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Quantum Theory of Syectral Line Broadening* f
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Simple radiation theory is used to derive a formula proposed earlier by P. W. Anderson, for calculating
the intensity within a collision-broadened spectral line. The problem is considered, erst from the point of
view of molecular transitions, and then by computing the work done by the light wave. The general result
for absorption is stated in Eq. (18), wherein the 6rst double integral represents true absorption, the second
induced emission.

Using the quantum rule for the expectation value of a
classical observable Q; namely Q= Tr(p()), he rewrites
Eq. (1) in the form

2G&

I(pp) = Tr p dtti(t)e '"', dtti(t)e'~'
3''C

(2)

and takes p to be the statistical matrix for the atomic
states at the beginning of the radiation process; ti(t)
is the time-dependent ("Heisenberg" ) form of the di-

pole matrix and Tr designates the diagonal sum. This
very plausible method needs of course some justification
beyond an appeal to the correspondence principle in
view of the highly derivative nature of the operator
that is being transcribed, and Anderson provides it in
his thesis, 4 employing the elaborate technique of quan-
tum radiation theory. Nor is the passage from Eq. (1)
to (2) unique, for the matrix ti(t) does not commute
with itself at diferent times and this leaves the order
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HE variety of treatments of the line-broadening
problem is so great as to be bewildering, and it is

often difFicult to see whether different approaches de-
scribe, or do not describe, the same eGects. A single
starting point, not too far back in the equations of
radiation theory but general enough for extensive use,
would aid greatly in synthesizing this field of optics.
Such a starting point was suggested by Anderson' who,
following mainly the work of Lindholm' and Foley, '
called attention to what he appropriately termed the
quantum-mechanical generalization of the classical
Fourier formula or, brieQy, the Fourier-integral for-
mula for computing line contours.

Anderson reasons as follows. The intensity spectrum
of a classical charge of varying dipole moment ti(t) is
given by

2co4

I(a&) = dt's(t)e '"'
3' C

I. METHOD OF MOLECULAR TRANSITIONS

Let the stationary eigenstates of a molecule, so long
as it is unperturbed by other molecules and by light, be
denoted by p&. The functions satisfy

Bogs= ~zgx.

When exposed to other molecules which exert energy
perturbations C(t) during collisions, and also to a light
wave adding the energy F(t), the states of an absorbing
molecule, %(t), must obey

phd%/f)t= (Hp+C+F)4.

Instead of expanding 0 directly in terms of the p we
consider first the Schrodinger equation in the absence
of the light wave:

iABC/pit= [Hp+C(t)]C,

but instead of dealing with a single C we introduce the
set

{c'(t)},
formed by the expansion

c,=g),», (t) p ~.

We impose the condition that at time to

C;(tp) = pp;; i.e., U(tp) = 1.

(4)

The time-development matrix V obeys the Schrodinger
equation,

iI'tU= (Hp+C) U,

in which the two integrals occur quite arbitrary. Fur-
thermore, and this is one point of the present paper, a
formula like (2), if correct, should be derivable by the
simple methods of semiclassical radiation theory that
have been widely used earlier in this field, provided the
formula is applied to absorption. The quantum char-
acter of the photon held can hardly matter in a prob-
lem which ignores the natural line width. In the follow-
ing we give two simple derivations of a formula similar
to (2) for absorption and discuss its relevance. Crucial
in this analysis is the use of certain "collision-smeared"

- atomic states, which previous investigators seem to have
overlooked with the result of finding only approxima-
tions to the quantum Fourier formula.
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and is unitary, U~U= 1. Hence it may be seen that the
C; form a complete orthonormal set at every instant.
It is therefore proper to expand the solutions of Eq. (3)
in terms of them;

states {C,(t) ) in time t—tp. This probability is given by
lail'. The smearing is the result not only of static
perturbations but also of diabatic effects.

Returning now to Eq. (6) we find that its solution
can be expressed in the iterated form,

The coe%cients are then subject to the equation

i7iap= Q)Fp) a)„
with

where

a(t) = L1+Z I( ) (t)3a(t,),
s=l

p ts-I

But the Ii's may be transformed back to the stationary
base {(p;).Any operator P whose matrix in the C-base
is I';; can be expressed in the stationary base as follows:

P;;= ) C);*PC~,de= + U)„*U„; p),*Pq„de= (U(P'U) ).
Xp

The matrix on the left is in a Heisenberg representation
which includes the time dependence resulting from
molecular collisions in its basis, though not the light
wave. On the right we have I" in the stationary or
Schrodinger representation. Henceforth we shall write
I'~ for U~I"U and understand that all matrices appear-
ing in subsequent equations are in the p-base,

Equation (5) reads, in vector form,

isa, = Ii ~a.

