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which the scattering is entirely due to lattice vibrations. '
In the analysis of a number of samples with lattice
scattering only, he found it necessary to multiply by a
factor of 3.2 to obtain agreement of this exact theory
with experiment. Comparison of the lattice scattering
part of the 20' data with this theory shows about the
same discrepancy.

Since the value of the mobility could not be incorrect
by such a factor, this disagreement would seem to
indicate that the rate of energy loss in collisions is
higher than the previous considerations indicate by a
factor of about nine. This could be the case, as Shockley
points out, if the edge of the conduction band were
degenerate. This would give rise to complex energy
surfaces, which might give more effective energy dissi-
pation for the electrons without affecting their mobility.

The imperfect Qt in the region of sharp ascent can
be ascribed to two factors: (1) the crude theoretical
treatment, and (2) nonuniformity of the field in the
sample because of variations in impurity concentration
and cross section. It is also observed that at the very
highest fields obtained, the experimental points fall
below the line of slope 2. This is expected if equi-
partition ceases to be valid for the lattice oscillators
which scatter the electron, as can be seen from the
following considerations. The probability of scattering
of an electron by a particular mode of lattice vibration
is proportional to the dilatation or deformation pro-
duced by the mode, which is in turn proportional to its
energy. As the electron gets faster, it interacts with

shorter lattice waves. Under equipartition, fast elec-
trons see no bigger deformation than slow ones, and
the mean free path is independent of electron velocity.
When the energy of the lattice oscillators is essentially
the zero point energy, however, faster electrons see a
more deformed lattice, and this leads to a mean free
path which decreases with e or x, and a mobility which
decreases more rapidly than 1/v or 1/x. At the Geld

intensity for which the departure from the line of slope
-,'becomes evident, the electron speed has been multi-
plied by a factor of about 6. If the effective mass of
the electron were the free electron mass, the departure
from equipartition should occur at much lower fields.
An electron of smaller effective mass, however, would
have smaller momentum for the same energy, and
therefore interact with phonons of smaller energy. To
account for the validity of equipartition out to the high
fields observed, the effective mass would have to be of
the order of one-sixth the mass of a free electron, which
is in fair agreement with the previously stated value.

It can be concluded that a combination of scattering
by ionized impurities and lattice vibrations accounts
semiquantitatively for the variation of mobility with
6eld that has been observed by Ryder. It is quite
satisfactory, in the present state of the theory, that
application of a theory assuming spherical energy
surfaces to this case shows the same discrepancy as it
does in the case where only lattice scattering is present.

I am indebted to Dr. W. Shockley for a number of
valuable discussions on this subject.
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The theory for the deviation from the Schottky effect is redeveloped for the thermionic case, using the
Herring and Nichols coeKcients p and ), which are typical of the two refIection regions of the metallic
surface barrier. The assumptions of Guth and Mullin are used, but correction of their calculations leads to
new results; a method of data analysis based on these results is described. In this method the Quth-Mullin
assumptions regarding the form of the barrier are taken as a first approximation to the real case. The method
is apped to available experimental data on tungsten, tantalum, and molybdenum. One may draw the fol-
lowing conclusions: The outer ()) reflection region behaves in accordance with the mirror-image law, while
the innermost (p) i's field-independent. The phase change suBered by an electron wave crossing the p,-region
is less than that computed for the theoretical box model. All three metals studied are mutually similar as
regards the potential form in the p-region. Apparently, it is not yet possible to evaluate the zero-field
refIection coefFicient from deviation amplitudes; this is probably due to the parabolic approximation used
for the ) -region in the theory.

I. INTRODUCTION

HE phenomenon of periodic deviations from the
Schottky effect' ' has been accounted for by

*This research was sponsored by the U. S. Navy Bureau of
Ships.

t Now at the U. S. Naval Ordnance Test Station, Inyokern,
California.

Guth and Mullin4 in terms of the interference between
electron waves rejected from the emitter surface and
the region of the barrier maximum. Herring and

' R. L. E. Seifert and T. E. Phipps, Phys. .Rev. 56, 652 (1939).
D. Turnbull and T. E. Phipps, Phys. Rev. 56, 663 (1939).

