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Note that owing to the extraction of a 8-function
factor in the derivation of (3.7) from (2.10), it is Not

true that the Fredholm determinant d(X) of (3.7) is
equal to (0~5~0). Consequently, for a static field, the
iterated solution, (y~ Rr ~q), (Born approximation) is
vol the same as the Fredholm solution. This is in
agreement with the conclusion of Jost and Pais. '

The authors are indebted to Dr. N. Kemmer for
numerous discussions and particularly Dr. F. Smithies
for much help with the theory of integral equations.
One of us (A.S.) would like to thank the Education
Department of the Punjab Government, Pakistan for
a grant enabling him to stay at St. John's College,
Cambridge.
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The spherically symmetric form of the skew tensor g;&, given by Papapetrou, is not suKciently general.
V'

A more general form is found. This necessitates a reconsideration of the program of spherically symmetric
solutions in nonsymmetrical field theories initiated by Papapetrou. The present paper makes a beginning
in this direction.

The new form of the spherically symmetric tensor g;& is derived from a consideration of the infinitesimal
V'

rotation of a sphere about a diameter. It is hoped to use this form to obtain nonstatic solutions in nonsym-
metrical Geld theories which will correspond to solutions of a radiating star in general relativity.

I. INTRODUCTION
' QAPAPETROU' initiated the study of rigorous

(nonapproximate) solutions in the various unified
field theories by showing that the skew symmetric
tensor g;s with only g,4= w(r, t) and g» ——v(r, t) sine as

the surviving components, is spherically symmetric.
This form of the tensor was the starting point for a
number of investigations in this direction. Papapetrou
himself worked out the solutions of the field equations
of Schrodinger. ' Rigorous solutions of the field equations
of Einstein and Strauss' were given by Kyman. 4

Bandyopadhyaya' gave a simple solution of the latest
unified field theory of Einstein. ' Recently Bonner~ has
satisfactorily solved the problem of finding static
spherically symmetric solutions in Einstein's unified
field theory. All these investigations began with the form
of g;I, found by Papapetrou.

A nonsymmetrical tensor field can be split up into
its symmetrical and skew symmetrical parts. Ke write

g's =ge+ gts,

the bar or the hook below the sufFixes distinguishing
the two parts, respectively.

*This work was done under the Springer Research Scholarship
of the University of Bombay, Bombay, India.

' A. Papapetrou, Proc. Roy. Irish Acad. AS2, 69 (1948).
For field theory of Schrodinger, see E. Schrodinger, Proc. Roy.

Irish Acad. ASI, 163 (1947).' A. Einstein and E. G. Strauss, Ann. Math. 47, 731 (1946).
4 M. Wyman, Can. J. Math. 2, 427 (1950}.' G. Bandyopadhyaya, Nature 167, 648 (1951).

A. Einstein, hleawseg of the Relotessty (Methuen, London,
1950), Appendix II.' W. B. Bonner, Proc. Roy. Soc. (London) A209, 353 (1951);
A210, 427 (1952).

For spherically symmetric solution the form of g;&

is well known from general relativity. In order to find
the spherically symmetric form of g;&, Papapetrou con-

V'

sidered the rotation of a sphere about a diameter I'OP'
and compared the values of the various components of
g I, before and after the rotation at the point P on the
sphere and the axis of rotation. Since a rotation through
a right angle will interchange the components per-
pendicular to OP, these would vanish at a point on the
axis of rotation. Hence Papapetrou's method will
naturally give the components of g,& along the radial
direction only. That is why only gi4. and g» (which cor-

'V 'V

respond to the radial components of magnetic and
electric Geld, respectively) survived in his tensor. In
what follows we consider an in6nitesimal rotation of a
sphere and compare the values of g,7, at a point not on

V'

the axis of rotation. %e shall, of course, recover
Papapetrou's components; but we shall also find that
there are some other components of g;I, which are

'V

nonzero.

II. INFINITESIMAL R,OTATIONS OF A SPHERE

In this section we shall be interested in the two-
dimensional geometry of the surface of a sphere of
radius a. The fundamental quadratic form P on this
surface is given by

it = ttsdes+ ps sjnsgdys =gss(dgs)s+gss(dgs)s. (2.1)

The contravariant components P, (tt= 2, 3) of an
infinitesimal transformation which would represent a
motion of the sphere ia.to itself, satisfy the following
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equations of Killing:

cos8t2+ sin8(a//ay) =0,

sin'8(a('/a8)+ (a@/a s ) =0,
2

(2.2)

at/a8 o.

