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When an electron hits an atom or ion, it may knock off an electron. This process is fundamental in almost
all types of gas discharge. The reaction is endothermic; hence there is a threshold value in the electron
energy below which it does not occur. In this paper, the dependence of the yield on the energy just above
this threshold is derived. The derivation is not rigorous because it circumvents some of the difhculties of
the three-body problem by applying ergodicity, albeit in a weakened form. The result is that, for atoms,
the yield rises as the 1.127th power of the energy excess. For ions the exponent lies between this number
and unity.

I. INTRODUCTION
' 'N almost all forms of electric discharge through a
- ~ gas the ionization of neutral molecules by electrons
is a fundamental process. General ideas about the
efFiciency of this process can be gained from the dis-
charge process; on the other hand, an accurate determi-
nation of ion yield as a function of the energy of the
bombarding electron is still an object of research.
Results obtained to date are not in disagreement with
the hypothesis that near an energy threshold the yield
varies linearly with the energy excess. '' It is hard
however to settle such a question from experiment
alone; therefore it seems desirable to take it up from
the theoretical side.

Accounting theoretically for detailed observations on
reactions or transmutations is difficult; the reactants
usually pass through an intermediate state in which all
constituents are tightly coupled. It has been pointed
out by signer, however, that it is a relatively easier
problem to derive the "threshold law, " that is, the
dependence of the yield on the energy in the neighbor-
hood of the energy threshold. In such a derivation the
final escape of the reaction products may be separated
from the reaction proper which is confined to a small
"reaction zone. " It is then shown that the threshold
arises (generally) from a feature of the escape process,
namely, lack of kinetic energy for complete escape.
This feature is amenable to calculation even when the
reaction proper is not.

signer has applied his idea to all relevant cases in
which the reaction product consists of two particles
escaping from each other. In the ionization process
which is under study here the final number of particles
is three: two electrons and a positive ion. This produces
obstacles, both technical and conceptual, if an extension
of %igner's theory is attempted. The removal of the
technical obstacles occupies Sec. II, and of the con-
ceptual ones Sec. III; Sec. IV contains the derivation
of the law itself.

' Fox, Hickam, Kjeldaas, and Grave, Phys. Rev. 84, 859 (1951).' F. T. McClure, private communications.' Eugene P. Wigner, Phys. Rev. 73, 1002 (1948).

II. MECHANICS OF THREE-BODY MOTION

The technical obstacle which we face in the problem
of ionization by electrons is the fact that we deal with
a three-body problem. It is true that if signer's basic
idea is to be used, no description of the ionization
process in the reaction zone is required. However even
in the outside space we are still faced with three parti-
cles linked to each other by inverse square law forces;
a correct treatment of this feature is essential if we are
to end up with the right answer for the threshold law.

The problem of three particles linked by inverse
square central forces is known mainly from celestial
mechanics as the "problem of three bodies. " The
present problem is a specialization of the general case
because two of the bodies are identical. However even
with this restriction a full quantum-mechanical de-
scription of all possible final states is hardly possible.
Fortunately this is not needed. %e can get along with
incomplete information about states satisfying special
conditions, and still get the final answer. This infor-
mation will be collected in the following paragraphs.

Let the charge of an electron be —e and the mass m.
Let the charge of the ion after ionization be Ze. The
ion is sufFiciently heavy so that it may be considered at
rest during the reaction. The connection of symmetry
and spin will be passed over at this time and will be
taken up later in an appropriate connection. On the
other hand, the orbital angular momentum needs full
discussion. Among the angular momenta contained in
the plane wave representing the incoming electron, the
s part couples most strongly with an atomic system.
In the same way an 5 state for the two outgoing
electrons is favored over other angular momenta if it is
consistent with the angular momentum change taking
place within the ion. %'e conclude from this that, in
general, the probability of reaction into an 5 state has
a threshold at least as favorable as the probability of
reacting into higher angular momentum states. This
reasoning is conhrmed by the explicit results of the
Tables I, II, and III of reference 3. The threshold law
for reaction into an 8 state for the electron pair will
therefore be worked out in the belief that it will gener-
ally yield the true threshold law.

