M ) Js &vw)

( Mv' Mw' y (2Mvw q
(22)

2kT 2kT) & 2kT )

( tis

(2cr/gv) i exp( —cPxs)
J 1 Lu+1)

Our notation is m, for odd powers and p for even powers.
YVe de6ne

~l
E(p) = 2 exp( —rr'x')x&dx, (25)

in which (p, v+1) is the appropriate binomial coeffi-
cient. In the interval [1, ~$ for both integrals, the
even power terms are canceled, and one gets, for odd m,
terms of the form

Introducing cP de6ned above and the new variable and
y=w/v, we reduce the integral to

(rr/gv. )2 exp[ —n'(y'+ 1)$ sinh(2yo. ')y"+'dy, (23)

G(m) =2

dp

exp( —n'x')x dx. (26)

or

—exp[ —n'(y+ 1)'j)y"+'dy.

Separation of the integral and the transformations,
x=y —1 and x=y+1, applied to the respective parts
give

The latter are quite easily evaluated. In the p terms,
the transformation n= nx and partial integration give
the recurrence relation

&(p) = —Lexp( —')3/ +L(p—1)/2 'Ã(p —2), (2&)

and for p=0,

E(0)= (2/n) exp( —u')du= (gv./n) erf(cr), (28)
ssf p

(n/Qv ) [exp (—n'x') j(x+ 1)"+'dx in which erf(n) is the error function of rr defined as

~ [exp (—rr'x')] (x—1)"+'dx (24)

In the interval [—1, 1j for the first integral, only the
even powers in x contribute, so that one gets, for the

(2/g~)
~,

exp( —us) du.
Jp

With tables of E and G for m=1 through 9 and p=0
through 10, we have obtained formulas for f„for n= 1

through 9 by substitution in the appropriate (m+1)

TABLE V. Formulas for f, the average over Maxwellian distribution in u, at the temperature T, of the quantity
~
v —u

~

"/v" as a function
of A2=3A'/2kT, in which M is the molecular mass. The numerical values are for a gas temperature of 300'K.

X =5.1A
f-

X =7.5A X =10.0A

' '"' "' +L.-f(-)»+—",
' (i+'—)+L' f( )i(~+—',+",')

1 exp( — ) 7 8.25 7.5 11.25 1.88
7r A A2 n4 A' A4 A'

1 exp (—A2) 13.5 46.25 34.88 14 52.5 52.5 6.56
7r n A2 A4 n6 n2 n4 A6 As

1 exp (—A2) 22 147 330 180.9 22.5 157.5 393.8 295.4 295.4+ erf(n 1+
7r n n2 A4 A6 A8 A2 A4 A6 A8 nlo

2 1+1.5/A2

1.1295 1.2758 1.4702

1.8283 2.9165 4.7154

9.0998 35.263 125.56

25.66 163.4 890.1

1.389 1.841 2.495

3.7338 9.0725 21.486
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binomial formula. For example,

f = ( /v' )L~(4)+4G(3)
+6E(2)+4G(1)+E(0)). (29)

The f„formulas are given in Table V. We have included

f2, which appears in our treatment of the hyperelastic
form factor.

formula (13).

(dQ/4~)
~

drL8(r —-,'d')/4m]

XLcos(k—k') r+i sin(k —k') r] . (32)

(b) Coherence and Incoherence

The distinction between coherent and incoherent
parts of the elastic form factor appears in the treatment
of the matrix element in the Born formula. For the
total elastic cross section, the square of the matrix
element given in formula (2), in which the F~, (8, p)
are the eigenfunctions, was summed over m' and
averaged over m, since, in this case, we did not specify
the transitions between the degenerate states. Pro-
ceeding more generally, let us represent an internal
l state of our rigid rotator by the linear combination
of eigenfunctions, P (C~, F'~, ), with the normalization
condition, P„(C~ „*Cq„)= 1.

The matrix element for a transition from this state
to some other is proportional to

27r

dp, , sin8d8L (P C~„*I ~~~)
m

Xcos(-',djk —k'i cos8)(g Ci, .'I'i, .)],
tn1

where g (C~, 'V~, ) is the eigenfunction of the final
state with the same normalization condition. For
coherence, we examine a diagonal matrix element
(C&, '=C&, in above). The square of this matrix
element enters the Born formula for the coherent
transition from state C to state C. The orthogonality
of the F~, in P and our P-independent Hamiltonian
reduce this matrix element to

sin8d8 cos(-,'d~k —k'~ cos8)(P C~ *Cg P~ *P~ ).
~0 m

Equal e priori probability for the m's demands that
the C~ *C~ be the same for all m so that the matrix
element is now proportional to

With Z axis along (k—k'), we see that the sin factor
gives zero in the 8-integration over r space. Thus, the
magnetic form factor is

