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large energy range. Although it is unfortunate that the
parameters in the Bethe formula have not been calcu-
lated from theory for any of the gases investigated
here, the formula appears to be a reliable tool for
interpolating between and extrapolating beyond meas-
ured values of specific primary ionization at energies in
excess of a few kev.

At very low energies, there is a systematic departure
of the theory from the experimental results, which must
be attributed to the weakness of the present theory.
The only cases where the Bethe formula extrapolations
of the present data are inconsistent are the experi-
mental results of others in the neighborhoods of
p/Mc= 0. 05 and p/3Ic=19 occur in the case of He,

'

where the low energy data of Smith' fall below the
theoretical curve, and in the case of A where the cosmic-
ray point of Cosyns' lies above the curve. The decision

as to whether these discrepancies are attributable to
the theory or to the experimental technique is dificult
to make at the present time.

The data obtained in the present investigation, in
addition to serving as a useful guide toward further
development of the theory of ionization, should be of
value both in the design of low eKciency G-M counters
and in the analysis of cloud-chamber photographs
containing the tracks of fast particles.

Measurements of the specific primary ionization of
several other simple gases and of some of the complex
organic vapors utilized in G-M counters will be carried
out in the near future.

The writer wishes to express his appreciation to
Dr. W. F. G. Swann, Director of the Bartol Research
Foundation, for several helpful discussions during the
course of this work.
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Stevenson's extension of the Hartree self-consistent field (s.c.f.) method, to take some account of polari-
zation interaction between two outer electrons, is worked out numerically, up to a point, for H . The two-
electron wave function is a product of two one-electron radial functions and a function X of the angle
between the two radii. Several integrals must be calculated and a boundary value problem for X must be
solved prior to the stage of ordinary Hartree calculations. These fundamental computations are made here,
but the routine solution of the radial Hartree equations has been omitted; instead the Stevenson corrections
to the total energy are estimated by perturbation methods. These corrections seem just about large enough
to yield an electron affinity for H (something not achieved by s.c.f. or variation methods without polariza-
zation). However, a good deal of labor is involved beyond that required for s.c.f. solutions, and it is not
certain that this particular method of including polarization effects is to be preferred to a combination of
variation and s.c.f. calculations.

INTRODUCTION

A BOUT 1S years ago Stevenson published an
extension of the Hartree self-consistent field

(s.c.f.) equations, designed to handle cases. of two
electrons outside closed shells, including allowance for
spatial symmetry properties and mutual polarization
energy. ' So far as the present author knows, no calcu-
lations have been carried out by this method, save for
some approximate ones reported by Stevenson himself

in a later paper. '
In view of continuing interest in such atomic struc-

tures (mainly in the form of loosely bound negative
ions—specific references appear below), it seemed
worth while to work out one trial example. The aim is

to assess the diRFiculties and the gains of the Stevenson
method, in comparison with both conventional s.c.f.
and variation procedures. For such a trial the H ion

' A. F. Stevenson, Proc. Roy. Soc. (London) A160, 588 (1937).
'A. F. Stevenson, Phys. Rev. 56, 586 (1939).

seems ideally suited. Its properties have importance in
solar spectroscopy, its electron affinity and wave func-
tions have been found with considerable precision by a
lengthy variational method, and yet neither the s.c.f.
nor the simplest variational calculation' yield a positive
electron affinity.

Stevenson's paper gives equations applicable to any
configuration of the two electrons, but for H we shall
consider only the simple case of two 1s orbits, without
exchange. The pertinent equations are (pp. 596—598 of
reference 1)

y,"(r,)+(e,+2U(r,)+C/r, 2 2U, (r,)]y,(r,) =0—, (1)

($=1, 2),

d—[(1—x') X'(x)]+[e3—U3 (x)]X(x)=0, (2)
dx

'That is, the one using spherically symmetrical hydrogen-like
wave functions.



804 A. O. WILLIAMS, J R.

L U2(X) —22jX2 (X)dX, (3)

Ui(ri) =
00

dx dr2(1/r12)x2'(r2)X'(x),
~2

[and similarly for U2(r2) j,

U2(x) =

f
drldr2X1 (rl)X2 (r2)/r12

~o 0

4p
drLX12(r)+ X22(r) ]/r'

(5)

The process of starting numerical integration in Eqs.
(1) will be a little more troublesome than in the con-
ventional Hartree calculation, because the term in C
introduces a nonintegral power of r into the approxi-
mating polynomial representation of X(r). However, the
main di%culties lie.earlier in the chain of calculations.