Since I++I('& is unitary,

P, (I(~)&+I(~))— P I(~&&I(~) ~

and this yields the useful relations

Io) )+I(i&—0

I (P) )+I (P)yI(i)$I(i) —0

The transition probabilities are

lap(t) l'=
l
a„l'+P g(a, a),*I,j, ( )*+a~a„*I,„( &)

s=l

and will be solved by successive approximation. First,
however, we take note of an alternative procedure
which, though erroneous, is not without interest.

It is possible to expand the solution of Eq. (3) di-

rectly in terms of the stationary states in the manner:

and then to compute the amplitudes b. The usual
methods of treating time-dependent perturbations
would have us do precisely this and ask us to regard
the quantity lb&i' as the probability of a jump from
the initial state to the state k. This is indeed what it
signifies, but the jump in question results from both

perturbing agencies, collisions and radiation field. This
is easily seen from the fact that the b's do not vanish
in the absence of F. %hat interests us is the probability
of a jump caused by F alone, and this is

l
ap l'.

Theories' based on a calculation of the b's yield
answers which are adiabatic approximations to the cor-
rect one. This is because, when the molecular collisions
are supposed to produce no transitions between atomic
states (adiabatic hypothesis), the light wave remains
the only agency to do so. In our complete picture, the
collisions "smear out" the energy levels via Eq. (4),
and we ask what is the probability that a light wave
will induce a jump between these collision-smeared

' See reference 3, and M. Mizushima, Phys. Rev. 83, 94 (1951).

In view of this, and with the use of Eq. (8), the ex-
pression for the probabilities becomes

Now I(') is of the order s in Ii, and hence of order s in
the electric field strength of the light wave; we shall
retain in la&(t) l' only terms of second order, as is
customary. This limits us to the integrals I~),")IA,), '"*,
and

The explicit form of the 6eld perturbation in the dipole
approximation is

and

I

F(t)~= —8 p~ cos((pt+n),

t

I('&(t)= (i&)t) ' I Fa(~)dr

The a's on the right denote initial values. The sta-
tistical matrix for the absorbing molecule is defined by
p;, (t)=b;(t)b;*(t), but since C, (tp)= pp;, we may also
write a,a,*=p,;(tp). Because of the random distribution
of the phases among the amplitudes u, the statistical
matrix is electively diagonal, and we have
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When we set 8 p~=8p~cos8, average over 8 and in the time interval t—tp is
over the random phase angle 0,, we obtain

b2 QO

p, (~)—p„= P (p),—p,) ~ dt's, ~~(t)e'"'
12k' i

W'= 8
i

dt' cos((ot'+n) —(It(t')),
tp dt

(14)

+ dtpI, ), (t)e '"'

This expression represents the increment in popula-
tion of the kth level resulting from the light wave; not
all of it is due to absorption. The meaning of the vari-
ous terms becomes clear if we decompose the sum on the
right and regard each term in X as representing an in-
dividual spectral line. This decomposition is of course
not meaningful physically when collisions cause the
individual lines to overlap.

When decomposition is permissible, the dipole mo-
ment p,~, which satisfies

provided (y) is the quantum mechanical expectation
value of the dipole moment,

(S(t))=»Lp(t)S j =»L~(t)~'(t) t "(h)j,
if we use our earlier representation. The u's'are known
from Eq. (7). In this analysis only terms of the 6rst
order in F need be retained, since 8' already has a
factor h aside from those in (p). Hence

~t

(p(h) )=T i 1+('5)—' dhF

p t

Xaat 1—(ijl) ' ' dtF~ p~ =Trpb~(t)j

ifith"= (& +C)"p~ p" (&o+—C)"

is approximately given by

pa&, =pa& e»

(12)

(where a&I,i,= (E~—Ei)/h represents the unperturbed
molecular frequencies), since that is the solution of Eq.
(12) when C is absent. Hence the first integrand in Eq.
(11)has approximately the exponential factor e'& +"»",
the second the factor e'&"» "~t. If EI,&E), the second
of these produces resonance and the first can be neg-
lected; otherwise their role is reversed, In that case,

pi J
dhp~i~(t)e-'"' (13)

represents absorption, and

—
p~, dhpaP(h)~ '"'

II. WORK DONE BY THE LIGHT WAVE

There is another way of obtaining Eq. (11).Because
it is physically interesting and involves the same
mathematical tools as the preceding section we present
it briefly here. VVhile thus far we have studied the
eGect of the light wave on the molecule, we shall now
compute the work done by the light wave.

The electric vector is again given by 8 cos(cotjn).
The work done by the wave on an absorbing molecule

represents induced emission. When (13) is summed
over all k and X we find the formula to which Eq. (2)
reduces when p is taken to be diagonal,

The symmetry of Eq. (11) is noteworthy. Both sets
of terms, those in e'"' and those in e '"', are necessary
in absorption since, as we have seen, one set is im-
portant when EI,&E), and the other when Eq&E~.

dt F~(h ) &"(t), (15
tp

where a= a(to) and p= p(to) The first. term on the right
of Eq. (15) is independent of F and represents the
mean dipole moment of the absorbing molecule in the
presence of the perturbers only. Thus, when 8' is aver-
aged over a random distribution of phases a of the
light wave, this term contributes nothing. We therefore
neglect it at once.

