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A theoretical study of the low field mobility of He2+ in its parent gas is described. Forces between He2+
and He are calculated by means of perturbation theory. Determination of the scattering phase shifts then
yields the momentum transfer cross section as a function of collision energy. Use of the Chapman-Enskog
theory of diftusion permits the calculation of the mobility as a function of temperature.

The temperature variation of the mobility of He2+ observed by Tyndall a,nd Pearce is analyzed by means
of classical theories, yielding an effective potential for the He2+ —He interaction. The discrepancy between
theoretical and experimental mobility is ascribed to certain defects in the calculated potential. When account
is taken of ionic clustering, the observed temperature dependence is explained on the basis of a simple
potential model.

I. INTRODUCTION with results in good agreement with previous experi-
ment and theory. The present work was undertaken
in an eGort to demonstrate that the larger observed
mobility is consistent with theoretical expectations
for Hey+.

The mobility is related to the coeScient of diffusion

by the expression

CCURATE measurements by Tyndall and Powell'

~ ~

~

~ ~ ~ ~

~yielded a value of 21„4 cm'/volt sec for the
mobility of helium ions in helium gas at normal pressure
and room temperature. Massey and Mohr' made a
quantum-theoretical calculation of the mobility of He+
in helium and deduced a value of 12 cm'/volt sec. The
apparent contradiction between theory and experiment
remained unexplained for many years and was tenta-
tively resolved by the suggestion of Meyerott' that the
ions observed by Tyndall and Powell were molecular
rather than atomic. Owing to the smaller probability
for charge transfer between He2+ and He than between
He+ and He, the molecular ion is expected to be the
the more mobile ion.

Mass-spectrographic studies by Arnot and M'Ewen'
and Hornbeck and Molnar' have shown that He2+
might be expected to be more abundant than He+ under
the conditions prevailing in the mobility experiment.
Phelps and Brown measured the mobilities of He+ and
He2+, while at the same time identifying the ions with
a mass spectrograph. This is the only experiment in
which an identihcation of ions is made simultaneously
with the mobility determination. Their results con6rm
the interpretation suggested by Meyerott. Other time-
of-Right measurements of the mobility of these ions
have been made by Hornbeck' and Chanin and Biondi'

E= qDts/Ir T.

The Chapman-Enskog' formula for the coefficient of
diGusion of ion 1 through gas composed of atom 2 is

3a-'~' (2nT q
'I' 1+e,

16ss E m ) (2)

where g is the ionic charge, e is the total molecular
density, m is the reduced mass of ion and atom, and ep

is a small quantity which depends on the form of the
ion-atom potential and their relative masses. ep is zero
for a potential which varies inversely as the fourth
power of the separation and has a maximum value of
the order of 0.1 for a hard sphere potential. (P1~ depends
on the dynamics of a collision between the ion and atom;

(3)Qsr(~) n' exp( —ms'/2lrT) dn,

where v is the relative velocity at large separation and
Qsr is the momentum transfer cross section (also called
the diffusion cross section):*Based on a dissertation presented to the faculty of the Grad-
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ments for the degree of Doctor of Philosophy.
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(1—cosg) bdb.Qss= 2~
dp

Here 0 stands for the angle of deRection occurring as a
result of a collision, and b is the impact parameter. If the
collision is treated on the basis of quantum theory, the
momentum transfer cross section becomes

4x ~
Q =—P(1+1) sin'(ri —st~,),

p

9 S. Chapman and T. G. Cowling, Mathematical Theory of Xon-
Uniform Gases (Cambridge University Press, London, 1939),
Chap. 9.
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where k=mi)/h and the ))i's are the scattering phase of pairs of electrons between 1 and 2 (interatomic) and
shifts. P), is the general type permutation operator (inter- or

intra-atomic). "From the definition of H as
II. POTENTIAL BETWEEN MOLECULAR ION

AND ATOM

Because of the relatively low velocities with which
thermal collisions take place, we may employ stationary
state perturbation theory to calculate the interaction
between a molecular ion and a normal atom, that is, -

hE(R) = (hE) i++' +
jV,

The first-order exchange energy (dE) i is predominant
for small separations, while at large separations the
second-order forces are of primary importance. This
permits the use of an approximate form, valid at large
separations, for the classical interaction in the calcu-
lation of the second-order forces.