3 Munick, LaBerge, and Coomes, Phys. Rev. 80, 887 (1950).' E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (1941).
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Nichols' have suggested the utility of this eGect in the
study of emitter 'surfaces and have outlined a device
for analyzing experimental data. This method is based
on an assumption implicit in the theory of Guth and
Mullin that the regions of the surface barrier respon-
sible for electron reQections do not overlap appreciably.
Therefore, one may de6ne two complex reQection coef-
6cients, p and X, applicable to the de Broglie waves
impinging on the surface and on the barrier maximum,
respectively. Presentation of a theory for the Schottky
deviation in terms of p and X is advantageous in that
the physical signi6cance of such measurable quantities
as period, phase, and amplitude becomes apparent, and
a clear interpretation of experimental data can be made.

The present work purposes to formulate deviation
theory in a more useful form and then to separate from
existing data on the highly refractory metals various
properties of their surface barriers. The theory has been
redeveloped on the basis of a double reQection eGect,
using the Herring and Nichols coeS.cients together with
the general assumptions of Guth and Mullin regarding
the form of the potential near the barrier maximum and
the validity of the YVKB approximation between the
two reQection points.

II. THEORY
j

A. Box Model Transmission CoefBcient

In the following development, four major assumptions
are used:

(a) The barrier outside a clean metal surface is of
the mirror-image type (Fig. 1).

(b) The point xt at which the image potential joins
the interior potential is close to the surface, such that
the reQections in this region are independent of applied
6eld. Those reQections at xi which contribute to
Schottky deviations should be practically independent
of electron energy as well.

(c) In the region extending from gt to a short distance
to the left of the barrier maximum xo, the VVKB ap-
proximation is valid for electrons taking part in the
deviation eGect, That is, in this region the probability
for electron reQection is small.

(d) The surface barrier has a parabolic shape in the
vicinity of xo, also, there exists to the left of xo a region
where the parabolic approximation and the WEB
approximation are simultaneously valid.

Assumption (a) may be stated:

V= —(2x)-'—x(2xp') —', for x& xt, (1a)

where V is the potential energy of an electron, relative
to inhnity, at a distance x from the surface. The quan-
tities x and xg are in units of the first Bohr radius
(ap=hs/222e2 ——0.529A), and xp is the position of the
barrier maximum, given by

xo= 3.587X&o4~'.
~ C. Herring and M. H. Nichols, Revs. Modern Phys. 21, 185

(1949), Chap. 4.

V$0

PARABOLI C POTKNTIAL

A -AVERAGE INTERIOR POTENTIAL

B -MIRROR IMAGE POTKNTIAL .

V $.Wg— g x,
Xao

Here E is the applied 6eld in volt-cm ', and V is in
units of the ionization potential of hydrogen (WH
=me'/2l22= 13.58 ev).

For the box model, as shown in Fig. I, the potential
to the left of xi is constant:

V= —g., for x& xi. (1b)

Thus, from (1a) and (1b), the position of xi is found
to a good approximation to be xi= (2W,) '. Potentials
(1a) and (1b) are shown in regions 8 and A, respec-
tively, in Fig. 1.

In region J3, the wave number of an electron whose
energy is W=e+V(xp) is

Kg (W V)i t e+' (gQ—g) (2xgQ ) gi (2s,)

For small e, and in region A,

(2x,)
—i= W,i.

Following Guth and Mullin, ' one can express the wave
functions to the left of xi and between xi and xo as a
plane wave and a 6rst-order %KB wave. That is,

/~=at exp(iK~x)+a2 exp( —iK~x), for x~&xt (3a)

(
lan= btKn i exP~ i '

Kndx
)

+b2Kn &exp~
—i, '

K&dx ~, forxt &&x&gp. (3b)
)

By joining fz to /Jr at xt, one can find a complex
reQection coefIicient po characteristic of x~. Letting
by=0,

12Q (a2/al)Q2 =o
=p(1+p2) l expLi(2r/2+2Ktxt+tan 'p) j, (4)

Fxo. 1. The metallic surface barrier. The electronic potential
energy V, measured relative to infinity, is plotted as a function
of distance x from the surface of the emitter for the case of the
box model. The form shown in region B is due to mirror-image
plus applied field. At x1, this joins the average interior potential
—.W„shown in region A. The dashed line indicates the parabolic

'

approximation near the barrier maximum x0. The energy of the
emitted electron is W =e+ V (xp) .
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where
p=

I
Ki /4Ki I, Ki= KE(xi) = Kg = wa,

Ki'= (d»E/dx) ai = —W, '.

argt» = argt2 ——
I~.~x~— KEdx+ tan 'p.