EVALUATION OF U2(x)

The obvious way to begin evaluating U2(x) in Eq. (5)
is to expand 1/r12 in the usual series,

(7)

where r, is the lesser and r~ the greater of the pair r&,

r2 and P 1(x) is the Legendre polynomial. If the original
4 For an atom or ion with inner shells, conventional s.c.f. calcu-

lations would be made for the inner electrons; V(r) would then
include the spherically symmetrical shielding due to these inner
shells.

LThe numerator of Eq. (5) occurs often in atomic
theory. J The notation is that of Stevenson, except that
X (r) replaces his P (r). The wave function assumed for the
two electrons is (1/ri)X1(ri)(1/r2)X2(r2)X(x). X(r) is
the "Hartree radial wave function"; x is the cosine of
the angle 0 between the radii r~ and r2. "1"and "2"
refer to the respective electrons, which are indistin-
guishable (both being 1s) in our example. It is assumed
that x&, z2, and I are individually normalized.

In principle the calculations are straightforward.
Starting with an assumed pair of Hartree wave func-
tions Xi, X2, one evaluates U2(x) from Eq. (5), solves the
eigenvalue Eq. (2) for X, evaluates C, Ui, and U2, and
finally solves the two equations contained in Eq. (1)
exactly as in s.c.f. problems. For H, V(r) is merely
the negative of the Coulomb potential of the nucleus. '
Then the whole chain of calculations can be repeated
until full self-consistency is attained.

Stevenson shows (p. 603 of reference 1) that the
total energy E in this special case of two equivalent
electrons is given by

P= 21+ 22 2 Ui(r)XP(2)dr.
Jo

values of Xi, X2 are tabular (e.g. , from conventional
s.c.f. calculations in which no account is taken of x),
all the ensuing double integrations are numerical and
very tedious; even worse, a great many are required
because the resulting series is oscillating and very
slowly convergent. Indeed, at least 30 terms may be
needed —clearly an impractical venture. If instead the
x's are taken to be in the form r'e ", the coeKcients of
Pi(x) Lafter substitution of Eq. (7) into Eq. (5)j can
be computed in closed form. Since any wave function
can be expanded' in a sum of terms r& exp( —a,2'), this
procedure can be applied even to tabular wave func-
tions. In the present paper only the erst approximation
1s carried out, with the y's taken to be normalized
hydrogenic functions,

x (r) —(e23/2) ~re—ar/2 (8)

The quantity u was chosen as 1.6, a value suggested by
examination of the simple variational calculation and
various much more precise results. ' This evaluation of
U3 is the heart of whatever practicality the whole
method may have and so merits a brief description.

After Eqs. (7) and (8) are substituted into Eq. (5),
U2(x) can be written as follows:

wherein

and

U2(x) = (4a) ' Q(A1+B1)P1(x),
l~

~00 ~00

y'+'e —
& x—'+'e—dx d

~ 00 g

B= y'+'e& ~ x'+'e*dx d.

For x near —1 (8 near 180', or the two electrons on
opposite sides of the nucleus) a binomial expansion of
1/r12 in powers of x leads to a series expression for
U2(x), valid to about x= —0.4. Outside this range the
first few A's and 8's can be evaluated by direct integra-
tion, but for values of / above 2 exponential integrals ap-
pear. There is a method by which either A & or 8 & can be
found in general moreover, this same method shows
that A &

——8& always.
In the rigorous calculation of A 1, Eq. (10) is altered

by the insertion of a parameter P, which eventually is
to approach unity, and by generalizing the exponents,

I2(P) = y", e &

0

x—'e—& dx dy. (12)

Now I„,2(P) evidently satisfies a recursion formula

dI„,2(p)/dp= —I„,2 1(p). (13)
~ J. C. Slater, Phys. Rev. 42, 33 (1932).
'For a list of references, see S. Chandrasekhar, Revs. Modern

Phys. 16, 301 (1944).
'The author is indebted to his colleague Dr. David Mintzer

for pointing this out.
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Also, as P—&0 we have, for e) k,

I„,i-,(P) —+ (k—1) '(n+1 —k)!.
p—+

Moreover, as P—&oo,

(14)

Equation (2) can be rewritten in integro-differential
form:

dX/dx=X'= (1—x)—' LU, ($)—e,jX($)dg. (17)
—1

I„,s(P) -+ 0.
P~oo

(14a)

Equation (14) cannot be used for k = 1 or zero, because
a divergent integral is involved; however, Eq. (14a)
serves in its place.