First-Order Force

Consider the interaction of two atomic systems, 1 and

2, containing ~j and v2 electrons. The total Hamiltonian
1s

H =Hi+ Hg+H',

where H' is the interaction potential. We may construct
antisymmetrized state functions from products of one
electron orbitals,

q i ——Ni('& (1)n(1) iig(') (2)P(2) N. i('& (vi)P() i),

and the symmetry of the total Hamiltonian with respect
to interchange of the coordinates of any two electrons,
we obtain the following reduction in terms of orbitals:

( —1)"'+"'(P)lp) 2+1 Ã2 )p( —1)*p~plp2
S

H=-

2 ( —1)'""(p»p»( i*~2*)Z(—1) p*v»( 2

These integrations are taken over the spin and space
coordinates of the ) i+ i 2 electrons.

In general, the orbitals used are not exact solutions
to the Schrodinger equations for the individual systems.
They are variational functions which minimize the
internal energies and satisfy the equations:

Hi+(') =IIi@(')+&oi, H2+(') =H2+(')+~, . (10)

Here Bj, H2 are the minimized internal energies, and
coj Gp2 are the unknown correction functions which are
orthogonal to 4&'), +('), respectively. This orthogonahty
is required because of the definition of Bj and H2 as

as follows:

@(»=g( 1)»P»~, . @(»=P( 1)»P „ 0= e&')*aj%'&')
4

r~
' @(j)*@(j)

where Eqj is the operator which permutes coordinates
of two electrons within q i (intra-atomic).

Our total function must be antisymmetric with
respect to interchange of the coordinates of any two
electrons in the composite system. It is obtained by
applying the interatomic antisymmetrizing operator, as
follows:

@—Q( 1)*P +(i)+(2)

( —1)*+"'+"'p.p) ip»v i(o2=Z( —1)"A(oi( 2,

H = ~+")*H +(')
2

~
2

t +(i)*+(2)

Inserting (10) into (9), we have

H=Hi+H2+H'+L,
where

2 (—1)"'+"(p)ip»v i*q2*)p(—1)*p.(oi( 2

where I', is the operator which permutes coordinates

X1,X2I=
( 1) (p&ip&iv'i v2)Z( 1) P (~1~2+~2~&)

MThe present analysis follows a procedure for computing exchange forces suggested by H. Margenau at the 1951 QKce
of Naval Research Conference on Shelter Island.
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FIG. 1. The two extreme
relative, orientations be-
tween He2+ and He.

their evaluation. The approximations used are those
applied by Margenau" in the calculation of forces
between two hydrogen molecules and between a hydro-
gen molecule and a hydrogen atom.

The results of the numerical evaluation of H' for the
two orientations may be very closely represented by the
following exponential functions:

H~& =32 Og 2.6v(R/ap) II II= 774e 2.90(a/ap)

The erst-order perturbation energy is given by

(b,E) g H(R)——H, (~—) Ho (~—) =H'+L.

Since the co's are not known, and they may be assumed
to be small, L is neglected and (AE) ~ is approximated
by H'.

In view of Pauling's" variational treatment of the
helium molecular ion, the ground state of He2+ is taken
to be represented by the following unsymmetrized
product of one-electron orbitals:

the unit of energy being e'/ao.

Second-Order Forces

The classical interaction for large separations may
be expressed in a form simpler than (14). A Taylor
expansion" of the interaction between the two charge
clouds corresponding to ion and atom yields

pg
——45(1)n(1) (45(2) —b(2))P(2)b(3) n(3),

where
~(1)=Zi7r le—zr, b(1) =Z 7r ;z zro„——

(12)

Z= 1.833, and the electron-nuclear distances r ~, rb~ are
in units of Bohr radii. A simple variational function for
the helium atom contains the effective nuclear charge
of Z'=1.6875, the unsymmetrized product of orbitals
being

~5= ~(4) ~(4)~(3)P (5) (13)

Expressions (12) and (13) are used in connection
with (11) to obtain H'. Integration over spin coordinates
reduces the number of terms in the numerator and
denominator of (11) from 120 to 12. This reduction
still leaves a complicated expression for H' because of
the many terms entering H':

(1 1l (1 1
H'= z."l —+-—

l
zbz'l —-+—

l

Kr, 4 r,oJ Er54 r55 &

(1 1 1) (Za Z5)—z,e'I —+—+—l+z,e'l +&r„r„'r,o) (R„R„j
(1 1 1 1 1 1$

+4"
l + + + + + l, (14)

r14 r15 r24 '425 r34 r35~

"L.Pauling, J. Chem. Phys. 1, 56 (1933).

where Z =Zb ——Z,=2 and the various distances are
labelled in the conventional notation.