The assumption of zero angular momentum simplifies
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the Hamiltonian greatly. In general, our problem would
require for description six coordinates: the two distances
~i and r2 of the electrons froln the ion, and four angles.
Kith zero angular momentum, the motion becomes
confined to a fixed plane, and the angles are reduced
from four to two. The condition of zero angular mo-
mentum in the plane permits elimination of one more
angle. The one remaining ai1gle is preferably taken as
the angle y between the two vectors r1 and r&. In terms
of the three coordinates r~, r~, y and the conjugate
rnomenta pi, pz, p„, the Hamiltonian of the system
outside the reaction zone takes the form

1 1 t1 1q
(Pi'+Pz')+ I

—+—
I
p~'

2m 2m &rP r z)

z z 1
c2 +

ri rz (r,'+r, ' 2r,r,—cosy)'.

A more convenient coordinate system is obtained by
setting

rI ——r cos~y, (2a)
1f2= r sln2+,

0~y~m.

(2b)

(2c)
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FIG. 1. Qualitative picture of the zones of behavior of r;
&= (&12+&P)&.

In Eq. (3) the symmetry in the two electrons has
become a symmetry in the variable p about the value
g =zr/2.

One advantage of the form (3) is to make the variable
r appear. YVe shall take as the boundary between the
reaction zone and the outside space the hypersphere

where b may be assumed of the order of magnitude of
the Bohr radius a.

A second subdivision in the radial coordinate plays
a role in the following work. It is implicit in our problem
that the total energy e of our system must be taken as

This puts (1) in the form

1 4 4
P'+ Px'+ .

—Pv'2' r r sin g

Ze 1
+ —

, (3)
r coszy sin 2x (1—sinx cosy) '*

positive and small. YVe may make this more precise by
demanding that eb/Ze' be small compared to unity.
In this case a second boundary radius, r=c, makes its
appearance, separating the region in which the kinetic
energy is essentially equal to ~ from an inner one in
which it essentially cancels the (negative) potential
energy. For reasons of convenience we define c precisely
as

-,'mo' ~ Ze'/r. (6)

Equation (6) entails a constraint on the de Broglie
wavelength X which reads

2zrX/r ~ (a/Zr) l (7)

Outside the reaction zone the right-hand side is small;
hence wave packets can be constructed for each electron
and classical mechanics employed. The introduction of
an electron-electron interaction disturbs this argument
in two ways. In the first place it permits transfer of
energy so that (6) breaks down for one of the electrons,
but not the other. It will be seen in the course of the
argument that for the important orbits the difference
between the speeds is always small compared to the
speed itself, hence the inequalities (6) and (7) cannot
be violated seriously for this reason. The second e6'ect
of the interaction is the addition of a negative term to
the right-hand side of (6). Configurations in which this
term is important must be reached against the repulsion
of the two electrons; the tendency of the two electrons
to avoid each other will therefore limit the term and
effectively preserve the inequality (7). It will be seen,
in fact, that for the orbits of importance for ionization
the angle p approaches asymptotically the value m.

Furthermore, if there is any serious difhculty about
making the right-hand side of (7) small, then we are

c= e'(4Z —1)/v2e.

Ke shall call the region between the two boundaries the
Coulomb zone, and the region beyond c the free zone.
A qualitative picture of these zones is shown in Fig; 1.
The great width of the Coulomb zone will be seen to
have the consequence that the motion falls into a first
asymptotic pattern in the outer part of this zone. This
behavior gets disturbed near the zone boundary c; a
second, diferent asymptotic pattern then arises after
the free zone is well penetrated. A passage to the limit
in e implies a sweep of the zone boundary c to infinity;
the first asymptotic behavior is thus the true one for
orbits of zero energy. It should be observed, as a
restriction to this reasoning, that the zone boundary c
loses its meaning when z lies very close to 0 or m, that
is, when one electron stays far behind the other one.

In either one of the outer zones the motion of tlzo

electrons is essentially ctassica/. This is seen as follows.
If we neglect the interaction between the two electrons,
then ionization requires that the kinetic energy of either
be larger than the negative of its potential energy:



still free to use a radius r=b which is larger than the
Bohr radius a.