'r 2

(dQ/4~) 2
I sin8d8 cos (2 ~

k —k'
~

d' cos8), (33)
0

which is the same as the coherent nuclear factor except
for the shell diameter. Aside from this trivial difference
these factors become

~dQ sin(~k —k'~d/2) '

& 4m ~k-k'(d/2

which can be evaluated to give formula (10) of the text:

(1/kd)'Llog, (2kd) —C'i(2kd)+0. 5772j. (34)

The procedure is as follows. Since the collisions are
elastic, j k —k'

j is equal to 2k sin(0/2). In terms of the
variable y = 2kd sin (0/2) our integral form factor
becomes

2kd

(kd) '~ (1—cosy)/ydy.
0

This integral is expressed in terms of Euler's constant
and the cosine integral as given above.

Since the exact form factor of expression (34) does
not permit an easy Maxwellian averaging, we have
evaluated (31) by expansion of cos(2~k —k'~d cos8).
For the proper choices of shell diameter, the resulting
expression gives both the coherent and magnetic form
factors.

Formula (31) becomes in our approximation:

pdQ 1t' 0)'1 1
t 0)'1—1——

(
kd sin—

(

—+—
(

kd sin—
(

— . (35)
& 4s 2E 2) 3. 24K 2P 5

sin8d8 cos(—',d~ k —k'~ cos8),
0

since

(P~, *P~,~) = (2l+1)/2 and C~~*C~~= 1/(21+1).

The integral coherent form factor then is the expression

7r 2

(dQ/4~) 2 ~t sin8d8cos(~d~k —k'~ cos8 . (31)
0

I.et us now consider the magnetic form factor of

One gets upon squaring, in a way similar to that used
in the total elastic case, the following power series in
(kd) for the coherent nuclear form factor:

1 'A'f2+0. 01481A'f—4-6.944X10 'A 'fr- —

+1.389X10 'A'f8 (36)

The effective coherent form factor is obtained in the
same way as for the total elastic case.

In Table VI we give the form factor formulas and
strength factors for the total elastic, coherent, and
magnetic cross sections at a gas temperature of 309'K.
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TAsz, E VI. Strength factors (in barns) and form factor formulas for the various cross sections, for a gas temperature of 300'K.

Type of
scattering

Total elastic
Coherent
Magnetic

Strength factor
(barns)

15.84
15.84
4.53

Form factor formula

f1—0.1667A2f3+0.01682A4f5 —9.00&(10 4A 'f7+ (2.08) )& 10 5A 8fe
fi 0 —166.7A f6+0 01481A'f6 69—44X10 'A'f7+1.389X10 'A'fo

f, 0 1667A2f, (d'/dl2+001481A4f6(d'/d)4 6 944X10 4A-6f, (d /d)6+1 389X10 6A—8/2(d /d)8

(c) Hyperelastic Form Factors

The hyperelastic formulas require evaluation of

1 q
k'

sin8d8P~ 2 P2
&21+1) ~ k ~p

Xcos (-,'I k—k'
I
d cos8), (37)

and a similar term for l—+l—4. Upon expansion of the
cosine to the fourth power in its argument we obtain
with the aid of the selection principles implicit in the
expansion formulas of the Legendre functions (see
paragraph 4):

1 ~
k' 1( d~'

I

k —k'
I

—
I (1, m

I
cos'8

I
1 2, m)—

(21+1) m I k 2 ( 2)

which must be averaged over the sphere of scattering.
The angular dependence is contained only in the

I
k —k'

I

factors. We require J'(dQ/42r) fk —k'I" for 26=4, 6, 8,
which are represented as

(1/k) "-', sin Od 0
I p —p'

I
",

0

in which p"=p2+2yhE and 0 is the angle between p
and p'. Let us denote 2+/3E by P2. We need P2 for
transitions 1—&1—2 and 1—+1—4. One expands

I p —p'
I

"as
even powers of the squared magnitude (p' —2pp' cosO'

+p") and then substitutes for p' as above. One then
has to average the even powers of cosO and to discard
the odd powers in the final expression. For example,

p —p I' p'+4p'pi—' cos2O~+ p
—4p'p' cosO~ —4pp" cosO~+2psp"

1 ( dq' -2

+—
I Ik—k'I-

I (1, m Icos'811—2, m) ' (38)
24 E 2)

for the l~l —2 transition, and

1 q
k' 1t dq'

(21+1) m k 24 ( 2)

In the average over 0, cos'0 becomes —,
' and the terms

linear in cosO~ vanish, to give

(d~E/4~)
I p —p'I'

=p'+ (1o/3) p'p"+ p"
=p'+ (10/3)p'(p'+2paE)+ (p'+ 2paE)'