The quantity H' was calculated for two relative
orientations of the molecular ion and atom (Fig. 1)—
(I) the atom lying on the perpendicular bisector of the
molecular axis, and (II) the atom lying along the
extension of the molecular axis. All but one of the two-
center integrals which appear may be treated exactly.
The three-center integrals require approximations for

where e;; x,, y;, s, and 5;; $,, p;, t; are the elements of
charge and their coordinates relative to the centers of
the atom and molecular ion, respectively, and R is the
distance between centers. The Z axis is taken to be
along the line of centers.

An exact evaluation of g 'C l'Uo l'/(Eo —E„)j is
impossible because little is known about the excited
states of the molecular ion. A simplified treatment is to
restrict the quantum calculation to the helium atom
and regard the molecular ion as an external perturba-
tion. This is a simplifying picture inasmuch as the
excited states of the system will now be those of the
atom alone, rather than of the atom plus ion. The
summation over the charge distribution of the molecular
ion isc onverted to an integral, yielding for the second-
order perturbation energy:

(h+) 5
——g' +*(Heo+)

l Uo„l '+(Heo+)/(Eo —E.),

where E now refers to helium atomic states and
%(Heo+) is the ground-state wave function for the
helium molecular ion.

In the helium atom all the one-electron excited states
lie between 20.5 and 24.5 volts above the ground state.
It seems reasonable to replace the energy denominator
by an average value lying somewhere in the neighbor-
hood of the ionization energy. The functions which are
the base of the matrix elements 'Uo„ form a complete
set, requiring the following matrix relation to hold:

Q 'I'Uo
I

= (U )oo (Uoo) .

~ H. Margenau, Phys. Rev. 64, 131 (1943); 66, 303 (1944}.
"H. Margenau, Revs. Modern Phys. 11, 1 (1939).
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Squaring 'U and retaining only those terms that do
not vanish on integration, we have

g2g2

&'=—[Z e' j'+ [Z '(*'+~' —2")j'
R4 4R'

1
+—[Q"e o (g" r —3l s)$'+ (17)

R'

When dealing with second-order forces between two
neutral molecules, only the third term in the preceding
expression exists. It is the well-known Van der Waals
interaction. The first term in (17) leads to the polari-
zation potential, which classically arises from the inter-
action of the point charge of the ion with the induced
dipole of the neutral atom. Margenau" first called
attention to the importance of the second term in the
interaction between an ion and a neutral atom or
molecule. It represents the interaction of the point
charge of the ion with. the induced quadruple of the
neutral atom.

Using the ground-state function,

+(He) = (1/~2
~
c(1)a(1) c(2)P (2) ~,

we obtain for the second-order interaction energy:

e4 2 (r')oo 2 (r4)oo 2 (ro)ppO"

+ +-
E 3 R4 5 R' 3 R'

where
f

(r')oo= r, i c'(1)dri, (r')oo i r,i'c'(1)d7i

and

0~= ~ @*(He,+)[(P g )'+(g g )'+4(P l .)'7+(He, +).

The index j labels the three electrons in the molecular
ion. The contribution of the charge of the nuclei to 0
vanishes because the sum of the nuclear coordinates
relative to the center of the molecular ion vanishes.
The quantity 0 depends on the relative orientation
(I or II in Fig. 1) as follows:

(~Br= 8+5(9=5.90a ' (~3rr=4R+2(8=g 51a '

where, by symmetry,

O', = J~+r*(Hep+)(p g )'er(Hep+)

J
+rr (Hep )(Ej t )'+rr(Heo+),

' H. Margenau, Phil. Sci. 8, 603 (1941).

The term 'Coo vanishes, leaving

1
(bE)p= ———

l
+*(Hep+)('U')po+(Heo+). (16)g Q

S= +i*(Hep+)(P, |;)'+r(Heo+)

+ir*(Heo+) (Z, 4) '+ir (Hep+),

+(Hep+) = [12(1—6) (1—6')1-l

X
I
a(1)a(1) f a(2) —b(2) )P(2) b(3)n(3)

I

2 = J~a(1)b(1)dr, .