These preliminary considerations reduce the general
quantum problem of three bodies to a classical analysis
of the Hamiltonian (3), 7oith particular emphasis upon
asymptotic properties of orbits of small positive energy
e which arise from a small reaction zone at the origin.

The equations of motion for the Hamiltonian (3) read

is also zero, and higher derivatives must be brought in.
We observe first from (12) that 8 is also zero, and then
from (11) that BB/By and BB/By cannot vanish
simultaneously with 8 (unless Z= ~ which is physically
impossible); hence, from (9) and (10), the second
derivatives of X and y cannot both be zero. The first
nontrivial equation results then from (14) by differ-
entiating twice. We 6hd

mr'= ~mrx2+4mr sin'y j'—(Ze'/r')8(y, y), i=0, r=0, r =0, r &0.

d Ze' »(y, y)—(4imr'y) = i~mr' siny cosyy'+
dt ~X

(9)

—(-,'mr' sin'yy) =
dt

«' BB(x,~)
(10)

where 8(y, y) is an abbreviation for

1/Z1 1
8(x, v)=-, +—. ,—,(11)

cos-', y sin-', y (1—siny cosy) '*

The equations possess an energy integral which will be
assumed zero or positive and small,

e= 2mr'+smr'jP+smr' sin'yy' —(Ze'/r)B(y, y). (12)

(15a)

(15b)

(15c)

x=~/2,

r'p0,

i is thus again increasing as in the general case pre-
ceding. The theorem makes the concept of "outgoing
orbits" a rigorous one, permits measuring Qux along a
surface r=const, and suggests the use of r as inde-
pendent variable in the place of t if we wish to discuss
the nature of the orbits.

The two properties just proved yield, when combined,
the fact that all orbits initially symmetric in the two

electrons lead to the escape of both particles (double
escape). This is a consequence of the fact that the
equations,

are preserved in time.
In the work to follow we are only interested in the

outgoing orbits. To discuss their shape we follow up
the idea expressed above. We use as independent
variable the quantity

A number of properties of the equation system (8)—
(10) will now be enumerated and some limiting cases
worked out. The results obtained will find their appli-
cation in Sec. IV.

Ke observe first that the equations obey a similarity
principle, that is, they are invariant under the substi-
tutions,

r=be&,

and eliminate the time by a standard procedure of
(13a) mechanics. We find

(13e)

The principle gains its full effectiveness if it is put to a
double use: In the first place, the entire pattern of
orbits expands but remains similar to itself as e is
reduced; in addition, at a fixed but small energy the
orbits in the reaction and Coulomb zones consist of
families of similar orbits.

The special position of the coordinate r is brought
out by the theorem that in any orbit r has one single
minimlm und no maximum. We prove this by com-
bining (8) and (12) in the form

mrr'= —~mr2+smr'x2+Smr'j' sin'y+e. (14)

At a stationary radius r, the velocity i vanishes; i is
then a sum of positive terms and is itself positive;
hence i is increasing, and r has a minimum. In the
special case of zero energy the possibility arises that
all velocities vanish simultaneously; at such a point r

x"—y" s nx cosy, 2B»8(x, v)/Bx+ lx'

1+~ix "+4iy" sin'y 1+[ebe'/Ze'B(y, y)j
Y +2X Y coty

, +7'
1+-,'y"+-,'y" sin'y

2 csc'yB lnB(y, y)//By+
(18)

1+Leb"/Ze'8(x, v)]

Here the primes denote diGerentiation with respect to q.
Before discussing orbits in general it is useful to

treat first the case of sero energy. The first theorem to
be proved for this case is that almost all orbits end up
asymptotically at y=0 or x=~ and that all these orbits
lead to single escape only. A quick feeling for this
statement can be gained by "switching off" temporarily
the interaction of the two electrons. In the orbits
leading to double escape the electrons then describe
congruent parabolas in the same plane so as to cancel
each other's angular momentum, and the energy of
each electron is zero separately. However, it is infinitely
more probable that the electrons have equal energies of
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Equation (20) not only proves the theorem for the case
Z= ~ (except for the y-part of it which is not true in
this limit) but also exhibits the manner in which the
limit is reached. We now are to explore this behavior
for Z general. In Fig. 2 this means that we must analyze
the orbits which start out away from the ridge x= ~/2
but for which y and x' are just balanced so that y'
vanishes asymptotically as x~/2. The existence of
such orbits is made abundantly clear by I'ig. 3. The
figure shows this exceptional curve x(q) which results
from numerical integration of (17) in the particular
case y= ir (which is a stable valley). Usually we have a
doubly asymptotic behavior around x=z/2 and y=~
which is handled conveniently by linearizing (17) and
(18) around this point. For this purpose the function
B(x, y) defined by (11) is to be replaced by the expan-
sion