&((1, mfcos481E —4, m) (39) In briefer notation the result is

for the l—+l—4 transition. Upon squaring we have (dn/4 ) fl —k'
I

= (1/k) L(16/3)P + (16/3)P P +P 7, (42a)

and for the sixth and eighth powers
( 1 ) k' 1(d)6

I P ——
I

—
I I

k —k'
I
'(1, m

I
cos'8

f
1 2, m)'—

&21+1) ~ k 4&2)

1 Id~6——
I

—
I I

k—k'
I
'(E, mf cso' 8

I
E 2m)—

24 E2)

(1 &' pd)i'
y (1, m

I

cos'811 2, m)+ I

——
I I

—
I(24) 42)

(dQ/4~)
I
k —k'

I

'

= (1/k) '(16P'+ 24P'P'+10P'P'+ll'), (42b)

(did/4~)
I
k —k'I s (I/@)8(41P8+81P6i32

+57p'p'+ 16p'p'+ p']. (42c)

&& Ik —k'I'(1, mfcos'81E —2, m)', (40)

1 l k' (1 l'(

X(l, m fc s48IoE 4, m)', (41)—

The powers of Ik —k'I will be used to specify the
respective terms —fourth, sixth, and eighth order. We
take the dominant (fourth-order) term to illustrate our
calculation procedure:

I (p2+p2) ~/p]((E m
I
cos'811 2 m)') (1/4) (d/2)'

)& (1/k)'L(16/3) p'+ (16/3)p'p'+p'] (43)

In the elastic case the form factor was expressed in
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TABLE VII. Effective hyperelastic form factor formulas, in our notation, for the E—+1—2 transition. The l—+l —4 term is identical with
the 8th-order term except for a different cosine factor and that the a' factor refers to a larger energy change.

6th order

8th order

1A 4 16 16
((l, m fcos'8 fl —2, m)') —F,(l)+—Fs{l)a'{l)+F0(l)a4(l)

A
((l, m

f
cos'sf l —2, m) (l, m

f
cos'8

f
l —2, m))~L16Fs(l)+ 24F4(l)a'(l)+10Fs(l)a'(l)+a'(l)FD(l) g

1 ' A+ — — ((l, mfcos'fl —
2& m)')~$41Fs(l)+81Fg(l)a'(1)+57F4(l)a (1)+16F„{~l)a(l)+F0(l)a'(l) j

terms of A (X) and
f
v —u f/v to facilitate the averaging

over u and the numerical evaluation. To achieve a
similar expression here, we substitute lifv —uf for p
and multiply by unity in the form (lio/lie)4 to obtain

(lis
f
v u

f
2+Ps) —', 1 (1) 4 (if~py 4

1((~, ~lc»'()l~ —2 m)')-
pfv —ul 4{.2) 4 )s )

16li'f v —uf' 16 p'f v —uf'p' p4

X — +—
3 P8 3 @5', v P, v

The notation introduced in the elastic case is supple-
mented by the characteristic hyperelastic parameter,
a'()~, l)=p'(l)/(lis)'. These parameters are given as
functions of / in Table IX. Formula (43) now reads:

( 'I v —ul'+4')'
((l, nz

f
cos'0

l
l—2, m)')

4&2)

16 fv —uf4 16 fv —iif'X— + a'+ a4 . (44)
3 z4 3

The sixth- and eighth-order terms have a similar
expression as a polynomial in even powers of

f
v —u f/v

and a, multiplied by the square root factor. These are:

( 'l v —uf'+0')'

pfv —uf

X((l, nz
f
cos'0

f
1—2, m) (l, m

f
cos'0

f
l—2, m) )

1 (~~'
16 +24 a'

24 E2 ) s' s4

fv —ul'
+ 10 a4+ a' (45)

and

(1 $s Aps—
f ((l, m

f
cos'0

l
l—2, &is)')

&24) 2 )
v —u' v —u' v —u'

X 41 +81 a'+57 a4
p8 p6 p4

v —u
+16 a'+a' . (46)

The characteristic term to be averaged over the
molecular velocities is

lv —ul (l'f v —uf'+~')' lv —ul"

pfv —uf

with ns taking on even values 0 through 8. This expres-
sion simplifies to ( f

v —u
f
'/v'+ a') '*

f
v —u

f
"/v", whose

Maxwell average we denote as F (l). We can proceed
in the same way as in the evaluation of the f„formulas
for the elastic form factor in part (a) of the Appendix

up to the integration over the magnitude of w. The
representation of F (l) as a quadrature over the
variable y=io/s as defined in the f„evaluation is

F-(l)=(2 /V' ) e pf
— '(y'+1)&

Xsinh (2n'y) (y'+ a') ly~+'dy (48)

For a=O, F (l) reduces to f ~i )See form. ula (23).j
Table VII contains the form factor formulas in terms
of the functions F„(l) and as(l). Both these quantities
increase monotonically with X. These formulas show

clearly the quantitative details of the qualitative argu-
ment of paragraph 4 regarding the relative independence
of wavelength of the hyperelastic cross section. The
coeKcients A (X) in front decrease with increasing
wavelength while F (t) and a'(l) increase, with the
eGect of maintaining the form factor approximately
constant. The slight increase with increasing X comes
about from the competition between the positive fourth-
order and' the negative sixth-order terms.