Furthermore, from the quantum theory of the Stark
e6'ect the static polarizability of helium is

s= (4/3) e'( ')„/E,
from which it follows that

se ( ap O~

(~&)
2Z4 & ZP ZP)

It. is worth noting that the Van der Waals term is con-
siderably larger than the monopole-induced quadrupole
term. The experimentally determined polarizability"
of helium gas, 0.205X10" cm', is used in (18) to
determine the numerical value of (B,E)o.

We are interested in determining the probability that
the molecular ion will undergo an internal change of
state in the course of a thermal collision with a gas atom.
The general condition" fox the collision to be adiabatic
with respect to a .given transition, be it an electronic,
vibrational, or rotational transition, is

ah/hr, »1,
where Ah is the energy of transition and ~, is the
average collision time. From band spectra, ' 6h has beep.
found to be approximately 0.20 and 0.0009 ev for vibra-
tional and rotational transitions in He2+. I'or average
thermal velocities, the adiabatic condition is satisfied for
vibrational transitions, while nonadiabaticity prevails
for rotational transitions. Hence, if the molecular ion is
formed in its ground vibrational state, it will remain
there during its transit through the gas.

The Chapman-Enskog theory of diffusion as outlined
in the Introduction is true only for rigid, spherically
symmetrical molecules. Hence, it is obviously not im-
mediately applicable to the present problem. Pidduck'
has investigated the eGect on the coefficient of diGusion
when rigid. molecules are replaced by molecules pos-
sessing a rotational degree of freedom. He 6nds that
there is a correction to the coefficient of diffusion, if both
types of molecules, 1 and 2, are capable of rotation. In
the case that one type of molecule can rotate and the

"H. S. W. Massey, Repts. Progr. Phys. 12, 248 {1949).' W. WeIzel and E. Pestel, Z. Physik 56, 197 (1929).
". F. B.Pidduck, Proc. Roy. Soc. {London) A101, 101 (1922);

reference 9, p. 214.
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cos Xsin x
0'(x, R) + = 1.

.Sz'(R) dzz'(R)

-l3
2 x lO

other cannot, there is eo correction to the formula for
rigid molecules. In the present case of the diffusion of
He2+ through He, the helium atoms possess no rota-
tional degrees of freedom and, consequently, the original
formula is valid.

There still remains the requirement of spherical sym-
metry for the applicability of the diffusion formula. To
meet this we choose an average potential which lies
between the potentials corresponding to the extreme
relative orientations, I and II. The orientation of the
molecular ion relative to the atom sects the interaction
potential in both the 6rst- and second-order terms. The
entire first-order term H' and the part involving 0
in the second-order expression are orientation de-
pendent. The mean time between collisions is much
larger than the collision time, while the time for one
rotation is about equal to the collision time. Hence,
there is very little correlation between the molecular
orientations in two successive collisions with gas atoms.
Two limiting cases may be considered; namely, the
rotational period very small or very large compared to
the collision time. When the rotation is very rapid, the
incident atom will see only the longest range potential,
that is, the one corresponding to II (Fig. 2). For slow
rotation, the effective potential lies somewhere between
I and II (Fig. 2). If the molecular rotation is considered
classically, the approximate ratio of rotation time to
collision time is 5. In the following sections, we con6ne
our attention to the limiting case of slow rotation.

Let us introduce a system of spherical coordinates
with the origin at the center of the molecular ion and the
polar axis along the line joining the centers of molecular
ion and atom. The polar angle x lies between the mo-
lecular and polar axes. Our case I (Fig. 1) corresponds
to x=~/2 or 3zr/2, while II corresponds to x= 0 or zr.

If 5 is a general interaction potential which has the two
extreme values, Sz(R) and dzz(R), we may interpolate
for intermediate orientations by assuming that it has
elliptical dependence, that is,

It should be pointed out that this choice of interpolation
formula is quite arbitrary and is based largely upon the
reasonable assumption that dz(R) and dzz(R) are
extremals of d(x, R). The effective spherically sym-
metrical potential is now obtained by averaging over
all orientations,

~~/2

(d(R))A„—— d(x, R) sinxdx

( cfz

sin 'l 1—
(1 —&z'/@zz') ~ & &zz'&

The azimuthal angle does not enter because of sym-
metry.

Using this method of averaging, we obtain

(fj ) —49 0~ 2 67(-zz/. ao) zn ~2/+ . (Q~)„659+ 2

On combining the 6rst- and second-order contributions,
we obtain as a total averaged interaction energy:

2.36)(']0—~ $.4$)(]0—~2

V (R) = 21 3X 10 "e 5 0'~—

in ergs, where R is in Angstrom units. This is plotted
in Fig. 2.