It will also prove useful to evaluate two complex trans-
mission coefficients for xi, namely, ti (bi/a——i)k2=o and
t2 (a——2/b2)ai=0. The arguments of these coefficients are
found to be given by .

and
X=Xp exp Li (argti+ argt2) ]. (8b)

The exponential terins in (Sb) embody the phase
accumulation of an electron wave proceeding from the
left of x~ to xo and returning, excepting that phase
change occurring in the reQection at xp. This latter is
contained in the argument of A.o. Expanding D and
neglecting terms in

I pl of order higher than two, one
gets

D= Do+Di+D2, (9a)

Do= 1—
I
X I', (9b)

I p I'L(1
I ~ I

')'
2 I li I'(1

Ilail�')

cos20], (9c)

D2=2l pl Ilail (1—I&l') cos~, .(9d)

Xo =b2/bi,

where b& and b2 are so chosen that an electron wave at
x= ~ is purely outgoing. Such a choice has been made
by Guth and Mullin, 4 who deduce bj. and b2 by joining
(3b) to the parabolic cylinder solution for the wave
equation in the immediate vicinity of xo. The correct
asymptotic expansion for the parabolic function, as
taken from their work, has the forln:~'

and
0.= argX —argki+2r.

B. Average Nonperiodic Transmission

Coefficient

While the transmission coefficient given in (9) is
independent of the mechanism for emission, the present
treatment will be limited to the thermionic case. Ac-
cordingly, the average of D over a Maxwellian dis-
tribution of energies will be computed. Designating
this average as (D)A~,

0 "& 'I (2 )*/1'(-' —p )]
XexpL —~P&/4 —i("/4+P. lns —~/8)]

+s '
*expL 32rPe/4—+i (z2/4+Pe lns —32r/8)], (6)

where P= (xo'/2)l, e is the electron energy relative to
the barrier top, and s= (xo—x)/P'. The two terms in
this function represent the outgoing and incoming
waves, respectively, to the left of xo. The ratio of these
terms should be equal to the corresponding ratio of the
two parts of (3b) at some value of x where the potential
is parabolic and the WEB approximation valid. Ap-
proximating s2))4IPkl at this point, the value of Xo

corresponding to this joining condition is

& 0 ——b,/b, ~ (22r)
—lI'(-,' —ipse)

XexpL 2rPe/2—+i(Pe lnP~ —2r/2)].

(D)A.=— D (8)E elk Td6—~
—e/kTd@

The dominant periodic term D2 (9d) is of principal
interest, but for the sake of completeness the calcula-
tions for (Do)A„and (Di)A, are included. Let us introduce
the variable n=

I
pe I, and the quantity B= (22rpkT) ',

where P is given in (6) and T is the absolute tempera-
ture. Then, from (7), (8), and (9), Do may be stated
in the form

where
A coef6cient similar to po may be de6ned in the

neighborhood of sp.

Since
I
F(22—iPe)

I

= (22r)ke s'~'(1+e' s') ~, one can make
the 'approximation that argF (-, —iPe) ~CPk, where
C= (yE+2 ln2) = 1.96 and yE= 0.56 (Euler's constant).
Therefore,

go ——(1+e2 ~') l exp/i (C+inPe)Pe iir/2]. —(7) n=l
( 1)n+i n2na—for e(0.

( 1)n+lg n2na fo—r p) 0
e=l

Now the particle transmission coeScient for the
entire barrier may be written in the form suggested by
Herring and Xichols, ' namely,

D=1—R =1—
I (Z+p)/(1+ p*X) I',

in which

(Sa)
' E. Guth and C. J. Mullin employ that form of the parabolic

function which evolves into an incoming wave at x= ~. While
this gives qualitatively correct results, it introduces an error in
the phase of the periodic deviation. An alternate form of the
function, which they also quote, provides the correct outgoing
wave for large x, and is used here.' E. Guth and C. J. Mullin, Phys. Rev. 59, 867 (1941).

