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The Construction of Potentials in Quantum Field Theory*
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An inductive method, based on the formal solution of the Schrodinger equation in the form given by
Lippmann and Schwinger, is used to construct scattering potentials in quantum 6eld theories of various
types. The method is applied to a linear theory without nucleon pair production, to a general nonlinear
theory without pair production, and finally to a general nonlinear theory with pair production. The eth
order potential is obtained by the solution of a Schrodinger type equation involving the potential of lower
order; the series of potentials so obtained is, however, not a power series in the coupling constant. Rough
estimates indicate that some of the problems of convergence associated with the usual perturbation expansion
are obviated by this method. Simple illustrative examples are given for the linear and nonlinear theories.

I. INTRODUCTION

HE most straightforward attempts to calculate
scattering cross sections in 6eld theory have

involved power-series expansions of the scattering
matrix in the coupling constant. . In the case of meson
theories, at least, there seems to be little hope that the
power series method will lead to useful results. Other
methods such as the radiation damping theory of
Heitler' also do not appear promising.

On the other hand, the usefulness and validity of the
approaches of Bethe and Salpeter' and of Tamm' and
Danco64 remain to be determined. These methods have
been applied primarily to problems of the scattering of
two particles without thy creation of new particles.
The interaction between the two particles is obtained
as a power series in the coupling constant which is used
to solve a Schrodinger equation. This in turn gives the
scattering matrix.

In the present work, a new approach is used to
obtain the interaction potential between two particles.
The method makes use of the integral-equation expres-
sion for the Schrodinger equation given by Lippmann
and Schwinger' and of the algebraic techniques for
handling this developed by Chew and Goldberger' and
by Watson. ' The method is related to that of Tamm
and Danco6 in that it leads to an interaction potential
which is diagonal in particle occupation numbers but
nondiagonal in the momentum states of the interacting
particles. Just as in the Tamm-Dancoff and Bethe-
Salpeter methods, the potential is obtained as a sum of
an in6nite number of terms. However, in contrast to
these theories, the series is not a power-series in the
coupling constant. ' In particular, the eth 'term in the
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ent) method of constructing successive interactions by means of
integral equations.

series for the potential is obtained in terms of the
solution of the "Schrodinger equation" which results
from using for the "interaction potential" the 6rst
(n 1) te—rms in the series. Because the successive
potentials are diagonal in particle occupation numbers,
these successive "Schrodinger type" equations do not
involve the complications of field theory and can in
principle be considered soluble. (We note that there are
several powerful variational methods available for the
handling of such problems. )

The present study was initiated as a result of the
work of Chew' on the scattering of mesons by nucleons.
Chew has applied the Tamm-Dancoff method to obtain
the g' potential. His calculation of the scattering with
pseudo vector coupling in the pseudo scalar meson
theory was in not unsatisfactory agreement with
present experimental results. "

To simplify the presentation of the material we shall
6rst derive the potential for a coupling linear in the
meson field variables and without nucleon pair pro-
duction. The results will then be extended to general
nonlinear interactions (still without nucleon-pair
production). Finally the production of nucleon pairs
will be taken into account. . We further remark that
although we have meson theory most specifically in
mind, the results are generally applicable to other 6eld
theories such as electrodynamics.

We shall not in this paper consider the renormaliza-
tion problem; preliminary considerations indicate,
however, that the usual renormalization procedures
may be applicable. The detailed investigation of this
problem will be the content of a later paper.

II. PRELIMINARY CONSIDERATIONS

We begin the discussion by presenting some formal
relations which will be repeatedly used. We suppose
the Schrodinger equation to have the form

(IIo+H') P= EP,

where E is the energy of the system, Ho is the energy
of two uncoupled 6elds under consideration, and H' is

' G. F. Chew, Phys. Rev. 89, 591 (1953}.
"Anderson, Fermi, Nagle, and Yodh, Phys. Rev. 86, 793 (1952).
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the coupling between the 6elds. For instance Hp oper-
ating on a state containing mesons in momentum states
ki, ks, k„with the wave function X(ki, , k ), gives

HpX= L&i+&s+ ' ' '+ pp jX, (2)

where oii ——(kis+ p') &, etc. (fi is the meson rest mass and
we use units in which ill= c= 1).

We suppose P in Eq. (1) to describe a scattering
event which originates in an eigenstate of Hp say I,.
In terms of the Mgller" wave matrix 0, we write

lf =f)X.,
where 0 satisfies the I ippmann-Schwinger' equation,

where oi is the solution to Eq. ,(7). In general q and a
will be functions of 6eld variables and consequently
non-diagonal in particle occupation numbers. Our
primary task will be to express all such quantities P in
terms of an operator g which is diagonal in occupation
numbers and an operator u which has the form

a= E+iri Hp. —

Equation (7) is then reduced to a scattering-type
problem and for present purposes will be considered
soluble. If the matrix elements of Qi and Qs are known,
then P will be considered as evaluated.

