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Stability of a Limiting Case of Plane Couette Flow*
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A Quid is supposed to be viscous and incompressible. The Qow examined is n=gy; v=0 (0 ~&y& ~;
—oo (x& ~).Its stability is investigated by the method of small vibrations. Accepting the legitimacy of the
usual expansions, the problem is reduced to the solution of a transcendental equation containing one param-
eter apart from the unknown. It is rigorously shown that the solutions of this equation are such as to make
all modes of vibration of the Qow damped.

' T is known experimentally that under seemingly
- - similar conditions a fluid flow may, in general, be
laminar or turbulent. The 6rst instance of this phe-
nomenon to be investigated experimentally in detail
was the flow of a liquid through a pipe. It is known that
the laminar Qow through a pipe becomes increasingly
"unstable" as the velocity of the fluid is increased. The
resultant flow is turbulent. At sufFiciently small veloci-
ties disturbances rapidly die out. O. Reynolds inferred
that hydrodynamically similar laminar flows of incom-
pressible fluids are stable or unstable according to as
the "Reynolds' number" R=Nl/v is smaller or greater
than a critical value.

The significance of the experimental results is a
matter of some doubt. It is generally agreed with
Reynolds that the breakdown of laminar flow and the
onset of turbulence at high Reynolds numbers is ini-

tiated by a rapid increase of small disturbances.
The following hypotheses can be made: 1(a) The

steady laminar Qow is unstable as such, i.e., with respect
to disturbances originating in the fiuid. 1(b) The dis-

turbances are carried into the Quid from outside. The
experimentally observed phenomena may well be com-
plicated by the coexistence of both these effects. 2(a) In-
stability (i.e., increase in time) is exhibited by certain
disturbances of however small amplitude. 2(b) Insta-
bility is peculiar to certain small but finite disturbances.

It is natural first to attempt to confirm 1(a) and 2(a).
This is the approach first taken by Rayleigh and
Kelvin. 2(a) corresponds to neglecting certain inertia
terms in the equations of motion of the perturbation to
linearize them. Much work has been done in this
direction. ' There is some doubt in many results because
of the approximations made. Recently' the case of the

plane Poiseuille flow has been definitely settled through

numerical methods in favor of instability of a type
predicted by I in. ' Because of the amount of computing
involved, this numerical approach seems impracticable
to cover a wide range of the parameters.

The plane Couette Qow is generally assumed to lead
to no instability. ' From Hopf's paper it seems not quite
certain, however, that all roots of the transcendental
equation involved were considered, each root corre-
sponding to a mode of vibration. The analysis is com-
plicated and it appears desirable to reinvestigate this
case independently.

The limiting case of the plane Couette Qow, where
the moving boundary is at infinity, will be treated here.
It will be shown that all modes of vibration are damped.

II. FORMULATION OF THE PROBLEM

The two-dimensional flow in the x—
y plane of an

incompressible viscous Quid is given by

A%'&+O'„6+.—4',h%'„= vAM,

tc=%'„, e= —+, (condition of incompressibility).

4'(x, y, t) is the stream function, I and e are velocity
components, and v is the kinematic viscosity. We con-
sider the main flow

u=gy; v=0 (0(y( ~; —~ (x( ~; g&0),

for which one may take 4=-,'gy'. According to Squire, '
two-dimensional disturbances are less stable than three-
dimensional ones in the case of parallel flow. Hence,
the perturbed stream function may be taken to be
isgy'+P(xyt). Neglecting nonlinear terms in P, one
obtains

AP,+gy'AP, = vAay.

We are concerned only with velocity perturbations
originating inside the fluid. Therefore f,=/v=0 at
y=0, and ib,—+0, fv &0 at infinity in—the x—

y plane.
Hence at in6nity f will tend to a constant, which one
may take to be 0. It is therefore reasonable to assume~
that

P(ccyt) = (o(kyt) e'"'dtc,

~o=Bco/By=0 at y=0;

co-+0, B~/By +0, whe—n y—+~ .
* Presented by B. Zondek in partial ful6lment of the require-

ments for the degree of Doctor of Philosophy in the Faculty of
Pure Science, Columbia University, New York, New York.

' C. C. Lin, Quart. Appl. Math. 3, Nos. 2, 3, 4 (1945). (An ex-
tensive list of references will be found here. )' L. H. Thomas, Phys. Rev. 86, 812 (1952).