E. Guth and C. J. Mullin, Phys. Rev. 60, 535 (1941).' K. Guth and C. J. Mullin, Phys. Rev. 61, 339 (1942).

The average is

(Do)A„——1 2mB P (—1)"+'—

4p
ezp n22r(1+B/22) n dn—

J

(—1)n+22i —2L1—(B/I) 2]—i
n~1

+ I expl 2222r(1 B/2k) n]—d~—

(10a)
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Similarly, since
I pl may be considered energy-

independent, the nonperiodic part of Dl and its average
are IO

pl'L-1 —P (—1)"+r(m+1)e-"

D (m)= for e)C, 10

and

(—1)n+ (B—1)e a wa, for a&0
n=l

IOO

b

8
9

For positive or negative energies, the amplitude of the
periodic part of Dl is

IO

IDt'(p)I=2lpl'Z ( 1)"+'tee "'aa
n=l

IO4 IO IOO IO

The average of this quantity exceeds the amplitude of
(Dr(p))A,

I(D (P)& I &(ID (P) I)"

&4 I& I
sa P (—1).+'Ll —~s/es]-'. (10c)

C. Average Periodic Transmission CoefBcient

Using (4), (5), (7), and (8), the statement of (9e)
becomes

&0

o = 2) KBdx+ tan —'p+ (C+ lnpe) pe.
1

The phase integral in the first term on the right may
be written

(ap pap

KBds
~

Kpds+ f(e) y

Jg1

where Kp=(sp s)/(2xxps)'*, and KB is given in (2a).
Numerical integration shows that f(e) can be repre-
sented approximately by

p
O'0

Re f(e) =Re (KB Kp)dx 1 SIpeI pe. '

Fro. 2. The energy-dependent phase a&(n) of the unaveraged
periodic transmission coefBcient D2. Here 0-1 approaches zero with
decreasing values of n=

I Ppi and is nearly directly proportional
to a over the range effective in contributing to the deviation
e8ect (n&&a&1). The constant g of this proportionality is also
plotted as a function of 0..

and
o t(a) = (C+lna+3.0a "')a, (12c)

and where a is again used to denote
I
Pe I.

From (7) and (9), the amplitude of Ds is

r(e+-', )

r(e+-,')
2lpl g (—1)" e '"+'", for e&0.

r (-;)r (~+1)

In order to average the combination of this with coso.,
one must compute the integral:

I„=)" e
—a"a cosI opto. r(a)]da, (13)

where a„is 2s-L(e+-,')+8] for e) 0 and 2prL (e+1)—8]
for e(0. Anticipating the high temperature approxi-
mation to be discussed in the following section, one may
neglect the term 8 in a„,leaving

2pr(n+rs), for e)0,

2pr(I+1), for e&0.

. For the case of tunneling (e&0), f(e) has also an
imaginary part which is cancelled by the imaginary
contribution of the logarithmic term in (11); Thus,
(11) becomes

o-=apaoi(a),

where

Kpdx+ tan 'p~ (442/3)x, "'O.o= 2

—2W, &+W,&/4,

Also, consideration of the function or(a), as given in

(12) and graphed in Fig. 2, shows that for a&a, =5
&(10—', 0-l is so small that its cosine may be replaced
by unity and its sine by o.r itself. From (13), it is seen
that for a) 1, the integrand becomes negligible. In the
intermediate region, where O.i&a(1, o-l may be con-
sidered the linear function of n, O.i=go. . The factor g,

(12b) which is also plotted in Fig. 2, has a value between 4.4
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and 5.3 in the region of interest. Therefore, the integral
in (13) may be expressed as

I„=(Jp+Ji) coso'p —(Js+Jp) sino'p.

Using G„=g/a, and defining an average or(o.) by the
relation

(ai(ai)«1, so that (14) may be rewritten

I„(+)=a„'[1—e ~ 'G '(1+G,') '$ cosop

~a '[e ~ 'G (1+G ') 'j sino-p. (15)

Replacing this in D2, the average of the latter may be
written

(o, (rr, ))A,—— oi(a)e '" da @~an
I'(I+-s')

(D,),„=4l&IB 2 (—1).
r (-;)r (n+ 1)

the various terms in (14) may be written:

p+I
e ~ dn=a„'(1 e~—')

Jo

Ji e—QQQ cos(grr)der ir~
—ie-Q~ni

X[1—G„o.,(cr,)/[1+ G„']',

p CX$

e—~Qo (cr)dn= au -'(o (~ ))(1—e ""')
0

po0

J,=~ e Q"Q sin(gn)du

=aa -'e-'""[G.+~i(~i)1[1+G 'j '

where the + and —correspond to the sign of e, the
excess energy of an electron at xo.