Our next general relation is

0= 1+ H'0,
8+i rl Hp— (4) (c)

which is supposed to operate on the state x,. (In this
expression p is a small positive parameter used to specify
the contour of integration which is set equal to zero
after the integration is done. ) Chew and Goldberger'
have introduced the solution

0=1-+- H'
E+ir) Hp H'— —

to Eq. (4), which may be readily verified by using the
operator relation

A '—B '=A '(B—A)B '=B '(B—A)A —' (6)

where
1.= q(1/a) q.

Relation (C) can be proved by expanding (a—1.) ' in
a power series in 1. and (a—

q)
' in a series in q, then

comparing both sides of Eq. (C) term by term
with I. expressed in terms of q by Eq. (9). The proof
can also be carried out more elegantly by adding the
identity operator to both sides of Eq. (C) and showing
that both sides satisfy the same integral Eq. (7)."

Our final formal relation is obtained by setting
q=qi+qs (where qi and qp are both matrix operators)
in the left side of Eq. (C). Then

1 1
(qi+qp) = (qp+M)

Q —g] —gg a—
qg

—M

1 1
+ qi 1+ qs, (D)

a-q2 —M a-q2
(7)pp = 1+(1/a) q~

1S

(A)
wherepi= 1+ q,

a—q (10)

We shall need a straightforward generalization of
Eqs. (4) and (5). Let a and q be matrix operators and
suppose that a has an inverse. Then the unique solution
to

where "1"is the identity operator and it is supposed
that relation (A) has a well-defined meaning. We shall
frequently use the converse to relation (A); namely,
that oi as defined in relation (A) satisfies the integral
Eq. (7).

W'e shall encounter and require a prescription for
evaluating quantities such as

&=Qi — Qp,
8—

g

where Qi and Qs are two other matrix operators.
Using Eq. (6), I' can be written as

1 1
&=Qi -+ q

—
Qp

'. 8 8—
g G.

= Qi~(1/a) Qp (B)
"C. M)11er, Kgl. Danske. Videnskab. Selskab, Mat. -fys. Medd.

23, No. 1 (1945).

8—
g2

Relation (D) is obtained from relation (C) as follows:

(qi+qp) = qi+ qp(a- qs) —qi (a- qp)
—qi

qp+ qi 1+ qi, (11)a- q, (a—qs) —qi a—qs

using Eq. (6). By relation (C), we have

qi —— (qi+M),
(a—qs) —qi a q, 3E——(12)

on identifying (a—qs) and (qi) with a and q of relation
n Relations (C) and (D) are special forms of a solution to the

Schrodinger equation given in Appendix (8) of reference (7),
where methods of deriving such equations are considered in more
detail.
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(C). Simplifying with the use of Eq. (6), relation (D)
follows.

In what follows, we shall show how to construct a
potential in quantum field theories by sequential
application of relation (D).

Q=1+ H'
8—H

= 1+ H'+ hp.
a-ao a-ho

(13)

The last step follows from relation (C) and the definition

6 =H'(I/ )Ha'. (14)

We shall now deve1op some general theorems rehting
to expressions of the type of Eq. (13) which will allow
us to express thee part of 0 which refers to scattering
without particle creation or annihilation in terms of
operators which themselves are diagonal in occupation
numbers.

We note the following self-evident lemma.

Lemma I
A homogeneous polynomial G(P) of degree r in the

field variable @ (by P we mean the set "P,") has only
matrix elements for the production or absorption of a
net number of mesons which is even or odd depending
upon whether r is even or odd.

It follows from Lemma I that the term

II'
u —60

in Eq. (13) does not contribute to a scattering event in
which no particles are produced or absorbed, since this
quantity is odd in H' and thus in p. Thus for calculating
such a scattering, we need only (the diagonal part of)

Qs(0) =1+ &p
a—60

(15)

III. LINEAR COUPLING WITHOUT NUCLEON
PAIR PRODUCTION

The interaction H' in Eq. (1) is assumed to be a
homogeneous linear polynomial in the meson field
variables p. (o = 1, 2, ~ X) and it is supposed that H'
is diagonal in nucleon occupation numbers so no nucleon
pairs can be created. The index "o" on P may refer
to isotopic spin components, vector components, field
variables evaluated at the position of diRerent nucleons,
etc.

Defining
a=E+iq —Hp, —

Eq'. (4) has the solution (5):
6„=U„g

8—U~ ]

U„=NDPA„,

V„=DPI'„,

'U ='U i+V = Q V..

We wish to show that in the limit as n approaches
infinity that 'U„ is the desired interaction potential to
be used in the Schrodinger equation which describes
the scattering event (if the series de6ning "U„converges).