III. METHODS APPLIED TO MOBILITY
DETERMINATION

The collision between ion and atom will be essentially
classical in the temperature range 20-500'K, since the
de Broglie wavelength is very small compared to the
eGective - scattering radius. Hence, the momentum
transfer cross section may be obtained with the use
of (4) or (5). We choose to carry out the cross-section
calculation by means of the quantum formulation, so
as to make clear the modifications needed in the very
low temperature region where classical collisions do
not take place.

The phase shifts required in (5) may be obtained
from the WEB solution of the radial wave equation

d'G z/dR'+ [O' U(R) —l (l+ 1)/—R']6 = 0, (19)

where k= mn/k and U(R) = (2zm/k') V(R). In this
approximation the phase shift is

I xlO
(A

IZ
tzj

0
I—

LLI
I—
O

-i3-Ix IO

-l5-2xlO

5
R {A)

$gz& k]dR kRz+ ',z—

zeal(l+1—

)j&, -(2o)

t gz* kldR—

where gz
——k' —U(R) —l(3+1)/R' and Rz is the largest

positive zero of g~. Because of the complicated form of
g~, it is necessary to perform the integration

e

FIG. 2. Calculated potential between He2+ and He for each
extreme orientation, I and II (Fig. 1). The intermediate curve is
the average potential in the limit of slow rotation. numerically. Different approximation methods are
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applicable in calculating the phase shifts, depending on shift:
whether l is large or small.

(a) Small Values of l

U(R)
Ql= dRq"«+'. )t. Ek'—(l+-')'/R'3l

Equation (20) may be rewritten in the form:

l(lj1)q '*

toi 1
I

k

kR—i+ rr Ll (—l+ 1)5&, (21)
2

where co=k' —U(R). For low values of l, l(i+1)/&oR'
is much smaller than unity over the whole range of R
from Ri to ~. At Ri, l(i+1)/&oR' is equal to 1, but it
rapidly decreases in value as R exceeds R&. Expanding
(1 l (l+ 1)/—&oR') *' yields

(col—k) dR
&a)

after letting l(i+1)~(l+-,')'. Only the polarization
potential, —c/R', is significant at these large values of
R~', giving

st t(WEB) =7rmck'/[4k'(l+-', )'$. (23)

This result was obtained by Massey and Mohr, ' who
showed, by comparison with more exact methods, that
(23) is very accurate if the phase shifts are less than
0.5 radian.

The Born approximation is valid when the centrifugal
barrier is large compared to the potential at distances
of about Ll (l+ 1)$&/k. This condition is the same as was
used in deriving (23) from the WEB approximation.
Under these circumstances, the incident particle is
blocked by the centrifugal barrier and does not get into
the region where the potential is large; the phase shift
is then small and may be evaluated by the Born formula

1 l(l+1) 1 P(l+,1)'
M'

2 cd' 8 or'R'
~ dR

nes
stt(Born) = — V(R) t Jt+l(kR) O'RdR.

Again, taking for V(R) the polarization energy only
kRt+ 2m l( + 1) (22) and making use of the formula

The quick convergence of this expansion fails when
l(i+1)/toR' is comparable to unity over a large range
of R. Equation (22) is much more useful for the nu-
merical work than (20) because the factor containing l

may be removed from the integral, requiring only about.
three or four numerical integrations for a given energy.
In (20), gt' has to be numerically integrated for each
value of l.

It is convenient to divide the range of integration
in (22) at some value R" large enough (taken to be 6A)
so that V(r) for R)R" is essentially the polarization.
potential only. The integrals over the range from R"
to ~ are evaluated by analytic means.

(b) Large Values of l

The basic form for the phase shift in the %KB ap-
proximation is

l(l+1) -'*

k' —U(R)— dR
R'

l(l+1) l
k' — dR,

where the lower limits are the largest positive zeros of
the respective intergands. When l is very large, U(Ri)
is small compared with l(i+1)/RP, so that we may
consider the lower limits in the integrals to be equal.
Expanding the square roots, we obtain for the phase

~" P.(&)j' I'(~) I'(t —4~+2)
dx=2 "

t I'(l +')j' I'( + l +-')

Lprovided Re(2tt+1) )Ret )0$, we obtain

m~ck'
(24)

Equations (23) and (24) are seen to be almost equal,
differing by the fractional amount 1/l(l+$). Since we
are dealing with large values of /, this discrepancy is
'much less than one percent.

