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Deviations from Brillouin s Free-Spin Theory in Manganese Fluosilicate

R. C. O'ROURKE

Electricity Division, Naval Research Laboratory, 8'ashington, D. C.
(Received November 5, 1952)

A method is proposed which allows one to calculate the magnetic moment of a paramagnetic ion in a
crystalline electric field. The case of manganese Quosilicate is examined since one has complete information
on the paramagnetic resonance spectrum of this salt. The result is that there are measurable deviations from
the Brillouin free-spin theory due almost entirely to the trigonal part of the crystalline electric field (D term
in Abragam-Pryce Hamiltonian) in the neighborhood of 1'K.

ECENT measurements on the magnetic moments
of several paramagnetic ions' reveal measurable

~ ~

deviations from the well-known Brillouin free-spin
theory. ' These deviations are susceptible to theoretical
analysis, if one has sufficient information on the para-
magnetic resonance spectrum. To best exhibit the
general method, a specific example will be studied. The
case of manganese Quosilicate is investigated in which
the concentration of Mn++(sSs~s, nuclear sPin I=S/2)
ions has been made sufficiently dilute (by substitution
of diamagnetic Zn atoms, say, Zn~: Mn~ = 10:1) to
ignore exchange and spin-spin coupling between neigh-
boring Mn + ions. Detailed information on the para-
magnetic resonance spectrum for this salt can be found
in the work of Abragam and Pryce, ' and Bleaney and
-Ingram. 4 This Auosilicate has one Mn++ ion per unit
cell, and it has trigonal symmetry; the axis of sym-
metry has the crystallographic designation (111) with
respect to the axes (1, 2, 3) of the cubic 6eld (see Fig. 1).
One chooses the trigonal axis as the s axis in what
follows. These authors furnish us with the following
Hamlltonlan:

&=gPsH S+DLS'—sS(5+1)3
+-sa(St'+Ss4+Ss4)+AI S

-vP-H I+OP*'--:I(I+1)l, (1)

as follows (P= 1/KT):

(8'0 't 1
ir= Ti i

=— logZ
t r)H ) pr r, v P r)H

1 8
log Sp exp( —PK), (2)

PBH

where II is the applied magnetic field whose orientation
relative to the trigonal s axis is yet to be specified; 0 is
the Planck function of statistical thermodynamics, '
which in turn equals k logZ, where Z is the partition
function finally, since the partition function is the
spur of exp( —PK) in the energy diagonal representa-
tion, one can use the invariance of any spur to a uni-
tary change of representation and employ any repre-
sentation which is convenient for the problem at hand.
Since the Hamiltonian X in (1) is for a system with
complete quenching, and only low temperatures are of
interest here, the only states available to the spin
system are the lowest (25+1)(2I+1) degenerate spin
states. Furthermore, one can evaluate all spurs in the
so-called strong field representation in which sums over
electronic and nuclear states can be done separately.
For example,

SpxzIz2~z =Spy„Iz SpE~z'
=-', (2I+1) I(I+1) —,'(25+1)S(5+1),

where D= —0.013 cm '3= —0.0091 cm ' &=9X&0 '
cm ' all at 20'K, Ps~10 ' cm ' gauss ', gii ——gi=2,
P„10 r cm ' gauss ', and finally Q 10 '—10-4 cm '.
One does not expect the constants D, A, e to change
appreciably below 20'K.4 No measurements have been
made to determine these constants in the neighborhood
of 1'K. In what follows, the above values at 20'K will
be employed at lower temperatures near I'K. The
general de6nition of the magnetic moment per ion of a
system with Hamiltonian 3'. in thermal equilibrium is

etc. The problem which confronts one is, therefore, the
calculation of

Sp exp( —PX), (3)

where from (1) X contains several noncommuting
operators. If one ignores everything in (1) except
gt4H S, one, of course, can then choose the magnetic
field direction as the s axis and write 5C=gPsH, S„
which leads to Brillouin's result (see below). However,
if one wants to calculate the deviations from the
Brillouin result brought about by the remaining terms

'W. H, Pb . R . 85, 487 (195 ); b . R . 87, 29(A)
n 1 ' ne s i e the trigonal axis as the s axis with

respect to which 5, is diagonal, and one must then'R. Fowler and E. A. Guggenheim, Statistical Thermodynamics choose the magnetic 6eld to be along this axis or per-
(Cambridge Press, London, 1949), p. 620.