Considering the smallness of Jo and J2, it appears
that, in the average, not only large values of rr=

I pel,
but very small values as well, are ineffective in produc-
ing the deviation eGect. At least, this is the case when

a parabolic approximation is used for the potential
near xo, despite the fact that the contribution per
electron is greatest for small 0..

Now G„is never greater than about s, and (or(rri))A„

(Ds)A~=0.96lfiIB cos(np+0. 6).

D. High Temperature Approximation

(17a)

The modulus Ilail of the surface reflection coefKcient
given in (4) has a value of about 0.2 for a typical metal
whose W, value is 10 ev. The quantity B= (2sPkT) '
is about 0.1 for a field of 5)(10' volt-cm —' and a tem-
perature of 1000'K. It appears to be justi6ed, therefore,
to discard all terms in (10) smaller than IfiIB or B'.
The remainders are

and
(Dp)A. = 1+(prB)'/12 (17b)

(17c)

X[I.(+)+I-(—)j, (16)

where B= (2sPkT)-', as before, and where I (+) andI„(—). represent (15) evaluated for e)0 and e&0,
respectively. It has been indicated previously that the
value of g to be used in evaluating G„=g/a„lies between
4.4 and 5.3. If the summation in (16) is performed
numerically for each of these limiting values, the
phases of the resultant expressions are found to dier
by a small amount, about 0.1 radian; the amplitudes
differ by 25 percent. Probably the most suitable value
of g is close to that for lowest energy, namely 5.3. In
this case,

D
X

QQO

le

l
I

/

/
/

/ 'll ~

/
t

/l.
~ EXPERIMENT {Ta) T ISOO'K

ORIGINAl GUTH-MULLIN THEORY 1 ~ QIOev
PRESENT THEORY TQ ISOO K

7e

Equation (17a) gives the value of the periodic term
(D&) after the high temperature approximation has been
applied.

The total average transmission coefficient may be
written, using Eq. (17):

(D(B)) .=(D(o))"+( B)'/12
+O.g6 I@IB cos(0'p+0. 6) (18)

where (D(0))A, ——. 1—lail' is the zero-field (B=O) trans-
'

mission coefEcient and op is given by (12b).
(D(B))A„is more useful when written in terms of the

current, as a part of the Schottky relation

log(I/Ip) =mE&+log(D(B))A„—log(D(0))A„,
FxG. 3. The Schottky deviation Ii2, as a function of

y=35'/. 1/Z&. The experimental points are for clean tantalum
(see reference 3) at 1500'K and may be taken as typical of the
data for the highly refractory metals. The dashed line represents
the original Guth-Mullin theory (see reference 4), and the solid
line is a plot of the theory developed in the text.

where m is the Schottky slope and E the applied 6eld.
The last two terms on the right constitute the deviation
from the Schottky effect and are made up of a mona-
tonic and a periodic function of field, which have been
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TABLE I. Analysis of the experimental Schottky deviation phase for tungsten, tantalum, and molybdenum. The position of the
extremum in radians is y as given by Eq. (21a). Maxima are italicized. The mean separation of successive extrema is (Ay)A„given
theoretically by (ay), =s =3.1. The mean experimental phase (S )A, t Eq. (21b)j is quoted for each set of data, the box model value
being indicated by S„which is computed from Eq. (20b) for the Wo values shown. Asterisks designate mechanically polished sarsples.