(c) Intermediate Values of f

For all collision energies in the thermal range, there
is a value of / at which the classical turning point Rg
changes discontinuously. This arises from the fact that
the scattering potential is not monatonic. The classical
turning point is determined by the short-range repulsive
potential for small / and by the centrifugal barrier for
large l. Figure 3 illustrates the corresponding discon-
tinuity in phase shift, which occurs at t'=23 for the
energy given by k=6&(10' cm '. The angular mo-
mentum quantum number at which the discontinuity
occurs, l&, increases with increasing energy.

Although the WKB phase shifts are not too accurate

'8 W. Magnus and F. Oberhetinger, Specia/ Ilunctions of 3fathe-
maticat Physics (Chelsea Publishing Company, New York, 1949),
p. 35.
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FIG. 3. Calculated phase shifts for k= 6& 10 cm '.

'4x

Q»r i'& =—(4+ 1) sin'(rite —r)i'd+i),
k'

4m.

Qsri"= —g (1+1) sin'(r)t —r&i+i).
k2 l~s

The first part, which makes by far the greatest con-
tribution, is evaluated by direct numerical summation.
The third part, which is the smallest, may be reduced
to a convenient form. For /) 4, sin(r& &

—
r& i+i)—r&i

—r&t+,—dr& i/di, and using (23) we have

4ir ~ (dt&iq
' Ms 1 1

Q~"&=—2 (1+1)i I =, -+
k' &a+i E dl ) (4+-s)s 6 14(lg+ss)

where Ms ——4rc(3rrr&sk/4ks)'
The direct evaluation of Q»i&'& is not feasible owing to

'9 R.A. Buckingham and A. Dalgarno, Proc. Roy. Soc. (London)
A213) 506 (19S2).

for values of / in the vicinity of 1&, the error introduced
into the differences of successive phase shifts on either
side of t& is of second order. , However, the discontinuity
in r&t is, in general, of the order of z-/2 or greater, so
that there is a maximum uncertainty of unity in the

. value of sin'(ilies —r&i~yi). This corresponds to a small
range of impact parameters (in the classical scattering
problem) where the orbit is almost closed and cos8
oscillates very rapidly. Our inability to obtain an ac-
curate value for sin'(»rq —i&i~~i) is a definite limitation
of the present method.

For some energies the quantity g& has three zeros for
the first few values of l which are greater than l~. This
case must be treated" by joining the %KB solutions
across all three zeros. The result obtained from this
procedure does not differ appreciably from the case of
g~ having one zero; hence we neglect the modification.

The scattering energies at which QM is computed
correspond to the following values of the parameter k:
2, 4, 6, 8, 10, 12.5)&10' cm '. It is convenient to break
the summation (5) into three parts,

4~ lg—1

Qsri'& =—P (1+1)sin'(r)i —t&i+i),
k

28-,

24-
ttJ
(A 20-

0'
I6-

R
& i2-

.1 00 200 500 400
T( K)

500

FxG. 4. Mobility of He2+ in He as a function of temperature at,
constant density (2.52)&10"/cm'). Solid curve is calculated in
present work. Points are from experiments of (0) Tyndall and
Pearce, () Hornbeck, and ()() Chanin and Siondi.

~ P. Langevin, Am. Chem. Phys. , Series g, 5, 245 (1905).
'H. R. Hasse, Phil. Mag. 1, 1.39 (1926).

~ A. M. Tyndall'and A. F. Pearce, Proc. Roy. Soc. (London)
A149, 426 (1935).

previously mentioned uncertainties. The correct value
of QM lies between Qsr"&+Q»risi and Q»r"'+Q3ris&
+ (4ir/k') (4+1) since 0~& sin'(r)iq —rriqyi)(1. An inter-
polation for kQsr was made between the limiting values,
requiring that it assumed the proper classical value for
k =0. The zero energy value was taken from calculations
of Langevin" and Hasse, "which are discussed in the
next section. The validity of this interpolation was
confirmed by assigning to sin'(r&« —r&rz+i) its average
value of isand then noting that kQ»r as a function of k
falls very close to its interpolated value.