The general procedure hereafter is to name the
desired / value, compute the associated e and k, get
I„(oP) by direct integration of Eq. (12) (over x and y),
and then build up to I„,&(P) by repeated integration
(over P) of Eq. (13);the constant of integration at each
step is found from Eq. (14) or Eq. (14a).

The final result can be expressed in closed form:

c4(}=80=.8 ~ A1 8$—8

X —ln2+ 1——,'+ + (—1)'—'
l—2

(2P+31+2) (l+ 2) 3
+(—1)' +— . (15)

8

With this formula, Eq. (9), a table of Legendre poly-
nomials' to order 32, and a desk calculator, a few values
of Us(x) were computed. From x= —1 to x= —0.4,
Us(x) can be found easily by binomial expansion of
1/ris, the method of Eq. (15) works —with some dif-

ficulties of. oscillating convergence toward the end-
to x=+0.95. Thereafter Us(x), which is a smooth
monotone rising function as x increases, was approxi-
mated by the form

Us(x) =E(1—x)—', (16)

where E and s (the latter approximating 4) were fitted
to the preceding part of the curve. It can be argued
from the electrostatic analog —two charged wires

making an acute angl" that U3 should diverge in

roughly this fashion as x~+1. Moreover, later calcu-
lations show that the precise form of V3 is unim-

portant in this small region, provided it does not
diverge too fast.

Tabular values of Us(x) were read from a graph
of the computed values and were then smoothed
numerically.

CALCULATION OF X(x)

The next step —and the only other one we shall

describe in any detail —is the solution of the eigenvalue

problem in Eq. (2). The boundary conditions set by
Stevenson are that X be finite and without a node in the
closed x interval —1 to +1.

'H. Tallqvist, Acta Soc. Sci. Fennicae A2, 11 (1938).

If X is to be bounded over the whole interval, X'
cannot diverge as fast as (1—x') ' at x=+1, and
therefore

In a 6rst approximation we take X as unity over the
whole range and find e3 from numerical integration of
Eq. (18) (Us being known in tabular form). Then Eq.
(17) yields X' (except at x= —1) and numerical
integration of X' determines X (the partial integrals of
Eq. (18) can be used in finding X', of course). Once
more a value of e3 is found, with X now varying; then a
new table of X' and a new X are found. At each stage,
once & is known we start the integration of X' by power
series solution, since Us(x) is known as far as x= —0.4
in series form. X is nearly constant for x near —1; it
decreases slowly and monotonically as x increases, and
then hooks down abruptly —though not very far—as x
goes to +1. Because of this behavior it is well to set
X'= —d(1—X)/dx and integrate to find (1—X).

The Milne method' was used for the numerical
integrations, over the range x= —0.4 to x=+0.96, in

steps hz=0.08. In the final interval 0.96&x&1, two
methods were tried: insertion into Eq. (17) of Us as
given for Eq. (16), for analytic solution; and numerical
integration over much smaller x intervals (0.005), with
Eq. (16) used only to tabulate Us(x). The last step
of the numerical integration had to be made with an
"open" integration formula, since U3 and X' diverge
weakly. It was found that both methods gave closely
similar results, provided a many-term integration
formula was used. The numerical method is easier, on
the whole.

Detailed tabulation of Us(x), X(x), e, etc. , is not
worth while. Table I is included, merely to give an
idea of the functional behavior of these quantities.

The calculation converges very rapidly, e.g., the
third and fourth trial values of e3 diAer by less than 1
in 4000.

The Gnal X, found by interpolation between the last
two trials, is then normalized.

TABLE I. Illustrative numerical results for H

x —1 —0.4 0 0.48 0.88 0.96 0.98 +1
Ue(x) 0.1250 0.1485 0.1704 0.2184 0.3481 0.4723 0.5726
X(x) 1.0000 0.9772 0.9589 0.9308 0.8945 0.8819 0.8774 0.8688

X2dx =1.7964, e3 =0.1939, C = —0.00270, (x) = —0.03943, (x2) =0.3344.1

-1

9 See, e.g., Bennett, Milne, Bateman, Bull. Natl. Research
Council (U. S.) No. 92, 76 (1933).
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(Pi(x))= X'(x)Pi(x)dx,
I

—1

(19)

which are needed for computation of Ui(r) [Eq. (4)].
To avoid getting C as the small difference of two large
quantities, it is better to substitute from Eq. (2) for
the integrand of Eq. (3) and then integrate by parts,
before using numerical methods.