The l dependence of F (l) and a' is a very important
factor in the evaluation. Since a' varies directly as
(2l—1), it can be accounted for exactly in averaging
the form factors over the thermal distribution in /. It
is necessary to approximate the l- and X-dependence of
the F (l) factors for purposes of averaging, because the
combination of these with the u' quantities which

appear in the formulas make impossible the choice of
some average l value at which all quantities could be
evaluated. Our choice of an approximation was deter-
mined by the following factors: (1) the fourth-order
term is by far the largest and determines the order of
magnitude of the cross section, (2) the sixth-order
term is still sufficiently large and very important
because of the negative sign. Vjle chose an approximation
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TABLE VIII. Results of calculation of the hyperelastic form
factors at 300'K, itemized according to the two transitions and
the various terms.

Transition

l—+l —2
l—+l —2
l—+l —2
l—+l —4

Total

Term

4th
6th
8th
8th

5.1A

0.175—0.125
0.015
0.005
0.070

7.5A

0.152—0.087
0.009
0.003
0.077

10.0A

0.158—0.081
0.006
0.004
0.087

which is very good for Fo through F4 and then applied
corrections. Our approximation is

F-(l) =L1+ '(l)/f 3'f-+
'

(49)

The motivation for this choice is indicated by formula
(42) in the form:

(I+&'(l)/l 'I v —ul')'(I v —ul""/~"") (5o)

higher y values where y')a'(l). The (y'+a')& of (4g)
then is approximately y and F (l) is more nearly f~&.
However, the thermal distribution in l peaks at l=9
and, for all terms, the most probable / values occur
between l=9 and i= 15 where a'(l) is suKciently large
to affect the values of F (l). Thus the effectiveness of
the approximation is better than the above examination
of formula (51) would seem to indicate. Numerical
integrations of (48) at l=9 and /=15 established the
corrections for the F (l). The net effect of these cor-
rections for the various terms of the form factor (each
of which involves several of the F factors) were
negative and of magnitudes: 2 percent for fourth order,
10 percent for sixth order, and 40 to 60 percent for
eighth ord'er. The magnitudes of the correction were
larger for larger wavelengths.

TABLE X. Rotational distribution in percent at 300'K.

In our notation the Maxwell average of lv —ul' is
v'f2 In tr.eating the square root factor in this way we
are using the k'/k factor for the collision in which the
squared magnitude of the relative velocity has its mean
value and then incorporating the Doppler correction in
the p terms of the form factor. In terms of the integral
(49) this approximation amounts to approximating
that integral as

l

1
3
5
7
9

Occupation
No.

4.1
8,8

12.2
14.0
14.0
12.8

13
15
17
19
21
23

Occupation
No.

10.9
8.3
6.0
4.1
2.6
1.6

TABLE IX. Numerical values for parameters dehned
in the calculation.

Parameter X =5.1A X =7,5A X =10.0A

A (X)=2~de/m7 1.442 0.9806 0.7354
aa(X, T)=MtP/2k7' 3.857 1.783 1.003

a'(lI, l) =2yhE/Qe)' 0.1176(2l—1) 0.2543(2l —1) 0.4522(2l —1)

F-(l) = (2n/ v'~)L1+a'(l)/(y') A j'

X i' expL n (y'+1)j sinh(2n'y)y™+2dy. (51)

We have taken (y')A„ to be f2 Formula (. 51) shows that
our approximation expressed in formula (49) is poor for
the higher m values since (y')A„should increase with m.
For large m the peak of the integrand moves toward

One further approximation was made in treating the
l-dependence of the cosine matrix element factors
appearing in front of all the terms of Table VII. This
factor was treated exactly for the fourth-order term
since the l dependence was quite simple. The other
terms varied very slowly in the l interval of consequence
and were taken to be constant at their values for l,= 15.
(See Table IV.)

The accuracy of this calculation is largely determined
by the error in the sixth-order terms, as Table VIII
shows. We estimate then the error to be about 10
percent of the hyperelastic cross section, which intro-
duces an error of de6nitely less than 2 percent into the
nuclear cross section. Table IX contains numerical
values for the parameters introduced, and Table X
gives the rotational occupation numbers in percent at
300'K.


