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Space-Charge Limited Emission in Semiconductors
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Bell Telephorle Laboratories, Murray Hill, iVm Jersey

(Received January 19, 1953)

A situation analogous to thermionic emission into vacuum can occur in semiconductors. A semiconductor
analog for a plane parallel vacuum diode may consist of two layers of e type semiconductor bounding a
plane parallel slab of pure semiconductor. The current density analogous to Chiid's law is J=9KtppV'/SW',
where I~:=dielectric constant, 6p=mks permittivity, p=mobility, U=applied voltage, and lV=thickness of
pure region. The condition prevailing at the space-. charge maximum is analyzed taking into account difFusion
due to random thermal motion. Brief discussions are given of the eRect of fixed space charge, the
dependence of mobility upon electric field strength and the role of space-charge limited emission in a new
class of unipolar transistors.

I. CHILD'8 LAW ANALOG

1
~~NE of the basic equations of vacuum electronics

is Child's law, ' which gives the current density
for space-charge limited emission. Childs law is an
approximate expression, valid for conditions in which
the voltage is large compared to kT/e. In order to deal
with lower voltages or with the situation prevailing at
the potential energy maximum, it is necessary to deal
with the problem by the methods of statistical me-
chanics. '

In this article we shall show that there is a situation
in transistor physics analogous to space-charge limited
emission in vacuum and that for this situation there
is an approximate equation for current density analo-
gous to Child's law. There is also an exact solution that
gives the situation near the potential maximum.

The situation of interest may be described in terms
of an e-i-e structure which consists of a sandwich with
e type material bounding a plane parallel layer of pure
or intrinsic material. For concreteness we shall think
in terms of a single crystal of germanium containing
donor rich ends and a pure center. Under conditions of
thermal equilibrium the densities of electrons n, holes

p, donors E&, the net charge density p and the potential
energy for electrons will be qualitatively as represented
in Fig. 1.

The potential energy rise from each e type region is
seen to be due to a dipole layer: the positive part is
due to unbalanced donors within the e type region and
the negative part is due to electrons in the i region.
Deep within the i 'region, holes are present in equal
numbers with electrons. Where holes and electron
densities are nearly equal, the deviations from equality
vary as exp(&x/L&) where Ln is the Debye length'
and in mks units is

Ln = (KspkT/2eN )'"
' C. D. Child, Phys. Rev. 32, 492 (1911).' I. Langmuir and K. T. Compton, Revs. Modern Phys. 3, 237

(1931).' W. Shockley, Bell System Tech. J. 28, 435 (1949), for a deriva-
tion see p. 441.

where

K= the dielectric constant of germanium, (1.2a)

co= mks permittivity,

kT = thermal energy,

e=
~

e
~

= the electronic charge,

(1.2b)

(1.2c)

(1.2d)

I,= electron density in intrinsic material. (1.2e)

For germanium

KspdE/dx= p, (1 4)

(where E is the electric field and p is the charge density
and is negative), and the equation for current density

J= Ddp/dx ppE, — (1.5)

where J is current density in the minus x direction and
D and p (both positive numbers) are diffusion constant
and mobility. D and p are related by the Einstein
relationship

8D= AT@.

The ratio of diffusion current to drift current is

(Ddp/dx)/ppE= (d lnp/dx)/(eE/kT). (1.7)

Throughout most of the i region lnp varies gradually
so that

d 1np/de=1/W.
4 See reference 3, p. 461.

and at room temperature n, =3)&10" cm ' so that
ID='6&10 ' cm. The situation of Fig. 1 corresponds
to an i region many Debye lengths thick.

When a voltage is applied to the structure, the situa-
tion shown in Fig. 2 results. The hole density has been
neglected in this case, as it may be if it is small com-
pared to the electron density. The hole current Rowing
from the positively biased e region is similar to the
reverse saturation current in a p —I junction and will
be small if the e region is heavily doped and has long
lifetime. '

The conditions prevailing in the i region may be
derived from Poisson's equation
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(b)

The above equations constitute the analog to Child' s
law.

These equations are in error because diffusion and
the dependence of mobility upon electric field have been
neglected. For large applied voltages, the latter effect
is more important. We shall formulate a method of
solution for the latter case under somewhat more gen-
eral conditions.