80

70

60

20

IO

0
0

q=&nt

1 1 1t'3 1 1) ( vr)2
~(x ~)=2v2 —-~2—+-I ~~ ~~ I) x——I—

2 Z 2(2 8 Z) ( 2)

11 1———W2—(y —~)'.
28 Z

FIG. 3. Orbit leading to double escape along the "valley"
y=71-. Abscissa origin is arbitrary. This is to exhibit that orbits
leading to double escape generally start from asymmetric initial
conditions.

(21) the similarity transformation (13) by the substitution

Equations (17) and (18) then read,

1 12Z—1 tx"+-x'-
2 8Z—2 ( 2)

(22)

Cy~o.'' »Cy)

C2~~-'+»C2,

C3-+0. &C3,

C4~C4+-,'p inn.

(30a)

(30b)

(30c)

(30d)
1

v"+—v'+ —(v —z) =0
2 8Z—2

(23)

y —z.=Cue "cos(-',pq+C4).

Here we have set for brevity

(25)

p= 2L(100Z—9)/(4Z —1)3*', (26)

p =kP(9 —4Z)/(4Z —1)]' (27)

The solutions form a four-dimensional manifold among
which the symmetric subset is selected by the two
constraints: C~ =0, C~= 0. Because of the inequality,

p ~5/2, (28)

the solution will diverge from the ridge x=vr/2 unless
C2=0. Thus the total set leading to double escape is
obtained by this one constraint. Thus the theorem is
proved, and the exact asymptotic behavior,

x—~/2 =C, (b/r)»+~, (29)

is derived. The formula agrees with (20) in the appro-
priate limiting case. It should be observed before leaving
this subject that the solutions (24) and (25) satisfy the
similarity principle in its stringent form. We accomplish

The asymptotic motion in p separates from the one in
y. The general solution is

x vr/2= —e "(Cie '"'+Cue+*'"') (24)

In view of the factor b included in the definition (16)
this means that an orbit belongs to those emerging from
reaction zone if (Ci~, ~C2~, and C8 are below certain
numerical limiting values; these values are complicated
functions of each other and of C4.

We now pass to the discnssiori of the orbits of firtite
erlergy e. The physical idea followed in their treatment
is extremely simple and requires no computation. An
easy presentation can be given which does, however,
leave unproved several important features. A logically
complete discussion of these orbits can be given instead,
in which we 6nd the basic reasoning obscured by
analytic details. The first type of reasoning will be
given now, and the second will be found in the appendix.

In this semi irttuitive -approach to orbits of finite e we
first observe by inspection of (17) and (18) that there
is no difference, between the orbits of zero energy and
of small energy in the reaction and Coulomb zones
Hence an identification of the two orbits can be made.
It is then intuitively reasonable that all orbits which
led to double escape at zero energy will continue to do
so at finite e. This means, as previously, that the set
selected in the first asymptotic range by setting C2 in

(24) equal to zero and leaving Ci, C3, and C4 arbitrary
still leads to double escape. However, because the
energy is finite, other orbits will also be possible now,
and thus the possible range of C2 is presumably widened.
The way in which this widening takes place is the
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central piece of information to be transferred to Sec. IV.
From the similarity law (13) and the definition (5) it
follows that at fixed energy ~ the surface separating
double from single escape can depend on r and e only
through the combination r/c or er Now. the divergent
solution in (24) has the form

q —~/2 =C, (r/f )-'*~—'.

To make r/c appear we substitute

C&
——D(b/c) -*'~—'.

(31a)

(31b)

(C,) .. (33)

Equation (33) is the desired relation between the range
of C~ and the energy.

