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Fredholm Theory of Scattering in a Given Time-Dependent Field
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It is shown that Feynman's relativistic solution for- the scattering of an electron (or pair creation) by a
given external Geld is the Fredholm resolvent of the related integral equation and is thus the unique and
absolutely convergent solution for any strength of 6eld.

INTRODUCTION

HE Fredholm theory of integral equations has
been applied to the nonrelativistic theory of

scattering by Jost and Pais. ' We here consider the
extension of this theory to the interaction of the
quantized electron-positron field with a prescribed
external electromagnetic 6eld. This problem has been
considered by Feynman. ' Feynman's solution is most
simply derived from the 5 matrix in the form given by
Dyson. ' The appropriate matrix element for electron
scattering or pair creation is obtained as an expan-
sion in the external field and is normalized by multi-
plying by the vacuum expectation value of the 5
matrix. VVe show that this is identical with the Fred-
holm resolvent of a related integral equation and is
thus absolutely convergent for any strength of the
external Geld, for which the cross section has any
meaning.

ln the first section the Fredholm theory is stated in
a form given by Plemelj, ' which exhibits the Fredholm
solution in terms of the iterations of the kernel and its
traces. These quantities have the advantage over the
usual form of the theory' that they are either the same
as, or closely related to, expressions occurring in the
5 matrix and can be written down directly by Feynman's
graphical methods. The relation of the Fredholm
solution to the solution by iteration is discussed. The
problem of scattering in a pure external field is then
treated in Secs. 2 and 3, with the result stated above.
The case of a static field is related to the work of Jost
and Pais. '

1. FREDHOI, M THEORY

Consider Fredholm's integral equation

x(s) =y(s)+X E(s, t)x(t)dt,

(or x=y+XEx),
*Now at Department of Mathematical Physics, University of

Birmingham, Birmingham, England.' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
~ R. P. Feynman, Phys. Rev. 76, 749 (1949).
3 F. I. Dyson, Phys. Rev. 75, 486, 1736 (1949}.
4 J. Plemelj, Monatsch. Math. 15, 93 (1904).' See, for example, E. T. Whittaker and G. N. Watson, Modern

Analysis (Cambridge University Press, Cambridge, 1940), fourth
edition, Chapter XI.

C,=,r "~E(s, t) tsdsdt&~,

then (1.1) has the unique solution

x(s) =d—'P.) D(X, s, t)y(t)dt,

=d—'(X)A(X, s),

for all X for which d(X) WO. Here

d()t) =Q d.X",
n=o

(1.4)

D(X, s, t)=g D„(s, t))"
n=o

LD(X, s, t) is called the Fredholrn resolvent], where
do= j.,

0'2 S—1 ~ ~ ~ Q

(—1)" ~s 02 e—2 0
(1.6)

~ ~ ~ 0 2

8(s—t) u 0 0 ~ ~ ~ Q

E(s, t)
(—1)"

D„(s, t) = E'(s, t)

~ ~ e Q

Oj 0'y 's —2 ' ' 0

E"(s, t) o„o„ i ~ ~ ~ 0

(1.7)

E(s, u)E" '(u t)du

' F. Smithies, Duke Math. J. 8, 107 (1941).

where the integration may be over a fjxed interval,
. finite or infinite. Smithies has shown that, if E(s, t)

is a measurable function of s and t, and
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zeros cancel the poles of the solution by iteration,
(1+RE+X'E'+ ~ )y, thus making D(X)y also an inte-
gral function. Fredholm's work shows not only that such
a function exists but provides a method for actually
calculating. it.

The proof of the convergence of the Fredholm solu-
tion is based on the inequality

~~.
~

&~iC, (-i (~=2, 3, " ).
The condition (1.2) does not require that at be finite,
and in fact the solution is unaltered by replacing 0-& by
zero in (1.6) and (1.7), whatever its actual value. How-
ever, if a.2 diverges the con'dition (1.2) cannot be
satis6ed.