'A. Abragam and M. H. L. Pryce, Proc. Roy. Soc, (London) ~ E. Schrodinger, Statistical Thermodynamics (Cambridge Uni-
A205, 135 (1951). versity Press, Cambridge, 1948), p. 13.. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. (London) 6 J. H. Van Vleck, Electric and Magnetic SescePtiNlities (Ox-A205, 336 (1951). ford University Press, London, 1932), p. 25.
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pendicular to it. The reason for this restriction is that
the spur formula to be introduced below is only con-
venient to use (i.e., without undue labor) when K
contains one "large" operator and any number of
"smaller" operators. In the case of nuclear specific
heats in zero magnetic Geld,

82

Crr=p= kP2 log Sp exp( —PX);
2

(4)

where all terms in BC are small, one can use Van Vleck's
diagonal sum method in which the exponential operator
is developed in a power series and the various spurs
carried out. It may be noted that in this diagonal sum
method one can subtract from the Hamiltonian (1) the
spur of the cubic field term —p,(2(514+524+524) times the
unit operator, without affecting any of the thermo-
dynamical properties of the system. This has already
been done for the D and Q terms in (1); one then has
Sp3'. =0, and one can proceed in the usual manner with
SpK2 etc. , to obtain the nuclear specific heat' and the
magnetic susceptibility at low fields (H«104 gauss).

One can now proceed to use the following neat for-
mula developed by Schwinger' ' to calculate the basic
Sp exp( —PX):

Sp exp( —PXp —PX,) = Sp exp( —PXp)

( )n+1

+P {PX)exp(—PXp)5 },
=o 42+1

where
Sp= 1,

1 1

Sn $1 d$1
i

$2 d$2'''

FIG. 1. This shows the trigonal Z axis and the cubic axes
(X1, X~, X3). The axes Z, X3, and Y are assumed to be co-
planar.

where
~—~(P)+p(2)

Now since Kp is independent of nuclear spin operators,
one sees that in the second term of (6) only the a term
survives, arid this contribution proves to be quite small
compared to the first term in (7) since a(6—10 4 cm '.
The deviations from the Brillouin free-spin theory in
the neighborhood of 1'K will come mostly from the
D term. The hyper6ne coupling term 3 will not aGect
the result until second order, i.e., (PA).2 The magnetic
mom. ent can be calculated in two parts as follows:

and

1

t d$nU($1) U($1$2) ' ' U($1$2' ' '$n)& (5)
p

1 8
p,

(P) =— log Sp exp( —i()lXp),
PBH,

U($') =exp( —p$'Xp) pX1 exp( —p$'Xp).

For the problem at hand, one can erst choose the mag-
natic field to be along the s axis of the crystalline elec-
tric field so that H S =H,S„and then one defines:

Xi)=gi9pH*S.+D[5.' —2S(5+1)j
Xi—p(4(51'+52'+52')+&I S 'rpprH I—

+Q[I.'—2I(I+1)3 (6)

Up to 24= 1 Eq. (5) yields the following result:

Sp exp( —PXp —PX,)
= Sp exp( —PXp) —P Sp{exp(—PXp) Xi}

p2 (Il

d$1 Sp[exp( —(1—$1)pXp) Ki
20p

exp( —$)PXp) Xi). (7)
7 See reference 4, p. 354.
J. Schwinger, Phys. Rev. 82, 664 (1951).' E. N. Adams and M. L. Goldberger, J. Chem. Phys. 20, 240

(1952).