III. THE QUASI-ERGODIC ASSUMPTION

We now come to the difficulty of principle mentioned
before, which arises when one attempts to extend
Wigner's method' without modification to reactions
involving three particles.

In the problems discussed in Wigner's paper it is

always true that if the particles come out of the reaction
zone with sufhcient energy to escape each other they
will finally succeed, the only question being the rate at
which this will occur. The reason for this is that the
wave function for the two-body problem is completely
specified by the magnitude of the conserved quantities:
momentum, angular momentum, energy, and ' the
specification of the sense in which the motion proceeds.
In the three-body problem the same information still
leaves us with an infinity of solutions.

'In the case under discussion, this indeterminacy
shows up as follows: Suppose we know that two elec-
trons recede from an ion with zero angular momentum
and fixed energy. Their wave function must then be an
outgoing wave in the coordinate r. But its dependence
on p and p is Axed by continuity requirements with
the reaction zone and cannot be known without a
closer knowledge of the ionization process. If we are .to
determine a threshold law without knowledge of the
reaction mechanism, then we must try to do it without
such detailed information.

I propose to derive in the following the rate of
ionization by computing the volume in phase which
escapes per second from the reaction zone and which is
subtended by orbits leading to double escape; this
volume will shrink as the energy excess above threshold
is reduced; this shrinkage I presume to be the variation

The selection of possible values of D leading to double
escape cannot be dependent on energy. It is reasonable,
and is proved in the appendix, that small values of D
indeed do lead to double escape. Hence there must be
some maximum value D,„, where double escape
ceases. Through (31b), this imposes in turn a lhnitation
on C2.

(32)
or with (5)

of the cross section with the energy because all other
features of a complete calculation do not vary critically
with the energy. The easiest way to justify this pro-
cedure is to make an ergodic assumption for all re-
dundant degrees of freedom, that is, by assuming that
in the neighborhood of the reaction zone the density
of representative points of the system in phase space
is constant in the mean.

Proceeding with the derivation on the basis of this
ergodic hypothesis would be logically clear and unam-

biguous, but it would leave the result open to criticism
which is generally .not justified. It is therefore worth
while at this point to investigate how serious a de-
parture from ergodicity is needed to make the proposed
calculation wrong. In the 6rst place we may replace
the uniform distribution by a variable one, which has
no zeros or infinities. In other words we can allow

nonergodic, but smooth nonvanishing distributions of
energy between the two particles, or in the angle y.
For y we can go even farther; because of the decoupling
of the motions in y and y exhibited in Eqs. (22) and
(23) or (a) and (b) of the Appendix, we may allow any
distribution in p whatever provided only that the
probability for p=0 is of measure zero compared to all
other angles. For p we cannot go quite so far, but we
can allow zeros in the distribution if only the dimen-
sionality in phase space of the zero is less than that of
the double escaping pencil at zero energy.

The case for x just discussed actually arises in
connection with spin. The two electrons can come out
in either a singlet or a triplet state. In the former case
the coordinate wave function is symmetric, in the
latter case antisymmetric. This means that the entire
symmetric subset of orbits discussed in Sec. II is wiped
out for the triplet state. This will affect the probability
in its factor but not in the threshold law, because the
symmetric orbits are in relation to all double-escape
orbits at zero energy as a single point on a line, and
hence not sufficiently numerous to produce a change of
dimension in the limiting probability. In consequence
we would predict that the triplet and singlet configur-
ations have the same threshold law but that the ratio
3:1 in the factors may very well be reduced by the
exclusion principle.

We conclude therefore that, while the correctness of
the proposed procedure cannot be proved, it can be
made plausible beyond reasonable doubt. An extremely
strong selectivity would be required in the ionization
process to make the result wrong.

IV. DERIVATION OF THE THRESHOLD LAW

The quantity to compute in the following is the
number of representative points in six-dimensional
phase space which, at fixed density, leave the reaction
zone per unit time along orbits leading to double escape.
If the number for such orbits were divided by the same
number for all orbits, then the probability of ionization
would result. However, the latter quantity is certainly
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not critical in the energy, so that the division is not
necessary for the purpose at hand.