Q»r can be represented by a functional form most
conveniently when it is plotted versus 1/k, the form
being

Q»r(cm') = 148X10 '/k —2.90X10 "
With the relation k= mt&/k, Q»r is expressed in terms of
e, permitting the evaluation of (P~2. When use is made
of (1) and (2), and the small quantity es is taken to be
zero (since predominant force is polarization), the
resultant expression for the mobility at constant density
(2.52 X 10"/cms) is

E, (cm'/volt sec) = 207/(102 —T*).

This is plotted in Fig. 4 together with the experimental
results of Tyndall and Pearce."We estimate an uncer-
tainty of &5 percent in calculating the mobility from a
given potential by the above procedure.

l

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In Langevin's" theory of mobilities the ion-atom
potential was taken to be a hard sphere repulsion of
radius o plus a polarization attraction —c/R' from
8=0- to ~. With this model for the potential, the clas-
sical scattering angles can be exactly evaluated in terms
of complete and incomplete elliptic integrals of the
first kind. The resulting formula for the mobility is

A (X) p r&is~ 1

E=
] 1+—f, (25)

[p(6—1)]'*E m )
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where m~ and ns2 are the masses of ion and atom, p is
the gas density, 8 is the dielectric constant of the gas,
and A is a numerical function of the variable

(5—1)e'

The function A is tabulated by Hasse" for values of X

from 0 to 4 in intervals of 0.1. It has a maximum value
at )—0.6. This means that, for a given interaction
potential (specified o and c), the mobility will be a maxi-
mum for a given temperature. Reducing 0. or increasing
c has the effect of increasing the temperature at
maximum mobility.

Langevin's expression for the mobility in a gas at
constant density is of the form

E'p ——A 7,
where the constant

F= Pe'/8n-epc]'(1+ mes/m, )'

The parameter X is defined by T=X'5, with 5= c/ao'.
Given the values of c and cr, we could calculate the
temperature variation of E, and compare it with experi-
ment. Essentially, this is what was done in preceding
sections in a more general way. Now it is desired to
make use of the experimental values of E, as a function
of T to obtain the form of the actual potential.

This can be done very conveniently by means of a
method originally employed by Keesom and applied by
Pearce" and Hoselitz'. 4 to their experiments on the
mobility of alkali ions in the rare gases. Taking the
logarithm of the preceding expressions, we have

logE, = logA+ logl', log T= log (X')+logs.

%e now plot the experimental values of logE, versls
logT. Then logA as a function of log(X') is plotted to
the same scale (Fig. 5). Shifting the theoretical curve
over the experimental curve, while keeping their cor-
responding axes parallel, one may find the position of
best fit. The amount that each axis is'shifted is equal
to logI" and logS. Knowing I' and S, the best values
for the parameters c and o- are calculated. In making
the fit to experiment, we assume that the constancy of
the observed mobility at 21.4 cm'/volt sec over a tem-

perature range of 200' corresponds to its maximum
value. This is reasonable on the basis of the temperature
variation of the mobility of other ions in helium and
provides for a unique fit between theory and experiment.

Hasse and Cook" have derived a formula for mobility
using the Chapman-Enskog theory and a potential
between ion and gas atom of the form

8/R' —C/R4.

This amounts to a softer repulsion than the hard

"A. F. Pearce, Proc. Roy. Soc. (London) A155, 490 (1936).
24 K. Hoseliti, Proc. Roy. Soc. (London) A177, 200 (1940).
-" H. R. Hasse and W. R. Cook, Phil. Mag. 12, 554 (1931).
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FIG. 5. Log-log plot mobility versus temperature corresponding
to the best fit of Langevin theory (upper solid curve) to the experi-
mental points (0). The dashed line is the theoretical correction
for clustering. The lower solid curve is obtained from the Hasse-
Cook theory for arbitrary potential parameters.

"S.Bloom and H. Margenau, Phys. Rev. 85, 670 (1952).

sphere, the attractive part still consisting of a pure
polarization force. It is found that the hard sphere
model permits a much closer fit with experiment
than is obtained with the Hasse-Cook potential; hence,
the latter will not be considered further.

It is of interest to note that Tyndall and Pearce did
not attempt to analyze their data in this manner. Be-
lieveing their data to be the mobility of helium atomic
ions which are subject to charge transfer, they felt, and
justifiably so, that the classical Langevin theory would
not apply. The current belief that their data corre-
sponds to the mobility of the helium molecular ion
removes the possibility of charge transfer and makes
the classical theory applicable.