1
p(2) =— log(1+3),

PBH,

1 8——P Sp{exp(—)4IXp)

Sp exp( —PXp) 6

p2 ~1
(Si'+52'+S2') }+— d$1 Sp{exp(—p(1 —$1)Xp)

24p

Ki exp( —p$1Xp) 'Ki} . (8)

The 6rst part p, ~ ' will now be calculated; one introduces
for convenience:

&=gj8ppH„71= pD; Xp=05,+X5,2,

where the constant operator (D/3)5(5+1) can be
dropped, since it commutes with each term in 3C, and it
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l.0 One then uses the known result, ,

.02

.04

.08 so that

sinht (S+—') gj
~
—ml —Z(g)

sinh(2 8)

.5- (15)

where Z""'(8) is the 2iith derivative of Z(g) with re-
spect to 8. The first term e= 0 gives Brillouin's function,
namely:

I

4.

FIG. 2. Thi.s shows hovv for each temperature the magnetic mo-
ment per ion deviates from the Srillouin free spin theory.

1 Z&'& 2S+1

&«' S Z 2S
coth(5+-2i)g

1 8——coth ——=B,(g). (16)
2S 2

does not survive the operation (8/BH, ) log in Eq. (2).

Spii s exp( —85,—X8,2)

The result up to and including +=1 yields Lthis also
follows from Eq. (7)j:

= (2I+1) g exp{—mg —Xm'} (10)
S

& z&» —xz(»

s z—xz&)
(17)

Carrying out the sum for our Mn++ ion (5=5/2) and which by the use of the previous result (16) leads, to
substituting into Eqs. (8) leads to the following result: order X, to the following relation:

p(0) —
gpo

(2) sinh(~g)+(~)e4" sinh(~38)+ —,'es" sinh(~~g)
X

cosh(~8)+e4" cosh(3~8)+e'" cosh(28)
(11)

Now it is conventional to normalize to the saturation
value p,„«& approached by p, «) as 0~~; i.e., p„«)
= 5/2gPO, so that finally:

1 5 sinh(58/2)+3e4" sinh(~~g)+e'" sinh(28)
(12)

5 cosh(58/2)+e'" cosh(28)+e'" cosh(-', 8)

' For X=O (i.e., no Stark splitting) one obtains of course
Brillouin's function:

(p'Oi ) 6 1 8
=B~i2(g) =—coth38 ——coth —. (13)

4ii "&) i.=o 5 5 2

It is instructive to relate Eq. (12) to Brillouin s func-
tion for small X. One way of doing this without using
Schwinger's formula is to expand exp( —Xm') in Eq.
(1.11) in a power series as follows: Define

f (8, X) = Q exp( —mg —)m'}
m=—S

( ) nylon

nP "e—ms (14)
n=o ~ I m=s

(0) B,&"(8) 1-
=B (8) 1—) 2SB &'&(8)+ ~ (18)

B,(g) 1

One can immediately see, since D= —0.0j. cm ',
5=5/2, and the slope of B&~2(g) can be of order unity,
that of 1'K(k7= -', cm '), X= —0.02, and one can expect
deviations of about 5 percent. Actually, the second
derivative term B,&" (8) cuts this down to a few percent.
For numerical purposes, it is easier to plot the closed
result (12). Figure 2 and Table I show three such
typical curves based on Eq. (12) for the value T= 1, -'„

~"K, D= —0.013 cm ', and how they compare with the
corresponding Brillouin function. One notes the inter-
esting fact that there is a diferent curve for each tern-

perature, since D is assumed to be constant in this
range (this could be checked experimentally).