The way the computation will be carried out is to
define all but one of the integration variables in such a
way that in the limit of zero energy these variables
have a finite range within the manifold leading to
double escape. The last variable (together with the
Jacobian) will then be predetermined by what we mean
by phase space, and the result of this last integration
as a function of the energy excess will yield the threshold
law.

The volume 0 of a portion of phase space is given by
the formula

one over C&, C2, C~, and C4. The first steps are

&v~p, ctx~p, = r'dv&dxA
=~ r ~ d'Vd7 dXdX

= mme'(4Z 1—)rdydy'dxdx'

Here the primes denote differentiation with respect to q.
Use has been made of the fact that the orbits cluster
around x= ~/2, y = 1r and that factors can be evaluated
as of this point. The factor showing above does not
contain e. We now find easily from (24) and (25)

B(y, y', x, x')/cl(C, C, C, C ) = pt1C e—= kppC b/r,

and hence

Q=
i i drdprdVdp»dxdp»

J
(34) dQ, 1

=—me'(4Z —1)t1bp l f ~l l C3dCidC2dCadC4. (37)
dt v2 JJJJ

We are working in the intersection of this volume with
f f ~ t n th s d nd th t It is to be observed that (37) contains an incidental

f th bl f t t check on the calculation, namely, the disappearance of

into (34). If we substitute e for p„ from (12), we get

f f drded'rdPpdxdP»
Q=m » ~ p(, , ~, p„x, p)'

and for the intersection of 0 with a surface of constant
energy e

drdydp&dxdp»
Q, =m»" J p. ( , r, v, p„x, p,)

(35)

Actually we want not a volume but a volume Aux, that
is, the volume swept out by a set of points in a very
small time dt, divided by dt. If we choose as reference
hypersurface a hypersphere, then the integration over
dr is to be omitted, and we find

(dQ, q t. t
I t

(dr/dt)dydp, dxdp»
=m

pr

The two factors under the integral sign cancel each
other, and we end up with

dQ, /dt =,
~ dyd p„dxd p».

J J
(36)

The integration is to be taken over the four-dimensional
hypersurface cut out of phase space by the conditions
e =const and r= const. In principle, this second constant
can be given any fixed value we please. In practice
however we must place the integration into a region
where the behavior of the orbits is well understood.
This is the first asymptotic range. In this domain q is
large compared to unity because of (16) and the con-
stant C2 is small because of (j). Hence all terms in
(24) and (25) are small, and the use of the linearized
equations is ex post facto justified. It is therefore
possible to transform the fourfold integral (36) into
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FIG. 4. Theoretical yield versus energy curve for single ion-
ization of atoms by electrons. To produce a straight line the
0.88tt4th power of the yield should be plotted against energy.

dQ, /dt ~ c&1' &. (38)

This is the looked-for threshold law. By the arguments
given the yield and the cross section are expected to
vary in the same manner. For the important case of
atoms when Z= 1 we get from (26)

dQ /dt ct. e1.12689 (39)

Figure 4 shows the variation of yield versus energy
predicted from Eq. (39). The line appears almost
straight, with a slight upward bend; its main distinction

r from the integral: dQ, /dt comes out independent of
the position of the hypersphere as it should. The part
under the integral breaks up as desired. From the
discussion in Sec. II and the Appendix it follows that
C~, C3, and C4 have finite ranges, while C2 is limited by
(33) or (l) if we are to stay within the pencil leading to
double escape. Hence the integral is limited in the same
way, and we get
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is that the threshold is entered with zero slope. The
curves resulting from (38) for the ionization of ions,
that is Z&1, are qualitatively similar. The resemblance
to a straight line is more marked because the exponent
is much closer to unity than in the case (39).