3 L. Hopf, Ann. Physik 44, 1 (1914).
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By separating variables (y and t) one obtains

io(kyt) = P„c„(k)exp[ —iy„(k)t]y„(y, k),

where p„(k) and y„(yk) are given by the following eigen-
value problem:

I(iy) is reversed and R(iy) is unaffected. We shall
therefore confine ourselves to k&~0.

Redzzctiol to dimezzsiorzless form: Substituting s= ky
and p(s) = io(y) into Eqs. (1), (2), and (3) and bearing

: in mind the definitions of Sec. III, one obtains

Lv{(d'/dy') —k')+ iv —zkgy][(d'/dy') —k']4 (y) =0, (1)

q'(0) = q' (0) = 0 (2)

q(y) —+0; 4o'(y) —+0, when y
—+ ~. (3)

%e shall not concern ourselves with the legitimacy
of this eigenfunction expansion for co. For the plane
Couette Qow with walls a finite distance apart, a proof
has been given by Haupt. '

y and y are complex. k, v, and g are real. It will be
proved that for any k, v, and g all eigenvalues p satisfy
R(iy)) 0, i.e., all perturbations are damped.

[(d'/ds')+a —zbs][(d'/ds') —1]z (s) = O,

p(0)= p (0) =0

u(")=~'(~)=o.
Reductzon to a transcendental eqlation: Write

~(s) = [(dlds)+ 1]~(s).

To satisfy Eqs. (5) and (6) one must have

fy Z

p(s) = pe *+e ' e&8(g)dg,

(4)

(5)

(6)

8(0)=0.
It is convenient here to make a list of some notations

is a constant of integration that is fixed by condition
(5). We now have for 8(s) the following boundary value

z4arztities: v, g, k, y, y y are defined in Sec. II. problem:

s= ky,

b= g/vk'&~0,

a= —1yiy/vk',

e= b 1= (vk'/g-)&& 0,

[(d'/ds')+ a —ibs][(d/ds) —1]a(s)= 0,

e(0) =o,

etz'Z(t )df converges.

(7)

(g)

(9)

= —zE

n= —(a+1)e'= —z y(/ v'kg) —,

0'= cz+ e )

c= (12'"/zzr) exp( —izr/6),

(X'= 2s3'~'X ~

c„=(24™3"m!)'g (9[2N—1.]'—4).
n=o

R and I mean real or imaginary parts, respectively.
*means complex conjugate.

Eotatzorz defirzirzg corztours ofizzlegrati orz in the complex
plane: Let s be a fixed point in the complex plane and
t be the variable of integration.

(s)+ or (s): closed loop around s taken in the positive
or negative sense, respectively.

[s]+ or [s]:s by-passed so that arg(t —s) increases or
decreases, respectively.

s; or; s: path starts or ends at s, respectively.

The eigenvalue problem, Eqs. (1), (2), and (3), with
the sign of k reversed has eigenvalues y, for which sign

Q. Haupt, Sitzber. math. -naturw. Kl. bayer. Akad. Wisp.
Munchen 2, 289 {1912).

The solutions of Eq. (7) can be given as contour
integrals (in close analogy to the treatment of Stokes'
differential equation). This is conveniently done in two
stages: Let

s(s) = L(dlds) —1]~(s),
and put

s(s) = e'"f(p)dp.

The function f(p) and the proper contours of integration
in the complex p plane are determined by Eq. (7). We
obtain

f(p) (—p'+ )+bf'(p) =0.
Hence

f(p) = exp[b —'(-', p' —ap)],

apart from an irrelevant constant factor. Thus,

s(s) =
) exp[b '(-', p' ap)+ips]—ds,

and (apart from an arbitrary multiple of e')

~( ) = " p[b '(lP' P)+ P ](P+ ) 'd—P

Now b is positive (see Sec. III), and thus the integrand
tends to zero strongly when p—+ ~ e'", ~ e'&' or ~ e'"",

I
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where 5z /6 & io & 7n/6; z /6 & cp' &z /2; —z /2 & y"&
—z./6. To satisfy Eq. (9) the appropriate path of
integration is (~e*"; [—i7; ~e'&'). Indeed, take
y= 11'./12, p'= z./3. Then along the contour one can
make 17'./12 &~arg(ip) ~& 5z./6. Hence, on such a contour
R(ip)& —m' (a fixed negative upper bound). With

E(p) defined in an obvious way we have, when s-+~,

8(s)= ) e'&*E(p)dp ~&exp( —m's)) E(p)dp

=const. exp( —m'z) —+0.

functions yield

p2 5z-iq
hi(s)~a's l exp

I
is'

l [1+P ( i)~C s '~/27,
E3 12)

valid for —2~/3 &args &4z-/3.