Referring to Eq. (14) and integrating by parts, we
write

W= 8 (p(t)) cos(cot+ex)

t

+(g g, dt' sin(a)t'+o. )p~(h').
Jgp

Since fio'dtF~ vanishes at to, we see that the inte-
grated term vanishes at the lower limit. Furthermore,
although the damping factor which would describe the
natural breadth in absorption has been omitted as
being small compared to the collision broadening ef-
fects, this damping term makes the integrated term in
8' vanish at the upper limit when t—+~. Thus the
mean value with respect to a is

z ~t
(W)~= 038'

~

dh S1I1(Mt+(I)
~tp

tl

XTr p q"(t') dh"F" (t")
tp

tI

~ dt"F~(t") It~(t')
0 tp a
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On inserting FE we find (omitting henceforth the be assumed to take place from a radiation bath of many
uperscript H on tl) frequencies with energy density P(a&). The relation. be-

tween I' and our former b is this:

(W) =—(8 ccc8)' (Tc c
k -4 to

dt' sin ((ot'+ n) p (t')

tl

X it dh COS(coh +n)p(h ) —
i dh Sln(kc)h +n)

h2= Sm P (o))d(u. (17)

The mean work done by the light wave per unit fre-
quency interval, i.e., the intensity of net absorption, is
given by (W) t)/d~ as to and t tend to —and +~,
respectively; in view of Eqs. (16) and (17) it is

tl

X it dh" cos((ot"+n)p(t")p, (t')

3k
The second double integral can be transformed to

p dt's (h) e
'~

dtt(kt)e

t ~t
~ dt' cos(a&t'+n)p(t') dt' sin(a&t'+n)p(t')

~ to tP

dt' COS((et'+n)tA(t') dh" Sin((ot"+n)p, (t").
~ to ~ tP

dttA(t)e
'"' -dtp(t)e'"'

When p is diagonal this expression will be seen to take
the form

27/ MI
IA (M) P (pccc pk) Jkm&

3A, ~m

When this expression is substituted and the average
over n is taken, two of the three double integrals whereas Anderson's emission formula LEq. (2)] be-

cancel, the result being comes
2Q)

ZCO

(W) = ——(h cos8)'Tr p
25

dt' cosset'p (t')
where

IE(~)= E pkjk,
3~c' ~m

t

X ~ dt' sin(ot'p (t') — dt' sin&oh'p, (t')
~ t() 4 to

t

I dh' cosset'tk(t')

GO=—(8cos0)'Tr p dt's(t)e'"' dt's(t)e
4h

—
) dt's(t)e '"') dttl(t)e'"'

OQ 2

Jk —= ~ dttkk„(h)e '"'

These formulas describe the entire spectrum; the p's
are the initial occupation numbers of the molecular
states. We now associate every term of these summa-
tions with a single atomic transition, the one involving

p~ with a transition of frequency cvA, . The number of
absorptive transitions within da& is then IA/Iten, the re-
verse number IE/It's The princ.iple of detailed balanc-
ing requires these to be equal. Hence, if

(16)
A = (2'/3m. jlc')Jk„

and
From the signs of the two integrals in brackets we

see that the first represents true absorption, the second
the energy returned to the light wave, i.e., induced
emission, in accord with the conclusions of the pre-
ceding section. The coeKcient too agrees with that of
Eq. (11); for if pk(~) —pk is multiplied by her, its co-
eKcient becomes identical with that of (16), provided
(cos'8) is replaced by 3~.

The present method is perhaps superior to that of
Sec. I because it yields the trace expression directly
and requires for its interpretation no decomposition
into separate spectral lines.

III. DETAILED BALANCING BETWEEN
ABSORPTION AND EMISSION

Such decomposition is necessary, however, for a dis-
cussion of detailed balancing between absorption and
spontaneous emission. Furthermore, absorption must

8= (2~/35') Jk,
it is necessary that (p —pk)I'(a&)B= p&. We are thus
led to the universal relation,

between the Einstein coefFicients A and B. In this sense
detailed balancing has been proved.

In a more speci6c sense, however, the problem is not
solved. For if we take P(~) to be a Planck distribution,
the occupation numbers p; do not conform to the Boltz-
mann law, p,—e ~ h'"~, with unperturbed atomic en-
ergies E;. This can hardly be a fault of the decomposi-
tion of the trace; it is probably indicative of a residual
lack, of refinement in our work. Perhaps it should be
added that the use of quantum radiation theory does
not remove this feature, for it leads to precisely the
same results.