V, CONCLUDING REMARKS

Bates, Fundaminsky, Massey, and Leech' have dis-
cussed among other things ionization by electrons,
making use of the Born approximation. In Table III
of their paper they give the threshold laws obtained
from their calculation and 6nd for the process discussed
here a variation with the first power of the energy
excess. They indicate that this is the right answer,
because the Born approximation is known to give cor-
rect threshold laws, as pointed out by Wigner. ' It
should be remembered however that this is true only if
the correct wave function is used for the final state.
Their heading indicates that they used a Coulomb wave
function for one escaping electron and a plane wave
for the other. This wou]d indeed be a very poor choice.
I have checked this point and find that their heading is
probably accidentally labelled incorrectly. The result
which they state arises if both electrons are given
Coulomb wave functions; this is the most reasonable
simple choice one can make. It is discussed in this
paper as the case of "switched oG" electron-electron
interaction or Z—+~. For this case, I find exactly the
same answer as they do, and this should strengthen the
confidence iri the calculation method used here. How-
ever, their answer is not really correct; the Coulomb
functions are the best ones we can think of, but they
are not right. The correct functions are the quantum
solutions of the three-body problem. These have been
discussed by Gronwall' and Bartlett, ' but nobody has
been able so far to make use of them in a wider context.
The present quasi-statistical derivation is therefore the
only one which takes into account the specific three-
body feature of the problem. I believe that its non-
rigorous features are justified and that the answer (39)
is the right one. This implies the belief that Bates and
his co-workers would have found this same answer if
they had used the correct three-body wave function
for the final state.

In conclusion, I want to express my thanks to Dr. C.
Herring and Professor E. Wigner who have helped me
in clarifying the ideas which underlie this derivation.

APPENDIX

In the text a derivation of Eq. (33) was presented
which made no use of any property of the orbits of
finite e except the similarity law. It did however make
certain assumptions about them which appeared in-
tuitively reasonable. These assumptions will now be

'Bates, Fundaminsky, Massey, and Leech, Trans. Roy. Soc.
(London) 243, 93 (1950).' T. H. Gronwall, Phys. Rev. 51, 655 (1937).' J. H. Bartlett, Phys. Rev. 51, 661 (1937).

investigated, and it will be found that we arrive at the
same conclusions.

The essential requirement is the possibility of follow-
ing the solutions (24) and (25) from the first into the
second asymptotic range. This can indeed be accom-
plished. We start over again from (17) and (18),
keeping the denominator on the right this time. Linear-
ization around x=s/2, y=s proceeds as before via
Eq. (21); we find the following generalizations of (22)
and (23):

1 12Z—1
x"+x'= -x'+

. 2 2(4Z —1) E 2l ~

1+-e~ ~, (a)
c

h —~)
2 (4Z—1)

b

i1+e, i.
c ) (b)

These equations are explicitly soluble in terms of
Legendre functions. Setting

s= [1+(b/c)e4jl= (1+r/c)l,
we find

x- /2= ("-1)-'LD Q:"(s)+D.~-:"(s)3,

(c)

y —s.= (S'—1) '[(D4+iD—4)P &(S)

+(Da—4D4)&~ "(s)j (e)

The solutions contain r only in the combination r/c as
required by the similarity principle. Inspection of (c)
shows that the first asymptotic range discussed previ-
ously lies near a=i; the second asymptotic range is
reached for large s. Consideration of the subset C2=0,
which is known to produce double escape for zero
energy, requires analysis of Eq. (d). Q;"(s) is a
solution which vanishes at infinity as s:; hence it is
rigorously true that the solutions D2=0 lead to double
escape in which x~s/2. However, small values of D2
will also lead to double escape because P;&(s) diverges
as s+*' and x—4r/2 approaches thus a finite value of
the order of D2. For large D2 the linearization procedure
breaks down, but the. quantities D can still be defined
as the multipliers of the first term in a perturbation
treatment of (17) and (18), starting from (a) and (b).
The similarity principle then demands that there be
some positive D, and some negative —D;„which
separates for each triple D~, D3, D4 the values of D2
leading to double from those leading to single escape,

Dm in &D2 &Dm axe

0&D;„=D; (Di, D3, D4), (g)

0&D .=D,„(Di, D4, D4). (h)

The important point is that because of the similarity
principle these relations cuemot, contain the energy t.

explicitly, even outside the linear range. To compare
the C's defined in the text and the D's defined here,
the expansions of the Legendre functions around s=1
are needed. If we complete the definition of I'p(s) by
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demanding that it vanish at s=1 and compare the
expression (d) with (24), we get

Ci- A —i (c/b) l+r'"D„

Cs As(——b/c) '+'*&D.+As(b/c)"C

(1)

(j)
Here A», A2, A3 are numbers. These equations show
that as D&, D3, D4 vary over their range and D2 is
zero, Ci, C3, C4 do likewise, while C2 takes a finite value
linked to Ci. However for small e, that is small b/c,
this value is very much smaller than C& which itself is

ACs A s (b/c) ' (Dmin+Dmsx) q (k)

and hence
AC2CC e'" '.