Since the '0„'s are diagonal in meson occupation
numbers, we may suppose the matrix elements of 'U to
have been evaluated as numbers and to be no lounger
functions of the field variables. Then U„ is a homo-
geneous polynominal of degree 2"+' in the field variables.
This follows by induction since U contains twice as
many Q's as does U„ i and since Up is of second degree
in

Lemma Il
For some value of m let us suppose that U„~ can only

produce (or absorb) a net number of meson pairs equal
to 2" '; i.e., we suppose the difference between the
number e„of creation operators and the number n, of
annihilation operators is

Pn, —u. f
=2~-'.

Then U can only produce or absorb a net number of 2"
meson pairs (that is, it has no other matrix elements).

The proof follows immediately from the form of 0 „
in Eq. (17). Since by definition U„cannot be diagonal
in occupation numbers, it follows that each of its
factors of U„~ must either produce or absorb 2"—'
meson pairs. Then U„produces or absorbs twice this
number of pairs (or 2" pairs).

"The present method has been employed in reference 7 to
derive the potential in the "optical model" for meson-nucleus
scattering when meson absorption can occur.

Comparing with relation (A) and Eq. (7), we see
that Qz(0) satisfies a Schrodinger equation with 6p as
a potential.

We now split 60 into two parts:

Dp= Vp+ Up Vp= DPDp Up= NDPAp (16)

where the symbol DPAO means the diagonal part of
60 with respect to meson occupation numbers and
"NDPAO" means the nondiagonal part of 60 with
respect to meson occupation numbers. (This notation
will be used frequently in what follows. )

If we were to approximate Eq. (15) by setting Up ——0,
then Vo would be the potential in the Schrodinger
equation which then has the form used by Chew' to
discuss meson-nucleon scattering. "

To proceed, we define by induction from Eq. (16):
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Theorem I: U' (for all n) can actually only produce
or absorb a net number of meson pairs equal to 2".

The proof goes by induction from Lemma II since U0
can obviously only produce or absorb one meson pair
(i.e., 2'=1).

A useful theorem for the evaluation of the U„'s is
the following:

Theorem II: In V„all the field variables must either
produce or absorb mesons. There are no virtual emis-
sions and reabsorptions in U . (Remembering that we
have considered the 'U„'s to be evaluated, so that they
are no longer functions of the field variables. )

The proof follows from counting the number of @'s
occurring in V„. As remarked above, U„ is a degree
2"+' in P. Since U„must create or absorb 2" pairs of
mesons (i.e., 2"+' mesons), there are no g's left over to
perform virtual creations and reabsorptions.

The importance of this theorem is that for the
evaluation of V„all the 2" emission operators must
stand on the right of the 2" absorption operators
(except for the smallest value of e, where the order can
be inverted).

1
QB(e+1)= 1+ ['U„+i+U„+i], (21)

a—'U„+g—U„+g

which has the form of Eq. (19) with m increased by
unity. Since 60= Vo+Uo, Eq. (15) has the form of
Eq. (19) with v=0. Proceeding step by step to suffi-
ciently large values of e, if the matrix elements of U„
decrease to zero with sufficient rapidity that the series
defining 'U„converges, we obtain in the limit

num

~=+V. (22)
e=0

and

The last term may be discarded by Lemma III, since
it is of odd order in U„and can give no contribution to
the scattering cross section (we are assuming scattering
without creation or absorption of mesons). Writing
[by Eq. (17)] 6~+i=V„+i+U~+i, the scattering is
also given by

DP[Qs(ii+1)]= Qs,
where

Lemma III Qs= 1+ 'U.
a—U

(23)

All functions of a given U which do not otherwise
contain the field variables and which are odd in U„
contain no matrix elements which are diagonal in the
meson occupation numbers.

The proof is trivial: Each V absorbs or emits only
2" pairs of mesons and can be considered as a single
emission or absorption operator for this number of
meson pairs. By the argument of Lemma I an odd
number of such emission or absorption operators must
lead to a net emission or absorption of mesons.

We are finally led to the following theorem.
Theorem III: The potential to be used in the

Schrodinger equation which describes the original
scattering event is

Now Qq contains all matrix elements of 0 which are
diagonal in occupation numbers and so contains all the
information required to completely describe the desired
scattering cross section.

By relation (A) Qs satisfies the Lippmann-Schwinger
equation,

Qs= 1+ UQs.
E+ig Ho— (24)

For the evaluation of the V„'s as well as the U„'s
we use relation (B),

'U= lim 'U„= P V.,
e=0

(18)
6„+g——U„ U„

a—U

assuming proper convergence.
The proof proceeds by induction. Assume that the

scattering is described by

= U (u„(1/a) U„,

(o„=1+(1/a)'U„(o„.