Ui(ri), or the identical U~(r2), is found by expanding
1/r» in Eq. (4) according to Eq. (7) and carrying out
the integrations over x and r2 (or ri). The integrations
for /=0 and 1 are easy; the exponential integral enters
at 1=2, but this is no longer a bother because any
further steps —the integration of Eqs. (1) in particular—must be done numerically, in general.

The first of these terms in U(r), that for 1=0, is the
spherically averaged potential energy of interaction
between the two electrons; such an average appears
both in the conventional s.c.f. method and in the
simplest variational calculation.

The next term, with /=1, should be the first and the
most important new correction. It includes (Pi(x)), or

(x), and is a consequence of electron polarization.
Because the electrons tend to repel each other to opposite
sides of the nucleus, their energy of interaction is
decreased. (The average of x or cos9 would be zero, with

8=90, in a spherically symmetrical electron distribu-
tion. ) As Thaler has showed" in his calculation of the
electron afFinity of Na, this asymmetry of the electron
positions gives an energy correction which is close to
that computed classically for point electrons located at
the maxima of the radial wave functions. Accordingly,
the size of (x) gives an early indication of the importance
of such corrections. In this calculation for H, (x)=
—0.0394, indicating an average 8 of about 92'.

ESTIMATE OF ENERGY CORRECTIONS

Given complete tabular values of the quantities
mentioned so far, integration of Eqs. (1) is merely a
Hartree type of calculation, though slightly more
troublesome because of its starting values. This inte-
gration was not carried out, because it was obvious by
this stage that a fully self-consistent evaluation of the
H wave functions and energy would be hopelessly
lengthy without the aid of a large computing machine.
It is possible, however, with little additional work to
make a fairly good estimate of the importance of
Stevenson's corrections for H, as will now be seen.

The two "new" terms in Eq. (1) are C/r' and parts
of —2Ui(r) (those parts including (Pi(x)), (P2(x)),
etc.). First-order perturbation theory shows that the
energy contributions of these new terms can be found

'o R. M. Thaler, Phys, Rev. 83, 131 (1951).

EVALUATION OF U(r)

It is only a matter of numerical quadratures there-
after to find C [Eq. (3)] and the averages

(C/r') x'(r) dr = -'n'C;
Jp

(23)

Jp
[U(r)]gP(r)dr = —5n/8; (24)

—2 [U (r) ]gP (r)dr = —3n(x)/8. (25)

The numerical values of these, after insertion of C, o, ,
and (x) values, are, respectively, —0.00346, —1,
+0.02366. (The energy unit is the ionization energy of
hydrogen. ) The first and third of these are the "new"
contributions, as has been explained above.

Next we try to estimate e of Eq. (1). If the terms in
C and U' are deleted, the problem becomes that of the
ordinary hydrogen atom, with a contribution to e of
—1 unit. Next, from Eq. (24), the [U]o term con-
tributes +1, the C term of Eq. (23) adds 0.00346, and
the [U]i term in Eq. (25) subtracts 0.02366. Therefore
ei (or e2) should be given approximately by

e =—1+1+0.00346—0.02366. (26)

According to Eq. (6), the total energy is given (to the
same approximation) by

E= 2—5n/8+ 0.02366.

Therefore we have

(27)

E=—2+2j0.0069—0.0473—1+0.0237, (28)
or

E=—1.0168. (29)

Since the hydrogen atom alone has an energy E of —1
unit, a positive electron affinity (binding effect) of
about 0.017 atomic unit or 0.23 electron volt is implied
(the best theoretical value' is about 0.75 electron volt).

It is worth mentioning that the main "new" con-
tribution, —3n(x)/8, is nearly independent of n because
—(x) is roughly inversely proportional to n.

fairly accurately by averaging them over x'(r). Since x
has a simple analytical form, this average or integral
can be found quite easily for (Pi(x)). Higher terms
involve integrals like those in Eqs. (10) and (11) and
can be computed similarly.