(c)

Il. CASE OF A P-n-P STRUCTURE

In Fig. 3 we illustrate a case in which the mobile
charges are holes and the 6xed charges are donors. The
change from electrons to holes emphasizes the added
freedom of transistor electronics compared to conven-
tional electronics and simplifies the subsequent equa-
tions in regard to signs. The p regions are regarded as
heavily doped so that the voltage drop through them
is negligible. If the charge density due to donors is pf
and that due to holes is p, then the equation for current

(e)

~
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FIG. 1. The thermal equilibrium state of a e-i-e structure.

On the other hand,

eE/AT =eV/kTW, (1.9)

(b)

J= 9Kppp V'/8W2,

transit time= 4W2/3p V.

(1.13)

(1.14)

where V is the applied voltage, so that if V is large
compared to kT/e (='25 millivolts at room tempera-
ture) the current is carried chiefly by drift.

If the current is carried by drift, then p may be
obtained in terms of J from (1.5), this value of p in-
serted in (1.4) and the resulting equation integrated
to give

2E = Jx/Kppg+const. (1.10)

Space-charge limited emission requires that E=O at
x=0, the left edge of the i region. Hence the "const"
in (1.10) is zero. We shall also set the electrostatic po-
tential f(x)=0 at x=0. The applied voltage is then
V=%'(W). Integration of (1.10) to obtain 4' gives

(8J/9K& +)1/2x3/2

V = (8J/9Kpp/2)1/2W3/2 (1.12)

The current density and transit time across the region
are

FtG. 2. Space-charge limited emission in a e-i-e structure.

in the plus x direction is

where 2/(E) =/J, „E for low fields and p~ is the low field
mobility of holes. For larger values of E, empirical or
theoretical expressions must be used for v(E).' Poisson's
equation then becomes

KppdE/dx= pf+ J/2/(E). (2.2)

If pf is independent of x, this equation may be reduced
to quadratures by writing it as

KppdE/Q/+ J/2/(E)]= dx, (2.3)

so that the coeKcient of dE on the left-hand. side is a
function of E alone.

Before integrating this equation we may note that
for small applied potentials, the structure will behave
similarly to a p —I—p transistor with a floating base.
Conditions of space-charge limited emission will occur

~ E. J. Ryder and W. Shockley, Phys. Rev. 81, 139 (1951);
%. Shockley, Bell System Tech. J. 30, 990 I', 1951).
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first when the space-charge layer at the reversely biased
junction penetrates the m region. This phenomenon is
referred to as punch thro-ugh since the space charge
punches through the middle layer. The voltage at
which it occurs is called the punch thr-ough voltage. For
voltages greater than the punch-through voltage, the
electrons may be neglected and any additional po-
tential will produce a space-charge limited Qow of
holes. The critical voltage is obtained by integrating
(2.2) with J=O and is

this plot, the Child's law analog would pass through the
point (1, 1) with a slope of 1/2. This is the asymptote of
the solution for large values of J and V.

Space-charge limited currents in germanium p-n-p
structures have been investigated experimentally by
Dacey. 6 He finds the behavior in qualitative agreement
with that described here. In order to get quantitative
agreement, however, he finds it necessary to refine the
treatment taking into account the correct dependence
of v upon E,

Vr ——ptW'/2aep, (2.4) III. SOLUTION INCLUDING DIFFUSION

corresponding to a potential distribution

pt'x /2Keo (2 5)

which gives 4'= 0 and E=0 at x= 0.
For the case in which constant mobility p„prevails,

the equation for E may be conveniently integrated in
terms of the transit time s from @=0, to x, where

For the p i p-o-r u-i-u structures it is possible
to obtain an exact solution in the region in which e is
proportional to E. For this case Eqs. (1.4) and (1.5),
modi6ed for p i pstructu-r-e with p and D applying
to holes, may be integrated once to obtain

j'x= ~eoDdE/dx+ ', ~eopE'. — (3.1)

s= "dx/n= dx/p+. (2.6)

If distance, potential, electric held, and charge density
are measured in the following units:

FIG. 3. A p-e-p structure.
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W

This procedure leads to
e

E(s) = (~/uupr) (k 1), — (2.7)

4'(s) = —(J'~ep/p„'pr')(2P 2f+1ng—+3/2), (2.8)

x(s) (J~e&/pypf )4 in' 1) (2 9)

where

then (3.1) becomes

L.= (nD/~)'I',

V„=hT/e,

E„=hT/eL„,

pr= KeeEr/Lrq

rt = 2~eohT/e

where
dy/ds —(1/2)y'+ s = 0,

y
—E/E„

s= x/L, .