Now that one has the largest part of p, namely, p«),
which at T=0.25'K shows a maximum deviation of
about 8 percent, one can proceed to calculate p, &'&. One
can certainly neglect the last two nuclear terms in (1).
Then in the expression for A one can drop the D term
in Ko, and Ki (in A) can be taken as AI S, since every-
thing else wiH yield results smaHer by at least one order
of magnitude. Such considerations are based on the
assumption that the Pryce constants, D, A and a sift
out the various orders of terms independent of the
values of the spurs which they multiply (i.e., the latter
spurs which lead to closed functions of 8 are assumed
to have a maximum value which does not alter the
order of magnitude of the result). The calculation of h.
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would then require the following:

—~sPa Sp{exp(—85,)
Sp exp( —8S,)

~1
(5&'+Ss'+Ss') }+-'(PA)' dsg

~o

Xsp{exp(—8(1—s )S,) (I S)

One readily obtains the following result:
I

SI(I+1) ( sinh8y
(PA)' 5( 1— iM

8 )
1—cosh' sinh8

+ M &+(1+5), (23)
8 8

exp( —s&85,) (I S)} . (19) where the moments 3E.are the usual

Sp{exp(—85,) S,}
S Sp exp( —85,)

S' Sp{exp(—85,)}

The 6rst term is laborious to compute because of the = —88(8);
two systems of axes involved. One can express the co-
ordinates (1, 2, 3) or (x&, xs, xs) in terms of (x, y, z), by Sp{exp(—8S,) .S,'}
two successive rotations through angles of cos &(1/V3)
and s./4 about the x axis and the new g axis, respec-
tively, if one originally chooses the y axis to lie in the One then substitutes Fq. (23) into (8) to obtain the
plane of (z, xs). (See Fig. 1.) One has hyper6ne coupling correction to p, i.e.,

1
Sy=—5,— S„+—S„

vZ

1
Ss——Q-sS„+—5„ (20)

1 BA I(I+1) t' sinh8 q=—(1+4) '—= (PA)' Si 1—
p„&s& S 88 6(1+4) ( 8 )

1 cosh8 —1
2/Il&»+ —Il(s& +. gi&&

S 8
1

53= ——S—
v2

1
Ss+—S,.

K3
i&sinh8 cosh8)

~

{a&»+Sos—5—1}
8' 8 )

One can then express (5& +Ss'+Ss ) in terms of S„
S„,S, and carry out the many spurs. This will not be
carried out here since this contribution to p, is unim-
portant until one reaches T~0.01'K, which is probably
outside the range of temperatures at which experiments
of the type being considered here are possible. The
second-order hyper6ne coupling contribution is simi-
larly small but far more tractable. The details of this
calculation are similar to one carried out by Simon-
Rose-Jauch" in another connection, so only a sketch of
the result will be given here, Using the same notation
as the above authors, namely,

1
Sg———(5.&5„); Sp ——5, ;

( 1 sinh8 cosh8p
ia, (24)

8 8s)
where 8&'&=—(&I/d8)B, (8), etc. This correction is smaller
than 1 percent of the D-term contribution in the im-
mediate vicinity of 1'K, since the bracket term in (24)
is of order unity for all 8. The actual values of +is&/&a„is&

for A = (—)0.009, T=1, 's, ~"K are given in Table II.
H one now agrees that only the D term in the Hamil-

tonian contributes to the deviations from the Brillouin

TABLE I. &&&&'&/p„&'&.

5+5~= —,'LS(S+ 1)—5,'%5,);
SoSo=S '

(21)

SySp= (S&&&1)Sy

S~ exp{—s&85o}= exp{—s&8(5&&&1)}S~.
M Simon, Rose, and Jauch, Phys. Rev. 84, 1155 (1951).