(25)

(26)

where
QB= DP[Qs(e)],

Qs(e) = 1+ ['U +U ].
a—'U —U

(19)

Qs(~) = 1+ [&.+&.+i]
a —'U„—6„+g

U„1+ 'U „. (20)
a—U n

—An+y a—Un

We use relation (D), identifying q2 with 'U„and qi with
V„.Then

This describes the scattering of the virtual and real
mesons in an "intermediate state. " Because in the
definition of V„Eq. (17) the first U„contains only
creation operators (except for the smallest ii value, as
remarked previously, where the order can be inverted)
and the second U„only absorption operators, the
structure of the V„'s (and U„'s) is relatively simple
compared (for instance) to the complexity of the Feyn-
man diagrams for a high order process. Thus the
matrix elements of V„can be written directly in terms
of the co„'s and integrals over virtual meson states by
only enumerating the order of reabsorption for a given
order of emission. Also, because of the large number of.
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meson states upon which (u —'U„) operates (~2"+'),
except for small e values, a will be quite large in
magnitude and a reasonable approximation might be to
neglect 'U„entirely for all but the lowest m-values in
Eq. (25). This would make the evaluation of the V„'s
relatively simple. Also, in this case 'U becomes a power
series in g', but of the form

In this approximation, the terms contributing to 'U

a,re particularly simple. Making use of the defining
equation for V, we find

where by theorem II, the first 2" operators II' must
create mesons, the last 2" operators annihilate mesons.
It is interesting to note that the operators 1/a which
appear in this expression will contribute factors roughly
of the form

1/(2n f)2

multiplied by dimensionless factors depending on the
convergence of the integrals over the momenta of the
virtual mesons. In evaluating the contribution to V„,
we will in general be able to create the 2" particles in
2" 1 ways corresponding to the ways of permuting the
creation operators. A corresponding factor will come
from the annihilation operators, neglecting cancellations
due to reordering of noncommuting spin and isotopic
spin matrices. Accordingly, aside from other factors,
the factorial dependence of the V„arising from the
multiplicity of contributions in high order is at least
cancelled by the behavior of the energy denominators.

Aside from this approximation the form (25) is
surprisingly simple. This is to be compared, for instance,
with the greater complexity of the perturbation or
Tamm-Banco' methods, which do not lead to a
decomposition into the U„'s and th'e U„'s. The simplifi-
cation results from considering explicitly the "scat-
tering" of virtual mesons before reabsorption. It is also
of interest to note from Eq. (17), that the difference
between the power of g occurring in the numerator and
the combined powers of g in the denominators is just g'
in every h„(and thus 'U„). This suggests that, as the
coupling becomes larger, the successive terms may not
increase with g as rapidly as might otherwise be indi-
cated (if the quantities (a—'U„) ' had no singularities,
then every term in '0 would be of order g' in the strong
coupling limit).

The eGect just mentioned is apparent in the calcu-
lation of the first two terms of Eq. (22) for the nuclear
forces, as is done in the Appendix. Here, the multiple
scattering of the virtual exchanged meson is shown to
arise from V~. The second term is of order g' for weak
coupling but becomes of order g' for large values of g.
The nuclear force problem discussed in the Appendix is
given to illustrate techniques of handling the formal
algebraic expressions which have been used above.

Problems of meson production and absorption may
also be easily handled by the present techniques. In
this case, it is of course necessary to keep. some of the
o6-diagonal terms in 0 which were discarded in ana-
lyzing processes which are diagonal in occupation
numbers (actually, only a small finite number of these
terms need be kept in any case of practical importance).
By repeating inductive arguments such as those given
previously, one may easily show that $Eq. (13))

where Qs is given by Eq. (24). F is a non-diagonal
operator, which may be broken into parts for producing
(or absorbing) one meson, two mesons, etc. For instance,
for the production of a single meson when no meson is
initially present (i.e., by nucleon-nucleon collisions) we
have directly from Eq. (13)

II =as(0) e ~—
a—Ap a

(27)

P o) —1+U'e

a—Vp
(28')

It is of course implied that we keep only those matrix
elements on the right-hand side of this equation which
refer to the production of a single meson. Equation (28')
obviously reduces to Eq. (28) for those initial states
which do not contain a meson. The general expression
for F&') may easily be worked out. The absorption of
mesons may be obtained from the above using the
detailed ' reversibility theorem, '4 or directly by re-
expressing the above quantities with the nondiagonal
operators to the left rather than to the right of the
scattering operators. The generalizations of the above
arguments to the nonlinear and nucleon pair theories
are straightforward and will not be given in detail.

IV. NONLINEAR INTERACTIONS

Nonlinear interactions such as those obtained by
Berger et al."or by Drell and Henley" by transforming

'4 J. M. Blatt and V. F. Weisskopf, Theoretica/ Nuclear Physics
(John Wiley and Sons, New York, 1952), p. 528.

'5 Berger, Foldy, and Osborn, Phys. Rev. 87, 1061 (1952)."S.Drell and E. Henley, Phys. Rev. 88, 1053 (1932l.