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
t —=exp (sp„ps/~ep), (2.10)

V(t) = (J'~ee/u~'pt')( ', rt' 2q+lng+3-/2—), (2.11)

W(t) = (Jae,/p„pt') (rt
—in' —1), (2.12)

This equation has a solution for y, denoted by E„
which has the correct approach to the Child's law
analog for large positive values of s:

rt
=expp—=exp(tp„pr/~eo), (2.13)

E.(s)~(2s)'". (3.10)

where t is the transit time through the e layer of thick-
ness TV and V is the applied voltage.

Equations (2.11) and (2.12) relate J to W and V
with p, or its equivalent rt, as a parameter. From them
J can be plotted as a function of V and 8'.

The relationship between J and V can be conveni-
ently expressed in terms of V~ and a current unit J~.
The current unit,

Jg ——9~cop~ Vt'/8W', (2.14)

is the current that would Row if V~ were applied to a
structure of the same spacing but with the e region
replaced by an i region. In terms of J& the current
density is

Z= (3u,/9)P —P—»-'. (2.15)

Figure 4 shows the relationship between J and V. On

V,=4/V„= —~E,(s)dh. (3.12)
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FIG. 4. Current-voltage relationship for p-n-p structure
neglecting diffusion and effect of electrons.

6 G. C. Dacey, Phys. Rev. 90, 759 (1953).

The corresponding electrostatic potential is taken as



756 W. SHOCKLEY AND R. C. PRIM

3
41
4

2 .

I-
V
Ld

4J
0

z
—

I

z-2
4j

0CL- 3
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The procedures employed in integrating (3.7) to obtain
the solution and the equations for the solution are
given in Appendix II.

The dependence of E, and U, upon s is shown in
Fig. 5 for the exact solution. Also shown is the approxi-
mate solution given by the Child's law analog. For
most purposes the error is seen to be quite small. At
large values of s, the approximate and exact E curves
are asymptotically equal. If Child's law is extrapolated
back from this point to E=O, an error of about 1.3L„
in estimating the location of the maximum will be
made. The error in estimating the potential will be
less than kT/e over most of the range. The reason for
the good agreement between exact and approximate
solutions is that except near the maximum the current
is carried preponderately by drift.

To the left of the maximum, the exact solution closely
approximates a Boltzmann distribution. If the hole
distribution were accurately a Boltzmann distribution,
then the height of the potential maximum above the
Fermi level in the P region would be obtainable from'

p= eN„f„=p&E,/ds, (3 13)

where X, is the eRective density of states in the valence
band, f„ is the Fermi factor for holes and dE,/ds='1. 3
is evaluated at the maximum. Approximating f„by the
Boltzmann factor for the energy difference, denoted
by AU, between valence-band edge and the Fermi
level gives

eAV= kT ln(ecV„/1. 3p,). (3.14)

The fact that the hole density falls o8 slightly faster
with increasing x than would a Boltzmann distribution
causes this expression to overestimate the height of the
maximum by something less than 0.7kT, as is discussed
in Appendix I.

7W. Shockley, Elections and Holes in Sensiconductoes (D. Van
Nostrand Company, Inc. , New York, 1950), for a discussion in
this notation see p. 24j..
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FIG. 5. Field and ooteritial near the space-charge maximum
as functions of distance in reduced units for exact solution and
Child's law analog.

Ddp/dx p—pdP/dx—

The appropriate solution is

(A1.1)

p(x) = (J/D)[exp( —qk/kT)7~ exp(Q/kT)dx, (A1.2)

where C corresponds approximately to the right-hand
edge of middle layer. This solution correctly represents
current drifting to the right beyond the maximum as
may be seen by writing P in the form

P(xi+ bx) ='P(xi) —E(xi)bx, (A1.3)

and inserting this in the integral and letting C~~;
this leads to

p(xl) = (&/D) expL —yP(xi)/kT](kT/eE1)
Xexp&@P(x,)/krj=Z/&E, . (A1.4)

To the left. of the potential maximum, the integral is
practically independent of x so that p(x) is propor-