Seifert,
Phippsa

Tungsten
(W~ =10.3 ev)

Turnbull,
Phippsb Nottingham& Houded

Seifert,
Phippsa

Tantalum
(We =9.3 ev)

Munick,
LaBerge,
Coomese

Finn,
LaBerge,
Coomes& Haas~

Molybdenum
{W~=10.2 ev)

Brock,
Houde,

Coom esg

y, for m=4
5
6
7
8
9

10
11

(&y)Av
(s*)Av

16.0
18.7
21.9
Z5.3

3.1
2.1

13.0
15.9
19.Z
21.9
Z5.3
28.2
31.3
34.0

3.0
2.1

3.6

15.9
19.2
22.3
Z5.3 '

28.2

3.1
2.3

15.8
19.Z

3.4
2.3

19,0
22.2
Z5.3
28.2

3.1
2.2

18.7
21.9
Z4.9
27.9
31.1

3.1
1.9

3.8

Z5.1
28.4

3.3
2.2

17.0
19.6
22.7
Z5.6
28.7

2.9
2.8

3.7

19.5
22.2
Z5.3
28.1
31.3

3.0
2.3

a Reference 1. b Reference 2. e Reference 10. d Reference 13, e Reference 3, f Reference 11. & Reference 12. Reference 14.

F&——2.0)&1010T—'y (19b)

Fs 9.2)C104~ p~ T 'y——' cos(y+2. 1—8), (19c)

where y=357.1/E&, and ~p,
~

and 8 have, for the box
model, the values

)t i.=0.0679w.l, (20a)

8,=argps —argtr —argts+y
=s /2+ 7.37/W', &—0.0679W,&, (20b)

as given in Sec. IIA. The terms ~y~ and 8 have been
set apart from the others, since they arise in the reQec-

tion and transmission coeflicients given in (4) and (5)
for the position x&. They therefore typify the potential
form at the surface of the emitter. The form of Ii2, in

(19c), does not depend on the box model for the
surface potential, but only on the initial assumptions
made in Sec. IIA.

The small monatonic deviation F1 has never been
conclusively observed. Ii2 can be separated from ex-
perimental Schottky data' ' and can be plotted as a
function of y, as in (19c), for purposes of analysis. A
comparison of (19c) with the original theory of Guth

and Mullin and with experiment is shown in Fig. 3.
It is to be noted that, if the period in y is found

experimentally to be constant and equal to 2m and if
the amplitude varies as y ', the assumptions regarding
the mirror-image barrier and the field- and energy-
independence of p are probably well founded. This being

called F1 and Ii 2, respectively. ' Thus,

Ft+Fs
——log(D(B))A„—log(D (0))A„

= logI logIs mE&. —(19a)—

Using logarithms to the base ten and translating 00

and B into units consistent with field in volt-cm ' and
temperature in deg K,

the case, values for
~ p~ and the phase factor 8 may be

calculated from available data.

III. EXPERIMENT

A. Data on the Highly Refractory Metals

The data to be considered in the following section
have been drawn from the work of Seifert, Turnbull,
and Phipps" on tungsten and tantalum, of Nottingham"
on tungsten, of Munick, LaBerge, Finn, and Coomes' "
on tantalum, and of Srock, Houde, and Coomes" on
molybdenum. Some unpublished results on tungsten"
and molybdenum'4 have also been included. Round
filaments were used for all the work represented, and
at least one set of results for each of the three metals
was obtained from a mechanically polished filament.

Although the deviations found in some of the work
were separated from their Schottky lines in regions not
totally free of patch eGect, it appears that such devia-
tions are patch-sensitive in amplitude but not in
period. ' "This is borne out by the agreement between
deviations taken from different samples of the same
metal. The patch sensitivity of the amplitudes makes
verification of their field- and temperature-. dependence
difficult and limits the type of data from which. ~p~

can be calculated Lsee Eq. (19c)g. Deviations taken
from relatively patch-free data, such as that of Seifert
and Phipps on 1-mil tungsten and of Munick, I,aSerge,
and Coomes on 1-mil tantalum, indicate the correct
dependence for the amplitude. All results are in agree-
ment on the temperature-independence of the phase and
period.

' W. B.Nottingham, Phys. Rev. 57, 935 (1940).
"Finn, LaBerge, and Coomes, Phys. Rev. 81, 889 (1951).
"Brock, Houde, and Coomes, Phys. Rev. 89, 851 (1953).
"A. L. Houde, Ph.D. dissertation, University of Notre Dame,

1952 (unpublished).' Q. A. Haas, University of Notre Dame (unpublished).
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TABLE II. Amplitude analysis for patch-free data on tungsten
and tantalum, and for the best available data on molybdenum.
Here y indicates the extrema analyzed; ~p~ is computed from
Eq. (21c). The largest and smallest values are given. The corre-
sponding theoretical value ~y~, is calculated for the hox model,
using the WKB wave function for x~& x1 and the W given in Table
I.