The superposed experimental and theoretical curves
are shown in Fig. 5. The experimental curve begins to
fall below the Langevin theoretical curve at a tempera-
ature of about 170'K, while there is a good fit in the-
temperature range from 170' to 480'K. The values for
the potential parameters are found to be 0.= 1.95A and
c=2.73&10 44 erg cm4. The corresponding effective
potential for He2+ —He is plotted in Fig. 6 together
with the previously calculated potentials. It is to be
noted that the experimental" potential has a longer
range repulsion than the calculated one, while the
attractive parts of the two curves lie very close together.

A possible explanation for the discrepancy between
theory and experiment in Fig. 5 for temperatures below
170'K can be found by taking into account the effect
of ionic clustering. The size of the ion cluster is found
statistically as a function of temperature by the'

methods of Bloom and Margenau. " For a potential
having the values of 0- and I: determined above, the
clustering sets in at about 200'K and increases to give
a cluser size of about 70 He atoms at 20'K. The effect
of clustering is to reduce the mobility of an ion, owing
to the increase in its effective mass.

In the temperature range where clustering occurs, the
mobility is influenced primarily by the polarization
force, and it is relatively insensitive to changes in the
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hard sphere radius. Consequently, the effect of the
change in 0. caused by clustering will not be very sig-
nificant compared to the effect of the mass change. The
theoretical curve corrected for clustering is also plotted
in Fig. 5. The experimental points are seen to lie close
to the corrected theoretical curve.
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FIG. 6. Potential between He2+ and He. (a) Hard sphere-plus-
polarization potential obtained from best ht of Langevin theory
to experimental data. Curves (b), I, and H are the calculated
potentials of Fig. 2.

In co~paring the originally calculated mobility with
experiment (Fig. 4), the main discrepancy is seen to
occur between the slopes of the two curves, rather than
between their actual values at particular temperatures.
At room temperature, the calculated mobility is 24.2
cm'/volt sec, as compared to the experimental values
of 21.4, 20.3, and 22.4 cm'/volt sec given by Tyndall
and Pearce, Hornbeck, and Chanin and Biondi. The
slope of the experimental curve is essentially zero from
200' to 480'K, while the calculated slope is appreciable.
The estimated error in evaluating the mobility once a
potential is assigned is smaller than the discrepancy

V. CONCLUSIONS

The divergence of the experimental mobilities from
the Langevin theory at temperatures below 170'K is
interpreted to be largely' the result of cluster formation.
The close agreement in the range of temperatures from
170' to 480'K, where the ion is unclustered, lends
strong support to the essential correctness of the
deduced hard sphere-plus-polarization potential.

appearing in Fig. 4. We therefore attribute this dis-
crepancy primarily to the difference between our
theoretically derived potential and that which has been
deduced from experiment (Fig. 6). The latter is assumed
to be a good representation of the true average potential
between He2+ and He. Whereas the observed mobility
has its maximum at room temperature, the theoretical
mobility is still in the region where the effect of the
attractive force predominates, causing the mobility
curve to have a positive slope.

The theoretical potential may be at fault for two
possible reasons —use of inexact wave functions in the
perturbation calculation and an improper method of
averaging over orientation. The use of variational wave
functions tends to make the repulsive range of the cal-
culated potential somewhat too short. It is well known
that the charge distribution of an atom given by the
square of its variational wave function is more "pulled
in" than the self-consistent charge distribution. The
fact that the potential which best fits the data lies
between the potentials originally calculated for the
two extreme orientations indicates that our quantum-
mechanical calculation of the interaction was reasonably
good. Apparently our method of averaging over orien-
tations on the basis of slow rotation is not entirely
valid, since the molecular ion can make almost a quarter
of a rotation during the collision. The "experimental"
potential does lie between the theoretical potentials
corresponding to the limiting cases of fast and slow
rotation (Fig. 6). We may thus conclude with some con-
fidence that the ions observed in the experiments of
Tyndall and Powell' and Tyndall and Pearce" were
indeed He2+.

It is felt that the neglect of charge transfer between
He2+ and He is justified. If charge transfer occurred,
the resultant He2 ground state molecule would disso-
ciate, requiring the energy release of about 2.5 ev. This
large excess energy makes the process virtually impos-
sible for thermal collisions.
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Meyerott for suggesting this problem, and to Dr. T.
Holstein, Dr. A. V. Phelps, and Dr. E. Gerjuoy for many
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throughout the course of this work.