W. Shockley, Proc. Inst. Radio Kngrs. 40, 1289 and 1365
(1952).

IV. SOME IMPLICATIONS OF THE VIEWPOINT

The analogy between thermionic space-charge limited
emission and space-charge limited emission in semi-
conductors suggests that amplifying structures should
be possible that bear a closer resemblance to vacuum
tubes than do point-contact transistors, filamentary
transistors, or p-e junction transistors. In these types
of transistors both hole currents and electron currents
Aow through the same regions of space and interact
with each other in a significant way. In this sense these
transistors are bipolar devices, whereas a vacuum tube is
Nnipolar since the working current flows through a
space containing no other charged particles. Although
the mode of operation and the basic structure of trans-
istors are fundamentally different from those of vacuum
tubes, it is possible to design Nni polar traesi stors.
There are, of course, two classes of unipolar transistors,
corresponding to positive and negative carriers, com-
pared to one class of vacuum tubes. One type of uni-
polar transistor, referred to as an analog transistor, may
be described as a literal translation of a vacuum tube
triode into semiconductor language, and there are other
types as well. ' These possibilities give further evidence
that the physics of semiconductors can furnish a sound
base for an extensive engineering science of transistor
electronics.

APPENDIX I

Before presenting an exact solution to Eq. (3.7)
in Appendix II, certain physical features of the solution
for diRusion over a potential maximum will be pre-
sented. For this purpose we shall consider the Qow of
holes and shall assume that the electrostatic potential
P(x) is known and has its maximum at x=o. The equa-
tion for current then becomes
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dy/ds —-',y'+ s= 0 (A2.1)

for which y (2s)'" as s—++ ~.
First, we introduce the new dependent variable l

through the substitution

y—=—2(d/ds) ln (A2.2)

This transforms (A2. 1) into a linear equation of higher
order:

(A2.3)d'f/ds' ,'sf =0—-

tional to the erst exponential and thus is given by a
Boltzmann distribution. If the potential P(x) is sym-
metrical about its maximum, then at the maximum
itself the value of p(x) is half of what it would be on the
basis of a Boltzmann distribution. Put in another way,
the potential is less by (kT/q)ln2 than would be de-
duced by estimating it by assuming that p(x) is given

by a Boltzmann distribution. If the potential is un-
symmetrical, however, as it is for Fig. 5, then the
integral has more than half its maximum value at the
potential maximum; this is the justification for the
statement at the end of Sec. III.

appzmorx D

This Appendix presents the integration of the di6er-
ential Eq. (3.7) leading to the solutions plotted in Fig. 5.

The mathematical problem is uniquely set (as is
readily apparent from a rough direction field sketch)
by asking for that solution of

I (g) (1/27rg)'"e',

Kn(g) ( o/r2g) "e '.
Therefore, for A/0

y- —(6g)'"= —(»)"',

so that the requirement that

y-(2s)"'= (6g)"'

(A2.10)

necessitates the choice A=O. For 8/0, the solution
(A2.9) then reduces to

E4/o(g)
y

—(6g) i/o

Ei/o(g) 3g
(A2.11)

where g=—-', (s'/2)'". By use of (A2. 10) it is readily ascer-
tained that this solution is asymptotic to (6g)'" Lwhich
is equal to (2s)'/'j as g~+ ~. It is therefore the de-
sired field function E,(s).

The potential function U.(s) will now be computed.
By definition,

one obtains by substituting (A2.7) into (A2.8),

2I4/3 (g) —BE4/3 (q) 2
y= —(6g)' ' +—. (A2.9)

.AIi/o(g)+BEi/o(g) 3g

Now the asymptotic behavior of the modiied Bessel
functions as g—++ ~ (and hence s—++ ~ ) is

fO Z

U, (s) =—— E,(si)dsi.
0g—=-'("/2) '"

g"f—
(A2.4)

(A2 5) Making use of (A2.8) we replace this by

The simultaneous change of dependent and independent
variables defined by (A2. 12)

reduces (A2.3) to the modified Bessel's equation of
order 1/3,

(dldgi)»Ii (gi) I

V —— —2 dory

"o (d/dgi) L»j
d

»If(gi) I
'dgi

~o dgi

+— —1+—t i=0,
dg g dg 9g

for which a general solution is = 2»
I C(g)/t (o) I.

f =~g"Ii/o(g)+Bg'"&i/o(g)

By use of (A2.4), (A2.2) can be written as

(A2.7)
V, =2 1n

hmgii/'Ki/o(gi)
g1~Q

t i=~Ii/o(g)+B&i/o(g) (A2.6)
Substitution of (A2.17) (with /1 =0) gives

where A and 8 are arbitrary constants. Substituting
(A2.6) into (A2.5) we have

(A2. 12a)

(A2.13)

(d!dg)»li I

g= —2
(d/dg) (s)