Tungsten

Seifert,
Phippsa

21.9, Z5.3
0.7—0.8

0.2

Tantalum

Munick, LaBerge,
Coomesb

Z4.9, 27.9, 31.1
0.6—0.8

0.2

Molybdenum
Brock,
Houde,

Coomes'

Z5.6, 28.7
0.5-0.7

0.2

a Reference 1. b Reference 3. ' Reference 12.

8 =y —mz-+2. 1, (21b)

where nz~ is the integral multiple of ~ closest to y,
m being even for maxima, odd for minima. Then 8, can
be compared with the value 8, computed for the box
model from (20b), using W, = 10.3 ev for tungsten, 9.3
ev for tantalum, and 10.2 ev for molybdenum. The
results of these computations performed on the data for
the highly refractory metals are shown in Table I.

Limits for the experimental value of
~ p~ have been

calculated from the data cited in Table II, using

~&~,=1.09X1O 'aZ'y ', (21c)

as derived from (19c). Here, A is the deviation ampli-
tude at the position y of the neth extremum, and T is
the absolute temperature. The extrema used in the
table are those most free of patch difhculties. The box
model values for

~ p~ were computed from (20a), using
the 8' figures quoted in Table I.

IV. SUMMARY AND CONCLUSIONS

The results of the data analysis shown in Tables I
and II may be summarized as follows:

(1) The half-period of the deviations in the parameter
y is equal to m within the limits of experimental error.

(2) The magnitude of the deviation phase is less than
that predicted on the basis of the box model by an
amount of the order of a quarter period.

(3) No conclusive difference exists between the phase
characteristics of tungsten, tantalum, and molybdenum.

(4) The values for
~ p~ computed from experimental

B. Data Analysis

The field position E of each deviation extremum can
be converted to its corresponding value in the parameter
yby

y„=357.1/E ', (21a)

where E is the applied field in volt-cm '. The experi-
mental va~ue of 5 can then be found from

deviation amplitudes are, in general, about three times
larger than those calculated for the box mode).

The period of the deviations indicates that the
mirror-image form is the correct one for the surface
barrier, and that 8, which is a function of the conditions
near the emitter surface, is not a function of applied
field. This condition limits the region characterized by
the reQection coefficient p to a short, field-independent,
distance from the surface.

The discrepancy between the experimental 8 and
the box model 6. shows that the phase changes suffered

by electron waves impinging on the metal surface are
not as extreme as those required by a sharp join of
image and interior potentials. Some of the difference
may lie in the use of the %KB approximation just to
the right of x& (Fig. 1). Since 8, is essentially the same
for all three metals studied, the actual form of the
surface potential should be similar for tungsten, tan-
talum, and molybdenum.

Deviation amplitudes depend strongly on the form
of the potential at the barrier maximum, a difFiculty
which does not appear to be shared by the phase. As a
result, the computation of

~ p~ from the experimental
amplitudes, using a theoretical expression founded on a
parabolic potential at xo, has little merit except in
providing an order of magnitude check on the box
model values and an indication that the parabolic form
is not completely satisfactory. " Further refinements
could be made in the calculation of the energy-dependent
phase of the unaveraged periodic transmission coef-
ficient Lsee Eq. (12)j, and in the averaging of this
coefficient, but it is doubtful whether such improve-
ment in method would yield any essential change in the
amplitude.

Theoretically, it should be of interest to discover
what type of potential at the surface is necessary to
reduce the phase change at this point by a quarter
period. Also, it should be advantageous to adjust present
approximations to the extent that ~p~, which is im-
portant in emission phenomena other than thermionic,
may be computed with some degree of accuracy from
experimental deviation amplitudes. Experimentally, it
is important that the analysis embodied in Tables I
and II be repeated for data taken on single crystals and
contaminated metallic surfaces, in order to ascertain
the sensitivity of the periodic deviation effect as a
device for investigating surface conditions.
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"Work now being carried on by C. J. Mullin and G. S. Col-
laday indicates that this deficiency may be rectified by the use
of a cubic approximation to the mirror-image potential near the
barrier top.