It therefore follows that

F&'& = II',

where Fo' is that part of Ii which has matrix elements
for the production of just one meson. Equation (28)
results since B' must obviously produce a meson. Since
we wish just one meson produced, the remaining factor,
Ils(0), must be diagonal. But DPLQs(0) (=I4 so Eq.
(28) follows. For single meson production by the
collision of a meson with a nucleon, we must generalize
Eq. (28):
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H'=Hi+Ps, (29)

where Hi is odd in P and Hp is even in P. Thus the
wave matrix 0 satisfies [see Eq. (4))

0= 1+ (Hi+ Hp) 0
E+i rt Hp—.

a—JIg—H2
(Hr+Hs) (30)

(where again o,=E+irt Hp). W—e use relation (D),
identifying H& with g& and 82 with q2 to express 0 as

a=1+ (H,+D,)
a—II2—Dp

where

H, 1+ Hp, (31)—
g—II2—D2 8 II2

Do= II
a—B2

(32)

the linear pseudoscalar interaction may also be handled
by the methods here employed. If the matrix elements
of the interaction term can be evaluated by some such
method as Glauber's, ' then it is not necessary to
expand the interaction in powers of g. We again assume
that the interaction is diagonal in nucleon occupation
numbers, so no nucleon pairs are formed.

In the Schrodinger Eq. (1) II' will be assumed to be
nonlinear in g. We first break H' into two parts.

virtual mesons present. It is clear that this process
may be iterated, each step increasing the multiplicity
of mesons in the og dirJgona/ matrix elements of the
interaction.

To proceed more generally, we first define

vp= DP(Hs+Dp),

Up(e) =NDP(e2)(Hp+Dp),

U, (o) = NDP(o2) (Hs+ Dp) .
(34)

The notation DP and NDP is as used before. The
symbol "(em)" is interpreted to mean the matrix
elements which produce (or absorb) even mu/tip/es of
m-mesons. The symbol "(om)" likewise is to be inter-
preted as those matrix elements which produce (or
absorb) odd mu/tip/es of tip mesons. Thus in Eq. (34),
where no=2, Up(e) produces (or absorbs) only even
multiples of two mesons (except zero) and. Up(o)
produces (or absorbs) only odd multiples of two mesons.

As in the last section, we de6ne by-induction an
infinite set of such quantities as those in Eq. (34). Let
us suppose that we have already dehned three quantities
(for some value of n) 'U„, U„(o) and U„(e). 'U is
assumed to be a scattering interaction (that is, diagonal
in meson occupation numbers). The U's are supposed
by hypothesis to be only nondiagonal in meson occu-
pation numbers and U„(o) is a quantity of the type
(o2"+') and U„(e) is of the type (e2"+'). This means
that U„(o) can produce (or absorb) mesons only in odd
multiples of the number 2"+' whereas U„(e) can produce
(or absorb) mesons only in even multiples of 2"+'.
Now define

Now, by Lemma I, since Hi is odd in P, Hi produces
(or absorbs) a net odd number of mesons. Furthermore
Hs, being even in P, produces (absorbs) an even number
of mesons only. Since the last term of Eq. (31) is odd
in Il~, it contains an odd number of production events,
each producing an odd number of mesons, plus any
number of events producing an even number of mesons
(because of Hp). The net number of produced mesons
arising from this term is therefore odd and it conse-
quently cannot be diagonal in meson occupation num-
bers. It will not contribute to a scattering event in
which no particles are produced and may be dropped.
We may thus calculate the scattering from

D„+i U„(o) —— U„(o),
a—'U„—U (e)

E„+i——U„(e)+D„+i.

Lemma IV

(35)

The quantity E„+i can produce (or absorb) mesons
only in multiples of 2"+'.

It follows from its definition that U„(e) can produce
only in multiples of 2"+' mesons. From the structure
of D„+i in the definition (35) it also follows that D„+i
can also produce (or absorb) mesons only in multiples
of 2"+'.Thus the Lemma IV is proven. We can therefore
define

(33)Qe(0) = 1+ (Hs+Dp).
a—H2 —Dp v +g ——DPE„+g,

U„+i(e) =NDP(e2"+')E„+i,

U„~r(o) = NDP(o2 "+')E„+i,
tin+1= Um+vn+1

Up ~0)

The "potential, " Hs+Dp, in Eq. (33) has only (36)
diagonal matrix elements or matrix elements for the
production of Inesons in multiples of two. Since the
interaction, Hr+H&, with which we started. in Eq. (30), If d f
had diagonal matrix elements or matrix elements for
the production of one meson, two mesons, three mesons,
etc. , we have increased the minimum multiplicity of and start with Fq. (34), we can now construct by

"R. J. Glsuber, Phys. Rev. 84, 395 (1951). induction all the quantities in Eq. (36) to any order in
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n. In particular,

'U =Qv, .
e-0

(37)

The following theorem finally gives the potential 'U.

Theorem IV: Assuming suitable convergence, the
interaction potential is

Since 'U is diagonal in meson occupation numbers, it
is a potential in the ordinary sense and Eq. (43) can
be considered soluble.