From the third of these equations, we have /=X~,
where X3 is a function of y alone. Indicating by primes
derivatives with respect to the arguments, from the
first two we have

ag /aq = —X3 cot8, ag'/a8= —X3' cosec'8, (2.3)

for which the condition of consistency is

X3"+X8=0, or X3——A cos(s+8). (2.4)

%e thus arrive at the following final form of the contra-
variant components P of an infinitesimal rotation of a
sphere about a diameter:

t2=A cos(p+8),

P= —A sin(y+8) cot8+C,

(2.5)

(2.6)

A, 8, and C being arbitrary constants.

III. SPHERICALLY SYMMETRIC TENSOR FIELDS

The condition for a spherically symmetric tensor field
is the following: there is a frame of reference such that,
after an arbitrary rotation around the center of sym-
metry, the new components g';I, are the same functions
of the new coordinates x'& as the gg, are of x&. Taking
the center of symmetry as the origin, let-x" be a set of
polar coordinates r, 0, y and the time coordinate t.
Consider an infinitesimal rotation given by

$, igak+ $,kgia+ gi7i, nP (3.6)

The first two terms in the left-hand member of this
equation arise out of the tensor law of transformation
of g,v„while the third term may be called the "transport
term. " It arises because the value of gg, at a point x&

is compared with the transformed g;I, at the point which
after the transformation possesses the coordinates x~

(and therefore, originally had the coordinates x&—@be).
%e now split up the g;I, field into its symmetrical and

skew parts,

gik gjk+ gik

The general form of the spherically symmetric g;I„known
from general relativity, is

0
g~a= 0

0 0 a
—P 0 0
0 —P sin'8 0 '

, 0 0

(3 &)

where ix, p, y, and u are functions of r and t. We now
obtain the form of g;& which will satisfy the criterion

(3.6).
It is easy to verify that, as a result of the Eq. (3.6)

both g&4 and g» cosec8 have to satisfy only one equation

of the form

we find, again correct to the first power in 8e, that

g''~(~'") = g'~(*") —I:8 'g.-~+5 ~g'-38~ (3 5)

With the help of Eq. (3.5), the criterion (3.4) for the
spherical symmetry of the field can be written in the
form,

x "=x"+P8e, (3.1) s.P =0, or P(as/a8)+P(as/aq) =0. (3.8)

g''~(*'") =g*~(~'") (3.3)

Substituting from (3.1) the values of x'& in the right-
hand member of (3.3), applying Taylor's theorem, and
retaining terms only up to the first power of 8e, we can
write this criterion in the form

g',~(~")= g,~(~~)+g;~, ,p&~. (3.4)

Applying the tensor law of transformation to g;&(x"),

See L. P. Eisenhart, Riemannian Geometry {Princeton Univer-
sity Press, Princeton, 1949), pp. 241, 242,

where

P =0, P= A cos(q+8),
P= —A sin(y+8) cot8+C, (4 0, (3.2)

and 8e is an infinitesimal. It is clear from general con-
siderations that arbitrary transformations of the coor-
dinates r and t will leave the spherical symmetry of a
tensor expression undisturbed, and so in (3.2) trans-
formations of the coordinates 8 and q alone are con-
sidered by stipulating @=$'=0. ' The criterion of
spherical symmetry of a tensor field g;A, is

This is a diGerential equation for s in terms of the
variables 8 and p, and with P and P given by (3.2),
its general solution would be

s= f(w, r, t),

a=A sin(q+8) sin8+C cos8,

(3.9)

(3.10)

f being an arbitrary function of its arguments. We
assume this arbitrary function to be expressed as a
product of a function of (r, 3) and a function of (8, q).
Since in spherically symmetric fields the transformation
of the variables r and t can be studied independently of
the transformations of the variables 8, y, this assump-
tion will not contradict the requirements of spherical
symmetry. Further, we shall find that under this
assumption we shall be able to obtain an expression for
the spherically symmetric g;I, which will be more general
than that found by Papapetrou. This assumption
introduces a good deal of simplification in the procedure
of solving the fmld equations. The form of the functions
of (8, y) will now be determined by the criterion (3.6)
of spherical symmetry, while the form of the function
of (r, t) will be decided by the field equations which
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govern the g, ». field. Therefore, from (3.8) we can write
'»»»

gi4=H(t'» t)k(w)» g2g= Z(r» t) S1118k(w).

II, E, h, and k are arbitrary functions of their arguments.
Writing the remaining components of g~ as products

of a function of (r, t) and a function of (8, y), it will
be found that criterion (3.6) gives the following forms
for these components:

g»~ p(r, t)v——(8, y), gi3
—— p(—r, t)u(8, y) sin8;

g, 4 q(r, t)——v(8, y), g&4
—— q(r, t—)u(8, y) sin8.