(22)

and similarly for (Iy I&&), one has to calculate

Sp[exp{—(1 s&)8$,}IS exp{—s~85,—}I"S„j,
where I S=I S (summed over m=+, 0, —). and
I =I . This is most easily done by commuting the
middle two operators by means of the commutation
rules:

0
0.2
0.4
0.6
0.8
1.0
1.4
1.8
2.2
2.6
3.0
3.6
4.2
4.8
54
6.0
7.0

0
. 0.2284
0.4268
0.5806
0.6940
0.7732
0.8695
0.9208
0.9502
0.9680
0.9790
0.9888
0.9940
0.9966
0.9982
0.9990
0.9996

) = —0.02

0
0.2371
0.4414
0.5980
0.7096
0.7869
0.8788
0.8267
0.9540
0.9702
0.9807
0.9896
0.9944
0,9986
0.9992
0.9995
0.9998

X =0.04

0
0.2465
0.4567
0.6148
0.7251
0.8002
0.8874
0.9323
0.9573
0.9727
0.9821
0.9904
0.9948
0.9984
0.9992
0.9997
0.9997

X =0.08

0
0.2655
0.4867
0.6472
0.7549
0.8247
0.9030
0.9422
0.9637
0.9766
0.9848
0.9919
0.9953
0.9987
0.9993
0.9996
0.9999
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0.2
04
0.6
0.8
1.0
1.2
1.4
1.6
1.8-
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
54
5.6
5.8
6.0

0.009

0.0000991
0.000179
0.000234
0.000274
0.000308
0.000344
0.000385
0.000436
0.000497
0.000570
0.000658
0.000763
0.000887
0.00103
0.00121
0.00142
0.00166
0.00195
0.00230
0.00271
0.00319
0.00376
0.00444
0.00524
0.00619
0.00731
0.00864
0.0102
0.0121
0.0142

0.009

0.000394
0.000709
0.000929
0.00109
0.00122
0.00136
0.00153
0.00173
0.00197
0.00225
0.00260
0.00301
0.00350
0.00407
0.00476
0.00556
0.00651
0.00763
0.00894
0.0105
0.0123
0.0144
0.0169
0.0199
0.0233
0.0273
0.0319
0.0372
0.0433
0.0503

TAsr.z II. &I&'&/p &'&.

0.009 '4

0.00153
0.00276
0.00361
0.00421
0.00473
0.00526
0.00589
0.00664
0.00754
0.00862
0.00991
0.0114
0.0132
0.0153
0.0178
0.0206
0.0242
0.0278
0.0323
0.0374
0.0432
0.0499
0.0574
0.0659
0.0754
0.0858
0.0973
0.110
0.123
0.137

out higher orders). One obtains then:

Sp exp( —05,—XS 2) =Sp exp( —OS.—XS ')

= Sp exp( —05,)—X Sp{exp( —OS,)S,'.}
)2 ~l

+—'

ds& Sp{exp(—(1—s&)05,) 5.'
2&p

exp( —s&05,) 5,'). (26)
Now one has,

+S
Sp{exp (—OS,) S,'}= P e "e(m

~
5 '

~
m)

m=—S

+s 5(5+1)—m'
t

&
—m&& (27)

2

Then, to first order in ), one finds:

Sp{exp (—OS,—AS,') )
=Z(0) —-,'XLS(5+1)Z(0)—Z& &(0)]. (2S)

The magnetic moment p, is easily obtained from Eq.
(2) and is given by

18 t
'A

——logz, & 1 (S(S+1)Z Z&2&) (29
p SOO I 2Z

or, with some reduction similar to those earlier, olie
finds 6nally:

free-spin theory near 1'K, one can carry out the calcula-
tion of p when the magnetic field is perpendicular to the
trigonal s axis; H S=H,S„say.

One has to calculate the following:

Sp exp (—85,—X5,2), (25)

which can be done by first rotating the coordinates
through ~m, i.e., (x~s; s—+—x; 5 ~5„' S,'—+5,') and
then using Schwinger's formula (7). This will be done
here to erst order in X (there is no difhculty in carrying

X B,&'&(0)

=B,(0) 1+—— 2SB,&"(0)+ . (30)
B.(0)

This differs from the "parallel" case (1S) by the sub-
stitution X—+—X/2. In this case, then the curves should
fall below the Brillouin curve by half as much as the
curves in Fig. 2 lie above it. All the above results are
for a single crystal.

The author would like to express his thanks to
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