Our problem is still solved only in the formal sense,
however, since the definitions of the D„+j s as given in

Eq. (35) contain the nondiagonal operators U„(e) in
the energy denominator. To complete the solution we
note that by relation (8) D +i can be written as

'U= lim'U„= P v, .
e=. o

(38) D„~,= U„(o)pi„(1/a) U (o),

where or „satisfies
We proceed by induction. Let us assume for some n

that Qe(N) has the form
pi„= 1+(1/a) [V„+U.(e))pi„. (45)

a—'U„—U (e)—U„(o)

Qs(&) = 1+ ['U„+U„(e)+D„+i]
a—"U„—U„(e) D„~, —

a—'U —U„(e) D„+i—

To solve this equation we must proceed just as we
did in the solution to Eq. (30), etc. The process here is
clearly much more complicated than was that of Sec.
III in which the linear theory was studied, but still

X['U„+U (e)+U„(o)). (39) leads to a means of constructing the potentials in terms
of integral equations which do not involve emissions or

Using relation (D), in which q& is interpreted as absorptions. &n any actual problem, one wil]. cut off the
'U„+ U„(e) and qi as U„(o), we have series defining 'U at a certain multiplicity of virtual

mesons. The V„'s occurring in 'U can be defined to the
same order in virtual mesons. Since the multiplicities
increase with n as 2", the calculation is not as compli-
cated as might appear, if only low multiplicities are
kept. . We illustrate this by developing the method of
evaluating

XU„(o) 1+ ('U +U„(e)) . (40)
a—'U —U„(e) Defining

vp
——DP H2+H, II, .

a—B2
(46)

The last term may be dropped, since it corresponds
to an odd number of productions in odd multiplicities
of 2"+' mesons and therefore has no matrix elements
diagonal in meson occupation numbers. From the
definitions (35) and (36) we write

U-(e)+D.+i= i.pi+ U +i(e)+ U.+i(o),

so the first two terms in Eq. (40) have the form

Qe(ran+1) = 1+
a—'U-+i —U-+i(e) —U-+i(o)

X ['U„+i+U„+i(e)+U„+i(o)). (41)

Since the erst Eq. (33) has the form of Eq. (39) with
n =0 [by the definitions (34)], we obtain Eq. (41) after
n iterations of the process just described. If for suffici-
ently large n, the matrix elements of the U's become
negligible and if the series for 'U converges, we obtain
finally

QB= 1+ 'U,
8—U

and
IIg——DPII2

H p Hd+H p', —— (47)

it is apparent that B2' must create at least two mesons.
Using relation (D) we obtain

a= II,' II,'.
8—Hg

The quantity R is clearly calculable in terms of the
solution to an integral equation with H& as a potential
by means of relation (8). The NDP(R) creates at least
four mesons. If, for instance, we do not permit such
high multiplicities this can be neglected and we need
keep only

DP[Rj=—Rd,

+1 Bl +1 +1
a—82 a —IIg—R

1 1
+Hi H p' Hi, (48)'

c—Hg —E. 0—Bg

which satisfies the Schrodinger equation,

Qe = 1+(1/a) UQe.

and the expression (48) can be evaluated using relation
(8). The calculation can obviously be extended to

(43) higher multiplicities.
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To give a specific illustration, we calculate the
potential which results from applying the Dyson
transformation' to the symmetric pseudoscalar coupling
term in pseudoscalar meson theory. To order g' the
interaction H' is

g gH'= e Vs P+
2M 2M

(50)

If we compare this result with the defining equation (29)
for Hi and H& and make use of Eq. (46), we find

g2 g2

vo=DP P P+ e V~ P
235 4'

a —(g'/2M)P P
e V~ P. (51)

g2

&o=DP X P P+ o V~ P —e V~ P, (52)
2M 4M' a

where ), is of the order of 2. The second term of this is
the P-state potential considered by Chew' which gives
strong scattering in the isotopic spin —,

' and spin —,
' state;

the first term is a strongly repulsive potential which
gives a rather smaller s-wave scattering (roughly 50
millibarns at 100 Mev)."

V. NUCLEON PAIR PRODUCTION

We suppose the interaction H' to be in general non-
linear in both the meson field variables and in the pairs
of nucleon 6eld variables. We may formally obtain the
"interaction potential" from the results of the previous
section by either of two methods: First, we may ignore
the nucleon field variables and diagonalize the inter-
action in meson occupation numbers only, just as was
done in Sec. IV. The operator 'U obtained in this
manner is now a nonlinear operator in the nucleon
field variables and is the type discussed in Sec. IV.
This operator is a gain broken into parts even and odd

"F.J. Dyson, Phys. Rev. 73, 929 (1948).
'~ G. F. Chew (private communication) has called our attention

to this small value of the s-wave scattering.