2 5z iy
h2(s) n's-" exp l

—id-+
12)

X[1+Q (z)m( z—am/27 (18)

Moreover m' can be chosen as large as we please, thus
assuring condition (9). [The contour (~e"'&; [ i]—+,
~e'&") will lead to a divergent integral (9). This will

be obvious from the relationship that these functions
bear to the Hankel functions (see Sec. 5).]

The equation for the characteristic roots is then given

by condition (8), namely,

0=8(0)= exp[b '( 'P' ap)7(—p+—i) 'dP.
~;[—i]; ~~ix/8

Two convenient forms of this equation are obtained
by the substitutions:

p=b :s, p=-b :t i (b-:--&—0).
They are

hi(z) = c
~

~ exp(3 s +zs) ds,
1

(19)

h2(z) =c*
—im /3

t

exp(-;s'+ ss)ds. (20)

Several symmetry relations are satisfied by these
functions. We take note only of

Lhi(s*)7*=h2(z),

Lhi'(z*) 7'= h2'(s). (22)

valid for —4m./3 &args& 2z/3. We also have the contour
integrals

gi(o., P)—= I exp(-', s'+os)(s —P)
—'ds=0.

- ~si

( )

f, (o/, P)—= I exp( —', t' +Pt' +ut)t 'dt=0. (12)
[p], b% /3

For P=O these are identical. We define for later use

g (o) c2wi/3[g (oOc2wi/8)78

We also need the function gg(o) defined by

(23)

8'e now investigate the function g, (o) [see Eqs. (13)
and (11)7.From the contour integral (11) or otherwise
it can be proved that

gi(o, o) =gi(o). (13)
g2(o) = exp (-',s'+ o s)s 'ds. (24)

~ [p],

hi(z) = (ss'*)'&~"'(zs') (14)

h2(z) = (sz')'III"'(Sz') (15)

The functions f, and gi are related to the Bessel func
tions of order one third It-is con. venient to make use of
the so-called!"modified Hanhel functions of order one

third, " hi(z) and h2(s). ' ' They are connected with the
Hankel functions by

gi(oo ' '")= gi(o)+—g2(o) 2zi-
From Eqs. (11), (13), and (19) we see that

(25)

It can be proved directly from the contour integrals [in
close analogy to a similar formula involving h& and h2

(see Sec. V)7 that

They are univalued and are an independent set of
solutions of "Stokes' equation"

and

gi(o) =gi(0)+c ' hi(s)ds
0

u" (s)+su(z) = 0. (16)

The well-known asymptotic series for the Hankel

~ Annals of the Computation Laboratory of Harvard University,
Vol. 2, "Tables of Modified Hankel I'unctions of Order One-
Third and of their Derivatives. "

G. N. Watson, A Treatise on the Theory of Besse/FNnctions
(Cambridge University Press, Cambridge, 1944).

gi(0) = exp(-,'s')s 'ds
J ~, [p], +1bX /3

e't 'dt= —2vri/3.
~ (0)
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We have, therefore,
Inserting Eqs. (31) and (32) into Eq. (29) and inte-
grating term by term, we have

cgi(o-) = s—~ic+
Jo

hi(s)ds,

(26)
2~i—c= —x312'/ e "'=—0.87358+0.50436i.

This formula is useful to compute gi(o.) numerically
from the table of hl and h2. 7 A similar formula involving
h~(s) gives g2(cr), but we do not need it.