When 1/r» in Eq. (4) is expanded in Legendre poly-
nomials, the quantity —2U, (r) becomes

—2Ui(r) = —2[U(r)]c(PO(x) )
—2LU(r)]i(Pi(x) )+, (20)

with
—

L ()]o=( /)( — "— ")
and

—2[U (r)]i——3 (x)[—ne '—(2/r) e

+ (2/nq~) (1 —e
—~~)] (22)

When C/r' and these two parts of U(r) are averaged
over g', the following results emerge:
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Of course this calculation is not to be trusted in
detail; it merely establishes orders of magnitude. In
contrast, the simplest variational calculation for H=
which includes a term equivalent to ours in [U)s but
not those in C and [U]&—leads to an energy value of
—121/128 atomic unit, with a "negative electron
acuity" (no binding —instability) of 0.055 atomic unit.
The variation method should yield an approximation to
the true energy, not to the Hartree parameter e. There-
fore we expect the Stevenson correction to comprise
the term in C [Eq. (23)] and that in n [Eq. (25)].The
net value of these terms is roughly 0.020 atomic unit,
which is less than half the amount needed to produce
a positive electron af6nity.

The corrections represented by —2[U]s(Ps(x)) can
be mentioned briefly. [U7& can be evaluated by the
method applied to Eq. (10). P&(x) is s(3x-'—1), and
so (P,(x)) is known once (x') is found. The whole term
2[U],(Ps(x)) is of magnitude 0.00066 atomic unit or
about 0.009 electron volt, a negligible quantity in these
approximate calculations. The small size of this cor-
rection is due jointly to U and I' being small, which
makes it seem reasonable to ignore all terms in higher /.

CONCLUSIONS

Two general conclusions can be drawn from this
test of the Stevenson method. (1) The method involves
considerable additional labor, with respect to conven-
tional s.c.f. procedures. To be sure, much of this extra
work can be carried out quite readily on a large com-
puting machine; moreover (as will be detailed below),
by no means all of it need be repeated at each stage of
successive attempts to reach self-consistency. (2) It is
doubtful whether this method yields a worth-while
improvement in energy (and, by implication, in wave
functions). To be sure, it is better than ordinary s.c.f.
processes, but so may be a rather simple extension of
the variation method. " Furthermore, Thaler" has

"For example, a variation calculation for H which uses wave
functions of the form e b" does not predict binding of the second
electron; the use of (1+or») exp( —btr&+r2) j immediately yields

shown that the s.c.f. procedure for inner' shells and
variation procedures for the outermost one can be
combined to predict a strong electron affinity for Na
which the s.c.f. method did not show.

Finally, a few remarks can be made for the guidance
of a hypothetical future calculation. The x(r) to be
used for calculation of Us [Eq. (5)j can always be
written as a sum of terms r&' exp( —a,r), as noted earlier,
and so at the worst V3 would be a sum of series each
similar to that shown in Eq. (9)." Since n (or c,)
appears only as an external factor in Eq. (9), a good deal
of calculation need not be repeated in later stages. The
evaluations of A & from Eq. (15) and so of the separate
series for U& are presumably straightforward for an
automatic machine. Equations (18) and (17) are easy
to solve for e and X; the smooth slow variation of U3
and X allows use of relatively long integration intervals,
as mentioned earlier. When Us(x) is multiplied by a
factor (1+0), with k a constant of magnitude less than
unity, both e and (1—X) change by factors approxi-
mating (1+4). It is not hard to derive formulas giving
Ae and A(1—X) quite simply, once complete solutions
for two values of k are available. Indeed the numerical
values quoted here were found by just such a method,
from an earlier trial of H wi. th n=2 and one of He
with +=4. Incidentally, the results for He showed that
—3a(x)/8 [Eq. (25)j is 0.02389, in good agreement
with Stevenson's estimate. '

Later calculations —those of C, (x), (x'), the nor-
malization integral for X, and U(r)—offer no further
difhculties. Finally, it is well known that an ordinary
s.c.f. calculation, which is all that remains beyond this
stage, is easy for an automatic machine.

The assistance of Mr. James A. Seiler, who did many
of the numerical calculations, is gratefully acknowl-

edged.

a very fair approximation to the known electron affinity (reference
6).

» It may be worth noting that Thaler (reference 10) found that
only the largest term in such an expansion of x(r) is of much
importance.