Consistent with the approximation just discussed, we
shall restrict ourselves to diagonal elements of P P in
evaluating the integral operator La —(g'/2M)P Pj '.
If we evaluate the second term of eo for p-state mesons,
then the s-state potential (g'/2M)DPLP. Pj cannot
scatter the incoming meson or the virtual mesons
created in p-states by the first operator e V~ P if
nucleon recoil is neglected. For s-state mesons, the two
operators o V~ P can create and absorb a virtual
p-state meson, the s-state meson being scattered by the
potential (g'/2M)DPLP P$;

This process gives a contribution to the s-state
interaction of the same form and sign as the first term
of vo. Accordingly we have approximately

in the production (or absorption) of ngcleoe pairs We
can proceed to diagonalize it in nucleon states just as
was done for the meson states.

A more straightforward method for calculation is to
formally include in out set of field variables p, (0.= 1,
2, cV) each pair of nucleon field variables $0$ (where
0 is a matrix operating on the components of P). This
can be done since we have not made use of the commu-
tation rules for the 4&'s. For purposes of argument we
can say that a "particle" is emitted when either a
nucleon pair or a meson is created. Splitting H' into
parts even and odd in "particle" creation we can
develop the potential as in Sec. IV. There is no point
in a detailed development, since it follows the methods
used in Sec. IV.

We shall illustrate the method by showing how to
proceed for an H' which is linear in @ and linear in

$0$ (i.e., of the usual sort).
We set

H'= H, '+H. ' (53)

where H, ' produces (or absorbs) one meson and one
nucleon pair (even in "particle" creation) and H, '

produces (or absorbs) one meson and no nucleon pairs.
Using relation (D)

0= 1+ H'-
a—H'

where

LH.'ya. j
a—H, ' —D,

P

H, ' 1+ H, ', (54)
8—Hg —D0 i 8—Hg

D,=H, ' H, '.
a —Hg

(55)

We have seen that potentials can be obtained in d,

straightforward manner in quantum field theories.
Since the potential is given as an infinite series of terms
the question of convergence remains to be studied. It
is evident that the potentials of the type discussed here
will always converge if a strict power series expansion
(in the coupling constant) converges, since each term
in the potential series can be expanded into a power
series in g'. It is also quite possible that the series given
here may converge even when the power series expan-
sion is not convergent.

The second term in Eq. (2) can be discarded and
H, '+D, can be broken into a "diagonal part, " a part
producing an even number of pairs of "particles" and
a part producing an odd number of pairs of "particles. "
The process can now be repeated, etc. The terms in the
"potential" can be de6ned by means of integral
equations as in the previous sections.

VI. DISCUSSION
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The results of our studies strongly suggest that a
great deal of the apparent complexity of the S matrix
in 6eld theory is associated with the scattering of real
and virtual particles in intermediate states. When
these effects are identi6ed and isolated, the complexity
of the analysis is strikingly reduced.

It is to be noted that the potential 'U will be hermitean
when and only when true absorption and emission of
particles is not energetically possible. When creation
or absorption is possible some of the energy denomi-
nators will be singular and the iq term will contribute
an anti-hermitean part to 'U. Otherwise ig is redundant
for the construction of the potentials and may be
neglected. In this case bound state problems may be
handled by dropping the additive identity operator on
the right-hand side of Eq. (26) and (43) and solving
the resulting eigenvalue problem.

Finally, although meson theory has been most
speci6cally considered, the results are of course appli-
cable to other types of 6eld theories.

We are indebtedto Professor G. F. Chew and Pro-
fessor F. I ow for several interesting discussions con-
cerning problems related to the present one.

APPENDIX

Nuclear Forces in the Isotoyic Spin Zero State for
the Symmetric Scalar Theory

We consider this case explicitly to illustrate the
development of the method for a simple problem. For
the two nucleon system, the coupling term of Eq. (1) is

H' =H'(1) +H'(2), (A1)

where H'(i) is the coupling term for the ith nucleon.
For simplicity we shall in this problem treat the
nucleons as in6nitely heavy so that their energy is
unchanged by the emission of mesons. The operator

the number of mesons present to two or less. If this
approximation is made, then it is easily shown that

where

H' H'*= Vp'+ Vp' —Vp'
a—Vp a—Vp'

Vp' H'(1——/a) H'*

(AS)

(A6)

and T is the scattering matrix associated with Vp'.
With this result we obtain for the 6rst two terms in the
nuclear potential,

1 ~1
Vo&= Vp+Vi II'l 1——+ T

l

—H—'*.
a )a (A7)

~8=1+(1/a) T, (A8)

which describes the scattering of the meson by the
two nucleons Only if the scattering is small and we can
set co8= j. is the lowest order potential an adequate
approximation. The principal difficulties of evaluating
V&'& are now those of solving the multiple scattering
equation for ~g.