Let us now investigate the function

n' 'cgi(o) i—rr & exp(-,'io& —Ss.i/12)
X[1 iA—io / A—2o 6/'+iA3rr 9/'

+io &—exp( ;—i/—r& 1—1si/12)
X[1+jAio & A2—o/' . iA—3rr "/' ) 2—sicn —'

valid for —4m./3 (argo (0.
A i——Ci+ 43 =41/48,

A 2 =C2+ (9/4) Ci+ 27/16 =9241/4608,

(33)

C
i7r/3

It follows from the asymptotic form of hi(s) [see Eq.
(17)] that this integral converges. As a function of o it
tends to zero when o-+~ e' /'. Its derivative is c 'hi(o).
The function ',gi(o) has the derivative c 'hi(o) too.
Moreover, gi(o)~0, when o—+~ e' /'. This follows from
Eq. (11).(See similar arguments in Sec. IV.) For in Eq.
(11) —,s. ~& args ~( s-, and when argo = —',s, we have
23s. ~&argos&~4s. /3. Hence, R(os)( —

m~
~
oalong the

entire path of integration. Therefore,

A 8 =CB+ (15/4) C2+ (135/16)Ci+ 405/64
=5075225/663552.

VIII

The results of Secs. VI and VII are now used to
obtain complete information about the seros of gi(o).

Proof that gi(o) has no seros in the sector
&~argo&&+. To this end we determine the change in
arg[gi(o)] going around a closed contour composed of
the rays argo =x and argo-= —

~m and a large circular
arc connecting them. Let

cga(~) = hi(s) ds.
J „,i~j3

Similarly one obtains

c*gg(o.) = h2(s) ds.

(27)

(28)

h, (s) = Rh, (x, y)+iIh2(x, y); s= x+iy;
hi'(s) =Rhi'(x, y)+ iIhi'(x, y).

Along the real axis (y=0), Ih&(x, 0) satisfies Stokes'
equation

Bearing in mind that argc= ——,s. (see Sec. III) it is
easily proved from Eqs. (25), (27), and (28) that

cgi(o) e—2+i/8 ew//8 hi(se2~i/3)ds
J „,—~ile

(d'/dx') Ihi(x, 0)+xIhi(x, 0) =0.

Now from Eq. (19) or from the table' one finds that

Ihi(0 0)(0 (d/dx)Ihi(x 0) j -O=Ihi (0 0) )0.
Hence, from Stokes' equation:

Ihi(x, 0)(0, when x&~0.

Thus from Eq. (26), when o=x~&0,

0'

+ ~ h2(se'~'/3) ds 2~i c (2—9).
VII

The asymptotic series of gi(o.): From Eq. (27) one
obtains, by integrating the leading term of Eq. (17)

n' 'cgi(o)~—o&e.
x(p-,'i.—&o11~i/12) — (30)

valid for: —s3vr(argo(4s/3. We shall not need the
higher terms. An asymptotic formula valid in a sector
that includes the ray argo. = ——,'m is obtained from Eq.
(29). In the first place we have from Eqs. (17) and (18)

e "'hi(se' '")~n's ' exp( —-', ist —11mi/12)

X[1+Z i"C s '""] (31)

valid for —4~/3 (args( —',m. .

I[cgi(x)]=0.504+ Ihi(x, 0)dx) 0.

We see from this that arg[gi(o)) changes by less
than x when we go from 0.=0 to 0-= —~. Now, from
Eq. (26),

arg[cgi(0) )= (Sar/6)+ 2~n,

and from Eq. (30),

arg[cgi( —~ ))= —(Ss /3)+ 2s.n',

so that

g[ g ( ))i.=o = —l .
e ' '/'h2(se' '/)~n's & exp(ssis& —57ri/12)

X[1g P ( i)mC s—sm/a)

valid for: —2m (argo&0.

Going along a large circular arc in the negative sense,
(32) we have from Eq. (30)

arg[cgi(o)) I:== -" '-""
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Going back from ~e 'I' to the origin in the o-plane, terms of o. this gives the pair of zeros
we have from the symmetry relation (23)

exp+ = o-p+ = —1.05 —4.14i,

argLcg)(e) j I ~ = ex) ( —w(/&) 2')r

Thus the total change of arggq(o) vanishes, and the
proof is established. All the zeros of g)(o.) are therefore
in the sector —x (argo.(—-', x.

or
(3m)*t = cost —sint, (35)

To obtain ae asymptotic expressiort suitable for uu-
r)terical work, substitute t= —so. '* in (33) (—7r&argt&7r,
when —4~/3(argo. (0). This leads to

i(3/4—~)'g, (a)t-*'- (3~)-*'—t-:

+costl 1+A)(3t/2) —' —A2(3t/2) —'—As(3t/2)
—' j

+sintL —1+A)(3t/2) '+A, (3t/2)
—'

—A, (3t/2)-' ]. (34)

This is a real expression in t and thus has pairs of
complex conjugate zeros in terms of t. In terms of o-

there are pairs of zeros symmetrically placed with
respect to the ray argo-= ——,'x. This also follows from
Eq. (23).