Of course, all the functions of (r, t) will be arbitrary;
but e(8, y) and v(8, y) have to satisfy the equations

—A sin(y+B) cosec8e+P( Bv/B8)

+g'(Bv/B y) =0, (3.11)

A sin(y+B) cosec8v+P(Bu/B8)

+('(Be/By) =0. (3.12)

We can combine these two equations to obtain

P-LB(u'+ v')/Bx. ]=0, (3.13)

g $B(tan —'(u/v))/Bx )
+A sin(y+B) cosec8=0. (3.14)

pendence is m'ainly given by the functions I, v, and zv.

Consider 6rst the function

w= A sin(y+ B) sin8+C cos8. (4 1)

w= (ax+by+cs)/r, (4.2)

where the constants c, b, c can be easily expressed in
terms of the earlier constants A, B, C. If OQ is the
diameter of the sphere (center 0) with direction-cosines
proportional to a, b, c, from (4.2) w is seen to be propor-
tional to the cosine of the angle POQ. The occurrence of
the arbitrary functions of this variable m in spherically
symmetric tensors can now be easily understood, if we
realize that OQ was the axis about which the infinitesimal
rotation was given to the sphere to derive the criterion
(3.6). This interpretation of w also points out a marked
diGerence between the two factors E(r, t) sin8 and k(w)
of gmg, or between the factors H(r, t) and k(w) of gi4.
Let us choose our Cartesian axes of coordinates in such
a way that OZ is along the axis of rotation OQ. Thea
we have A =0, 8=0, and

If the point P, (r, 8, y), of the sphere of radius r, at
which these components of g;J, are evaluated, has the

V'

usual Cartesian coordinates (x, y, s), then (4.1) can be
written in the form

From Eq. (3.13) we immediately find that a=C cose. (4.3)
e2+v2 f2 (3.15)

0 pv—pv 0
pe sin8 —Ek sin8
—Hh —qv

—pu sin8 Hk
Ek Sli18 qv (3 1g)0 —qusin8 '

qu sin8 0

p, q, E, H are arbitrary functions of r and t, k and k
are arbitrary functions of m, and u, v, m are given by
(3.1/), (3.16), and (3.10), respectively. It should be
noted that (3.18) is not the most general solution of
(3.6), because of the assumption which separated the
variables (r, t) and (8, y).

IV. THE POLARIZATION OF THE g;g FIELD

We shall now consider in detail the dependence of
these components on the variables 8 and y. This de-

where f= f(w) is an arbitrary function of w. Equation
(3.14) can be integrated to yield

v/u=A cos(y+B)(,Bw/B8) ',

so that we ultimately find

v=A cos(y+B)(A'+C~ —w') ' f(w), (3.16)

u= (A sin(y+B) cos8 —C sin8)

X(A'+C' —w') & f(w), (3.17)

where w is given by the Eq. (3.10). Thus the 6nal
expression for the tensor field g;I, which satisfies the

»»r

criterion (3.6) is

If, however, the coordinate axes are oriented in such a
way that OF is along the axis of rotation, we would get
8=0, C=O, and

K'= c4 sing sing. (4.4)

Thus the functional form of w (as a function of 8 and y)
depends on the orientation of the axis of rotation.
Further, the form (4.3) of w will remain the same for
rotations round OZ only, while the form (4.4) of w will
remain invariant for all rotations round OF only. We
say that m is an invariant spherically symmetric ex-
pression with a polarization. For w given by (4.3) we
may say that "the axis of polarization" is the s axis,
while in (4.4) it is the y axis. It is now easy to see that

gi4=H(r, t) and g~3 E(r, t) sin8——(4.5)

are spherically symmetric unpolarized components of
gg„while

g„=H(r, t)k(w), g,3——B(r, t) sin8k(w),

are spherically symmetric with a polarization. The g;&,
V'

with only nonvanishing components given in (4.5), was
first obtained by Papapetrou.

Now consider the functions u and v. They also show
a polarization. If A=O, 8=0 we find

u= f(cos8), v=0.
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If, however, 8=0, C= 0, we find

u= sing cos8(1—sin'8 sin'y) &.f,
a=cosy(1 —sin'8 sin'y) ' f.

(4.7)

For u and v given by (4.6), we find that

g»~=O,
'V

g~4=O,
V'

gi3 —— pf—sin8,

g3, ——
qf s—in8.

(4g)

If we accept the interpretation of g;I, as given by the
V'

first ordered solution, ' we see that (4.8) will represent
a polarized spherical wave with the electric vector in
the plane of the point I' and the s axis. In our notations
(4.8) gives a spherically symmetric tensor field which
is polarized, the axis of polarization being the s axis.