It may happen that C&, , C & are not bounded,
but that C is, where, by definition

o.„=TraceE" = E"(s, s)ds. (1.9)

If x(s) is a spinor function, the trace in (1.9) is also
taken over the spinor suffixes of K. The function d(X)
is proved to be convergent for all complex values of ),
so that it is an integral function of ); the resolvent,
D(X, s, t), is also uniformly convergent for all ), so
the solution (1.3) is valid for the whole complex X-plane

(except for X satisfying d(X) =0). This formulation is
shown to be identical with the usual formulation by
Smithies. '

As already stated in the introduction, an advantage
of this form is that for any field theoretic equations,
the expressions E"y are just those appearing in the
solution by iteration' and can be calculated directly by
the Feynman-Dyson' ' method. The o„are closely
related to the vacuum graphs of the 5 matrix, and
Feynman's methods are again immediately applicable.

From the definition (1.6),

C —= ~ ~~E (s, f) ~'dsdt. (1.17)

One can still obtain a convergent solution to the equa-
tion by first iterating nz times. Thus, in operator nota-
tion,

n—1

de= Q omdn —mq
m=1

so that
This equation has a solution, since

(1.10) x=y+) Kx
=(1+)K+PE'+ +)™1K" ')y+X K"x (118)

Q (x+1)d +tX"=—(Q d„X")(Po,+,), ). (1.11)
n=o n=o q=o

Thus
Bd

d—'—= —g o,+iM.
q=o

Hence

namely,

D (X)y d (Xm)
x . (1 )tmKm) —i

d (Xm) d (Xm)

)( (1+)tK+. . .+)tm —1Em—i)
dP.) = exp[ —P a„X"/m$.

n=1

From the delnition (1.7),

D„= Q K"d„(=Id„+ED i).
m=o

(1.12)

(1.13)

where

I

()tm)
—(1+RE+)'K'+ )y,

(gm)

) 2m

d (X)=exp —X o + o~+
2

(1.19)

(1.20)

Hence
D(X) =d('A)(1+LE+X'E'+ . ) (1.14)

The relation between the Fredholm solution and the
solution by iteration is brought out clearly by sub-
stituting (1.14) into (1.3). The Fredholm solution then
reduces to

D(X)y d()t) (1+XK+X'E'+ )y
(1.15)

d() ) d() )

which is just the solution by iteration if the d(X) term
is canceled. The Fredholm solution is exhibited as an
analytic continuation of the iterated solution; the
function dP, ) is an integral function such that its

' The solution by iteration is known as the Neumann-Liouville
solution. This is the Born approximation in nonrelativistic scat-
tering theory and is the "weak coupling" expansion of relativistic
6eld theory.

8This result has been established quite rigorously in the
literature. Just to clarify the structure of the Fredholm solution,
we can cast d(X) in a different form by the following nonrigorous
argument. This was pointed out to the authors by Professor R. E.
Peierls.

The solution by iteration is the binomial expansion of

1—kK
'

The poles of this solution are given by the eigenvalues of the
homogeneous eouation

(~ —x.x)~.=0.
The eigenvalues of E" are (1/X~)", and the trace 0 is thus

0„=-Z (1/i )".
Hence, by Eq. (1.12),

1 r,
d(X)=exp —Z Z ——'

n ~a

=exptZ log(1 —X/X ))
= II.(1—X/i. ),

which is just the form required for d()) to cancel the poles of the
solution by iteration.
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This solution is reducible, and one can factor an integral
function from the numerator and the denominator.
Poincare' has shown the irreducible solution is given by
Eqs. (1.3)—(1.9) with o.i, os, o. i replaced by zero.

2. THE EXTERNAL FIELD

Write Mz(P, q) for the right-hand side of (2.6) and
deGne

(P I
Jfz

I q) =se(P)Mz(P, q)se(q). (2.8)

Now Mz(p, q) is the solution by iteration (hence the
sufFix I) of the integral equation"

XM(k, q)d'k, (2.9)

which defines M(p, q) for any strength of field. This is an
equation for M(p, q), (q constant) of the Fredholm
type and we can consider the application of the theory
of the previous section. "

The kernel of the equation isXI'(II'(xt), II'(x„)), (2.1)

II'(x) = —i+ (x)A'(x) f(x), (2.2)
where K(P, k) =A (P—k)Sp(k)( —2~). (2.10)

Consider the problem of:he quantized Dirac field in
interaction with a given external field, which is time M(p q) =)tA8(p q} 2zr)t t Ae(p k)5~(k)
dependent and may create pairs, The Geld produced
by the electrons themselves is neglected. The S matrix
for the system is

A'(x) =A'„(x)y„, (2.3)

M(P, q) = XA'(P —q)
—2zr)tz)~A'(P —k)Ss (k)

where
XA'(k —q)d4k, + . , (2 6)

Se(k)=, e)0.
2zri ks+ a' —ie

(2.7)

' H. Poincare, Acta Math. 33, 57 (1910).
'0 Dyson's treatment is a restatement in more conventional

terms of Feynman's solution. (p S~q) is called the "absolute"
probability amplitude and (p~R q) the "relative" probability
amplitude by Feynman.

and X is a constant which determines the strength of
the field.