Taking the leading terms of Eq. (34) we have the
equation

ap =o.
p = —3.06—2.98i,

with errors in the last figures retained.
This is the smallest pair of zeros obtainable from the

asymptotic series (33). The larger ones should be given
even more accurately by Eqs. (37). Whether these
actually are all the zeros of g)(o) (there might still be
undetected small zeros) will be cleared up later. First
we mention ae ildepertder(t check ort the preceding cat
celatioe. This is furnished by the power series expansion
of cg)(o) around a point chosen suitably close to one of
the zeros. The coeffi.cients can be computed with the
aid of the table in reference 7. If o=x+. iy, formulas (21)
and (26) yield

p S

cgl(a) (3) + Rk2(p, —y)dp —" Ih, (0, rt)d))
dp J,

fS r"
+i(3)l3—'*—i Ih2((, —y)d$ —i~I Rh, (0 &)d&

p p

where k2(o.)=Rk2(x, y)+iIk2(x, y). The integrals can
be evaluated for instance by the Euler-Maclaurin
formula (reference 7 also tabulates the derivatives of
k) and k2). The derivatives

(~3m) lt'*= —sin(t —
~~); —m(argt &.~ (36) cg (n)(e) k (n—1)(a) Lk (n—1)(ao)jO

Squaring Eq. (35) and setting t= x+iy, one obtains the
pair of real equations

3m.y+ cos(2x) sinh(2y) =0,
3m.x—1+sin(2x) cosh(2y) =0.

From this form of the equation it easily follows that
for all large solutions, y=O(logx). Hence, for the large
solutions t*' xl, and Eq. (36) becomes

(2m)~x'= —sin(x —~n) coshy, x' )0,
0= cos(x——,'~) sinhy.

The solutions are:

xg ——(7m/4)+ 2m k,

y), = Narc coshL(2n) lx),&$, (k=0, 1, ), (37)

x(+iy(„e.=e ~''(3t/2)&; m(argt—(m

By investigating (d/dy) (y/x) it is easily seen that y/x
is a monotonically decreasing function for x~&xp=5,
and hence so is largtl and largo+37rl. So that if to

yields a damped perturbation (R(o) &0), ,so,do all t),

are found in the table up to e= 2. The higher derivatives
are given by recursion formulas that follow from Eq.
(16).

In this way one obtains, fo& o.= —1.0—4.1i,

cga=0368 015+0.225 850i,
cg~'=6.382 182+1.164 182i,

2cg)"=4.614 268+4.854 430i,
6cg)"'=0 268 173.+4.555 188i,

(1/24) cg('"———1.539 999+1.932 570i.

One obtains a corrected value for o.p+ which is

—1.0626—4.1288i.

To complete the treatment of the limiting case &=0,
it remains to show that formulas (37) actually furnish
all the zeros of g)(o.). We know that in terms of t, all
zeros are in the sector ——,'m &argt &—2' (see Secs.
VIII and. IX). Now let (3/27r)'g&(tr) =p(t). Then Eq.
(34) gives

p(t)~i(6m)*'+t '*[e "e'(* '4' e"e "*—
We now want to gain an idea about the accuracy of

Eqs. (3T). For k = 0 they yield to =5.50&2.31i.
Calculating a first correction to this value from Eq.
(34) using the terms up to t ' gives to 5 40&2 36i In—— . . .

where t=x+iy; and this is valid for: —vr&argt&m.
Now let a= x(,+m = 2m (k+ 1)+34~

l see formulas
(37)j,. k be a large positive integer, and b any large
positive number. Ke now count the number of zeros
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On the straight line joining a+ib to ib:

and
p(t)~ t ,'ebe—~(x n/4i-

ib
arg[P(t) j ~

+;s —4——ir+-', arg(a+ib)+2ir(k+1)+4srr

=—,'arg(a+ib) +—',s.+2s-(k+ 1).