We would like to put down together the conclusions
that we have drawn from the discussions of this section.
Tensor fields may satisfy our criterion of spherical sym-
metry, (3.6), in two different ways. Some of them
satisfy (3.6) for all possible values of the parameters A,
8, C of the inhnitesimal transformations. An illustration
of such a field is Papapetrou's tensor Eield with two
nonvanishing components, gi4 H(r, t), g23

——E(r, t) sin——8.
Such tensor helds are spherically symmetric without
any polarization. On the other hand, there are some
other tensor-fields which satisfy the criterion (3.6)
through the appearance of the parameters A, 8, C in
the very expressions of the components of the fields.
Thus the functional forms of the various components
carry, as it were, an impression of the axis about which
the infinitesimal rotation was given to derive the
criterion (3.6). Such fields are spherically symmetric
and polarized. We have called the particular axis of
rotation the "axis of polarization" of the field. An illus-
tration of such a field is the electromagnetic tensor F p

used to describe the spherically symmetric held of a
radiating star in general relativity. ' We have found
above a general spherically symmetric skew tensor field
with any arbitrary axis of polarization. Both the above
illustrations are particular cases of the field found here.

Since we are at liberty to choose the orientation of
our coordinate axes, we shall not be specializing our g;~

V'

in any way if we take the axis of polarization of g;&
V'

as the 2: axis. We put A=O, 8=0, C=1 and find our g,A,
V'

to be of the form,

gi4 H(r, t)h(8), g23——=E(r, t) sin8k(8), gi2=0, g24=O,

gi~ —— p(r, t) sin8f(8), gg4
————q(», t) sin8f(8).

This is the simplest and, at the same time, the most
general form of g;& which is spherically symmetric and
which exhibits polarization about the s axis.

V. THE SYMMETRIC TENSOR g;y

In Eq. (3.7) we have written down the spherically
symmetric form of g;& which is used in general relativity.
From the discussion of the last section on the polariza-
tion of tensor-fields, we can now see that the general
relativity form (3.7) of g;& is its general spherically

symmetric unpolarized form. The question now arises:
What is its general polarized form? This question never
arose in general relativity, because there g;I, is the metric

tensor of space-time and polarization of a metric tensor
has no physical meaning. In nonsymmetrical held
theories, g,~ need not be the metric tensor of space-time.

Though all the previous authors (Papapetrou, ' Wyman, '
Bonner') have tried to interpret their static spherically
symmetric solutions on the assumption that g;~ is the

metric tensor, doubts have been raised by many
(including Wyman) as regards this assumption. Wyman
has actually put forward alternative suggestions for the
metric tensor. In his letter Infeld states that Einstein's
theory gives no interaction of a moving charged mass-
particle with the electromagnetic held. "This may be
taken to mean that the identification of the metric
tensor with g,& cannot be true even at su%ciently large

distances from the center of the particle. As a matter of
fact, this is the view taken by Kursunoglu, "who has
suggested an alternative set of field equations to replace
those given by Einstein, which explicitly recognize a
metric tensor b I, distinct from the held-tensor g;~.

It is obvious that the tensor g;~ must be connected

in some way with the metric tensor b;&. However, at
the present stage of development of nonsymmetric
field theories, it does not seem possible to say definitely
that g;~ is identical with the metric tensor b;k. We are,
therefore, specifying here the general form of g;& which

is spherically symmetric with a polarization. By working
systematically with the equations obtained from the
criterion (3.6), it will be found that this general form
of g;~ can be expressed in terms of the functions I, v,

and m dehned earlier, in the following way:

gii ———n(r, t)F(w), g, 4 ——a(», t)F(w), g44
——y(r, t)F(w),

g»= —LP(», t)+&(», t)~']G(w),

g, g +B(r, t)usG(w) sin——8,

g33———$P(», t)+ J3(», t)u')G(w) sin'8, g, g
——X(r, t)e,

gi3
———X(r, t)u sin8, g24

——p(r, t)ii, g34 ———p(r, t)u sin8.

Ii and 6 are arbitrary functions of m. In putting down
the same function F(w) as a factor in each of the three
components g»», g»4, and g44, we have used the fact that
these components are interconnected by arbitrary
transformations of the coordinate r and t.

' See V. V. Narlikar and P. C. Vaidya, Nature 159, 642 (1947);
Proc. Natl. Inst. Sci. (India) 14, 53 (1948).

L. Infeld, Nature 166, 1075 (1950)."B.Kursunojlu, Proc. Phys. Soc. (London) A65, 81 (1952).