Iri terms of the potentials ~~ and ~2 which scatter the
meson at nucleons (1) and (2), the equation for ppe is

The solution to this equation can be given in terms of
the set of equations discussed by Watson' and Brueck-
ner p

where
pie ——1+(1/a) (T,pp, +T&pi,), (A10)

This result di8ers from the lowest order potential Vp'

in that the meson created by B'*goes into the scattering
state

—a= —E+Hp (A2) pii ——1+(1/a) Tppip) ppp
——1+(1/a) Tippi, (A11)

will then give just the sum of the energies of the virtual
mesons present.

The first two terms in the potential series are $Eq.

Vp =H' H'*+H'* H', — —
a a

and T; is the scattering matrix for the potential v;.
These coupled integral equations are diQicult in general
to solve; under a reasonable qualitative approximation
we can, however, obtain exact solutions. For the
symmetric scalar theory, the potential for the scattering
of a meson is

1

a a—1/p a
where l is the isotopic angular momentum operator for
the meson and ~ is the nucleon isotopic spin operator.
In this form the integral equation relating ~~ to T~ is
not easily solved; if, however, we make the replacement

where the starred operators create mesons, the un-
starred annihilate mesons. The sum of these is particu-
larly simple if in the term

A3) (kl plkp) = ic (1+sz.])e'~ ' "i'"/
L( )'( + )3 (A12)

~f ~fg
a—Vp

pi+ G7p~(ppMp) *

then we obtain directly
A4

(A13)

appearing in V& we retain in Vp only that part which
6rst annihilates a meson; this is equivalent to restricting

(kl Tilkp) = —a'ie'&"p "& "/(pipip)

'~ K. A. Brueckner, Phys. Rev. 89, 834 (1953).

(A14)
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where

and

where we have set ~) ———~p (for the singlet state) and

p(1+ 2~+ 1)/f(1 2~)(1+~)j (A15) z& e&= 3. In evaluating the integrals over ko and k) we
encounter expressions of the form of

b, =-,'g'(2s) ' '

dk/(dk'. (A16)
~ dl dl,

&ik. (ra—rb)gikp ~ (r c—rg)

(2m)P& (pop)p)'"
(A25)

G) e'ko "——/id()+ opI(r)G. p,
(A17)

1 ~dkdkp
~ik. (ra rf))~ik ~ (rc—rg)

(2s.)P& poo p)p'

Gp e'k'——"/o)o+ogI(r).G),

Substitutmg this result into the couPled equations of C()ns tent ith th s pr() at)()n LE (A13)jEq. (A11) we 6nd have already made in obtaining the scattering matrices,
we shall approximate this integral very roughly by

( (kin;lkp)
G, =( 2m)

—' ' e'k "dk (A19)

(kl p)elko) =(2~) ()(k —k)
+(1/io) (o )G,e—'k'&+ o pG,e

—'k'&) (A18)
where where

= Y(r, rp) I(—r, re), —(A26)

Y(r) = (1/4~) e
—&"/r (A27)

and
~~ik r

I(r) = (2or) ' dk.
aP

is the Yukawa potential and I(r) is defined by Eq.
(A20).

(A20) With this approximation we obtain for the potential:

(kl(eel ko) = (2~)'8(ko —k)—
QPGOO 1—I p

X{ei (kp —k) ~ r1+ ei (ko—k) ~ rp

))ILei(kp ~ ry —k rp)+ei(kp rp kryo)]l —(A23)

Finally the potential is

Eliminating Gp in Eq. (A17) we obtain for G)

(1—I god))G)= (1/p)p)eiko ray(gpI/(oo)eiko rm (A21)

with a similar result for G2. The construction of the
inverse of the operator (1—Ioopp)) is in general rather
complicated; for the case of total isotopic spin zero,
however, the operators o-~ and Ol are diagonal with the
matrix elements

~)= ~p= —pg'/(1+~)
(A22)

With this result the wave matrix cvq is

-1—2pI(r)-
V")=3g'F(r)

1 pI(r)—
—3g'I'(0)

1—pI(r) pI(0) -—

1 pI(r)—(A28)

then
g/(1+-'g'I(0))

l'")=3g"l'(r)l 1—gg'I(r) j '

(A30)

(A31)

The second term contains mass renormalization
eAects since it remains finite as r—+~; if we subtract
these as self energies and replace I(r) F(0) by I(0)F(r)
as was done in Eq. (A26), we obtain, using Eq. (A22)
for p,

l'"' =3g'l'(r) L{1+lg'I(0) )
X {1+xpg'I(0)—-,'g'I(r)) j '. (A29)

The dependence on g/l 1+-,'g'I(0)j which appears in
this result is probably a charge renormalization e8ect
although the identification as such is not unambiguous;
if we replace

—3g' ( dkpdk
t/ 0)— (eik ry eik ri)

(2~)P& 2(op(P)po))'

X(klp)elko)(e ' '"—e iko ")

This potential increases more rapidly with decreasing r
than does the Yukawa potential; the denominator is
always positive, however, so that it does not introduce

(A24) new singularities.