The relation (k) is equivalent to (32), and (1) to (33);
thus the simple reasoning yielding (33) is justified.

limited by the size of the reaction zone. Now as D2
passes through its finite range allowed by (f), Cs varies
independently of C& within a small range; this range is
given by
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The Stopping of Heavy Ions in Gases

G. E. EVANS, P. M. STIKR, AND C. F. BARNETT
Oak Ridge Sational Laboratory, Oak Ridge, Tennessee

{Received October 6, 1952)

The extrapolated ionization range for the ions He+, X+, we+, and A+ in the stopping gases He, N2, air, and
A has been determined as a function of energy in the energy range from ca 20 kev to ca 250 kev, using mono-
energetic heavy ions produced in a Cockcroft-Walton accelerator. A collimated beam of heavy ions is ad-
mitted to the range chamber via a three-stage differential pumping system so as to avoid the use of foil
windows. The range was determined using a parallel plate ionization chamber mounted so as to permit
translation parallel to the axis of the beam. It has been found that the range as measured at a pressure I' is
not inversely proportional to I', and an interpretation of this pressure effect has been given in terms of large
angle scattering of the ions into regions outside of the volume swept out by the ionization chamber. A
method of correcting for this pressure effect has been developed and applied to the data to yield range-
energy curves which are independent of the ionization chamber size. The space distribution of ionization
produced in a gas by a collimated beam of heavy ions has been determined for the same combinations of
incident ion, stopping gas, and energy as above. The attenuation of the beam of ions is found to be ap-
proximately exponential in the axial direction and approximately Gaussian in the lateral direction. A
method has been developed for computing the shape and size of a given ionization density contour at a given
pressure if it is known at another pressure and the same energy.

I. INTRODUCTION

HE problem of determining the rate and mecha-
nism of energy loss of high energy charged par-

ticles in matter has received a large amount of attention,
both experimentally and theoretically, during the past
few decades. The range, specific ionization, scattering,
and straggling of protons, deuterons, and alpha-particles
have been determined over wide energy intervals by
various investigators and comprehensive summary re-
ports have been published. ' The theory of the mecha-
nism of energy loss by these light particles is sufFiciently
well understood to allow a quantitative description of
the processes of elastic and inelastic scattering in terms
of simple classical or quantum-mechanical models, and
the criteria for the validity of the models have been
determined. ' A much smaller amount of experimental

' H. A. Bethe, Atomic Energy Commission Report AECU 347
(BNL-T-7); Aron, Housman, and Williams, Atomic Energy Com-
mission Report AECU 103 (UCRL 121 rev, 2nd ed.) (unpub-
lished).

~ See, e.g., H. A. Bethe, Revs. Modern Phys. 22, 213 (1950);
M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9, 245
(1937);E. J. Williams, Revs. Modern Phys. 17, 217 (1945).

work has been done on the range and specific ionization
of fission fragments, yet even in this much more complex
problem, qualitative agreement between theory and
experiment has been achieved. '

In almost all of the research done in this field in the
past, the velocity of the incident ion has been large
compared to the velocity of its outermost electrons.
Furthermore, in a majority of the previous research,
the mass of the incident ion has been small compared
to the atomic mass of the stopping material. There
remains a large and practically unexplored field of
penetration phenomena in which the velocity of the
ion is of the same order of magnitude or smaller than
the velocity of its outermost electrons, and in which
the mass of the incident. ion is allowed to vary over
wide limits. Work within this latter field has been
limited because of the major difFiculties in theoretical
interpretation of results' and because the experimental

s Katcoff, Miskel, and Stanley, Phys. Rev. 74, 631 (1948);N. O.
Lassen, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 25,
No. 11 (1949).

'N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
18, No. 8 (1948).