(6g)"' df
(A2.8)

(d!dg)Lg"E-(g)1= —
g &-+i(g)+(2~/g)g"E-(g),

Making use of

(d/dg)La"I (g) j=g"I + (g)+(2&/g)g"I (g)

Now, for small g~,

(gi/2) "' (gi/2)"'
Ei/o(gi) = — +O(gio/o), (A2.14)

3'" I'(2/3) I'(4/3)

so that

limgi'/'E, /o(g, )=
o,~o 3i/ol (2/3)
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and (A2.13) leads to

V,=2 ln
31/si" (2/3)

g'"&1/s(g) . (A2.15)

From these it follows that

(2/3)"sI'(2/3)
lim(A2. 11)= =E,(o). (A2.22)

I'(4/3)

obtaining
dy/dN+-', y'+ ss =0. (A2. 16)

The variable change (A2.2) now becomes

y= 2(d/dss)—» I i I
(A2.17)

and in conjunction with the double transformation,

Now for any s&0, g is a positive real number and
(A2. 11) and (A2.15) permit straightforward plotting of
E, and V, as functions of s. However, for @&0 g is
imaginary and (A2.11) and (A2.15) cannot easily be
used for computation. Because of the rather messy
branch point at g=0, the simplest and most straight-
forward procedure is to obtain a solution of (A2.1)
useful for s(0 and continuous with (A2.15) at s= 0. To
this end we change the independent variable in (A2.1) to

Also, for small m

(w/2)"' (w/2)""
J4/s(w) = — y O(w'"'),

r(7/3) r(10/3)

(w/2)'" (w/2) "
J1/s(W) = — +O(W"")

I (4/3) I (7/3)

(A2.23)

(A2.24)

I"1/s(w) =
1 2(w/2)

—'/' (w/2)'/'
+ +O(w"') . (A2.26)

I'(2/3) I'(4/3)gl/2

When these are used in (A2.21), it can be shown that

1 2(w/2)
—"' 2(w/2)'/'

V4/s(w) = — +0(w"'), (A2.25)
3'/s I'(—1/3) I'(2/3)

w—= -', (sss/2)"', (A2.18)

(A2.19)
lim(A2. 21)=-
to-+0

3"'21+B1(2/3)'/si'(2/3)

I'(4/3)

leads to the'ordinary Bessel's equation of order 1/3
(for f as a function of w) and hence to th'e solution

i =A1w"'J1/s(w)+B1w1/'V1/s(w), (A2.20)

To make this limit equal to E,(o) as given by (A2.22),
it is necessary that

—(3'"&1+B1)/2B1= 1,

where A& and 8& are arbitrary constants. Substituting
(A2.20) into (A2. 17) and using

or

a,= —S-~/2A, .

and

we obtain the solutions

2e—[w"J (w)]= —w"J„1(w)+—w"J (w)
dR' R

2e—[w"7 (w)]= —w" 7' 1(w)+—w" Y„(w)
d'l8 'N

From (A2.21) we then obtain

V4/s(w) —3'"J /s(w)
E.= —(6w)"' ——,(A2.27)

V1/s(W) —3'"J1/s(W) 3W

where w—= ss[(—s)'/2]'/'. The associated potential func-
tion is obtained by substituting (A2.20) (with B1
= —3 ' sA1) into (A2. 12a) and making use of (A2.24)
and (A2.26):

A 1J4/s(W)+B1V4/s(W) 2
y= —(6w)'"

-~ 1J1/s(w) +B1V1/s(w)

The constants A~ and B~ must now be so chosen that
I

(A2.21) V,=2 ln(i(w)/f(o) t

3'/'I'(2/3)
= 2 In w'/'[3'/'J1/s(w) —P 1/s(w)] . (A2.28)

24/3

For small g,

lim(A2. 21)= lim(A2. 11).~0

(g/2) '" (g/2)'"
&1/s(g) = +O(g"')3'" I'(2/3) I'(4/3)

(g/2) '" (g/2)'"
Es/s(g) = — — +O(g )3'" I'(—1/3) I'(2/3)

For any s(0, ve is a positive real number so that
(A2.27) and (A2.28) are suitable for computing E, and
V. as functions of s. They thus complement (A2.11)
and (A2.15) which are suitable for use when s)0.
Finally, of course, for the joining point s=0, (A2.12)
and (A2.22) provide

&.(o) = (2/3)"'I'(2/3)/I'(4/3),
V.(o)=0.