On the straight line joining ib to 0,

0

arg[p(t) j ~
@———-', ir.

This is so because argt=-,'x corresponds to argo-= ——,'m

and this ray was investigated in Sec. VIII.
We thus find that the total increment in argp(t) in

going around the complete perimeter is 2s.(2k+2).
Hence there are 2k+2 zeros of p(t) inside it. This
number of zeros is also given by Eq. (37), and thus none
have been missed.

On the basis of this we can state: Ie the lirisitieg case
«= 0, all the characteristic roots are furnished by Eqs. (37)
and lead to stable perturbations, i e , R(o.) .=R(n)(0.

The general case «) 0:Equation (12) defines functions
a(P). Denoting partial derivatives by subscripts, we
have

da/dP = fe/ f.. —

Further we notice that fe= f and

f = exp(—,'t'+Pts+ «rt)dt
. ~p'i/3
1

of p(t) inside a rectangle with vertices a i—b; a+ib; ib;
ib—. We have to find the change in argp(t) as we go

around the perimeter. The symmetry of gi(o) [see
Eq. (23)j permits us to confine ourselves to that part
of the perimeter that lies in the upper half t plane.

On the straight line going from a to a+ib,

p(t)-i(6w)i+ it-f[e-~+es$,

a+ib
arg[p(t) j~. = ——,

' arg(a+ib)

TABLE I. Comparison of the asymptotic formula (40) for w(o) with
the direct calculation of w(o) from the table of reference 7.

—2$—4i
4i—6i

3—3$

~ (computed from
tables in reference 7)

1.064+0.688i
1.417+1.348i—1.417+1.473i
1.733+1.689i
0.742+1.860i

1+i
1.414+1.414i—1.414+1.414i
1.732+1 732i
0.768+ 1.903i

d'o do (do
+i—o

~

—.
~

—1=0.
d«kd« (39)

As e is varied, each of the characteristic roots a will
trace out a curve in the complex O.-plane according t0
Eq. (38). The starting values of u at «=0 lie in the
left half a-plane (R(a)&0). Moreover, the possible
singularities of Eq. (38) are given by the roots of
ht(cr+«') =0. The zeros of hi(o.) are however known' '
to lie all on the ray argo= —sm for which R(rs)
=R(o —«') &0. To establish now that R(n) &0 for all
c~&0, it is sufBcient to show that

(da$
R~ —

~

=R[i(h, '(o)/h, (o)) —«j &0,
(d«)

when R(o) ~&0. For in that case a(«) cannot cross the
imaginary axis in the a-plane to get into the region
R(n) &~ 0. «being pbsitive, it is sufficient to verify that
I[h, '(o)/hi(o) j)0, when R(o) &0.

Asymptotically we have from Eq. (17)

w(o) —=hi'(o)/hi(o) —iof,

(Similar considerations lead to expressions for the rates
of change of the characteristic roots in the case of plane
Couette Row with walls a finite distance apart. )

It is perhaps of interest to note that one can obtain
a second-order algebraic diBerential equation for 0. or
more conveniently for o. From Eq. (38) we have

(do/d« —«)h, (o) =ihi'(o)

Differentiating with respect to «and using hi"(o)
= —ohi(o) [see Eq. (16)$, one obtains

m'i/3
exp(-,'r'+ o r) dr exp( —o P——,'P')

valid for —ss ir (argo &4w/3, so that for large o: I(w) )0,
when R(o) &~0. For small o., one can verify from the
tables~ that

where t = r p Moreover—, .

=c 'hi(o.) exp( —op ——,'p'),
and

Rhi. Ihi' —Rhi' Ihi )0 [for I(o) & 0j,

Rhi' Ihi —Rhs Ihi')0 [for I(o)&0).

fe= f-= c '[hi'(o) —Phi(o) j exp( —oP—sP').

Hence,

d~/dP = —[hi'(o)/hi(o)3+P

da/d« =i[hi'(a+ «')/hi(a+ «') 3

Actually the asymptotic formula (40) is sufficiently
accurate throughout most of the relevant portion of
the tables. This can be seen from the values of Table I.

Thus we have established that for alt «&~0 one has
R(n) &0, i.e., the fluid fiow examined is staMe towards

(38) infinitesimal perturbations originating ~nside the fiuid.