We consider the cross section for scattering of an
electron from a state N(q) to a state u(p), where both
momentum and spin are specified. The transition am-
plitude obtained from the S matrix is written as
(plSlq). From Dyson's theory' applied to (2.1) it
follows that

(PISlq}=(olslo)(plzlq); (2.4)

where (OlSl0) is the vacuum expectation value of the
5 matrix, represented by vacuum graphs, while (p l

It.'l q)
is, by definition, represented by the connected graphs
for the scattering process itself. ' Because we are
dealing with a time-dependent external field the
vacuum-to-vacuum transition probability l(0lSl0) l'
is not unity, and so (OlSlO) is not a mere phase factor
and has to be expressly considered.

To calculate (pl Rl q) define M(p, q) such that

(PlRlq)=N(p)M(p, q)N(q) . (2.5}

From the 5 matrix an integral equation for M(p, q) can
readily be derived. For weak external fields ()t small),
where an expansion in Geld strength is permissible we

have, by Feynman-Dyson methods,

This is a measurable function for reasonable A'(p —k)
provided the limit e—+0 is not taken until the end of the
calculation. "

The Fredholm traces 0-„can be looked at graphically,
as stated in the introduction. For this particular integral
equation, the 0's happen to be precisely the expressions
represented by the vacuum graphs of the S matrix
theory. Define

(2.11)

so that the Fredholm determinant l Eq. (1.12)j is

d()t) = exp( —L). (2.12)

From (2.11), I, is the sum of all vacuum graphs taken
singly. '4 With this deGnition of I., Feynman has shown
that

(OlSl0) =exp( —L), (2.13)

This is the same equation and can be solved by the same methods.
"We refer here to the standard procedure for calculating

Fey')man integrals for O.„and E", in terms of which the answer is
expressed /formulas (1.3)—(1.9)g. This procedure has been demon-
strated for particular examples by R. P. Feynman /Phys. Rev.
76, 769 (1949); see particularly ~he penultimate paragraph of
Sec. 7j and discussed generally by R. I. Eden, Proc. Roy. Soc.
(London) A210, 388 (1952).

For e&0 the momentum integrals are a)1 taken along the real
axis. After completing these integrals, it is, in general, necessary
to keep e&0 in order to define the analytic coritinuation of these
functions round the branch points which occur at creation
thresholds. Only after this can the limit e—&0 be taken, to give
the physical answer.

'4Note that 0.2~+1=0 by Furry's theorem, The factor (1/2n)
in the nth term comes from (2n t) ' in (2.1) multiplied by (2n —1) t,

the number of permutations of the 2e points round the- closed
loop of the graph for 02„.

"This equation has already been considered by M. Neuman,
Phys. Rev. 83, 1258 (1951);85, 129 (1952).

12 Since Sp"(x, y), the electron propagator in a given 6eld,
satisfies

z feA(x—) S—e "(x, y) = 2zS(x y)—, —

eSz"(x, y) =Se(x—y) —— Sz(x—z)A(z)Se"(z, y)Cz.
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and, therefore "
(OISIO) =d()t). (2 14)

os ——(2rr)' ' dPdk

Let us now consider the 0.'s for convergence. The
expression for 0.~ is

inhnite, but its real part is finite, "and it thus contributes
a finite numerical factor to the probability

I (plSI q) I'.
Our final expression for

I (plSI q) I' is thus an infinite
series in X, each term of which is finite, and which is
absolutely and uniformly convergent for any value of X,
that is, for any strength of field.

But according to the form of 6() ) given by (1.15),

A, ()t, p) =exp( —1.')Mr(p, q). (2.21)

Thus, the Fredholm solution, Eq. (2.20), can be written

By a change of variable, (p I
S

I q) = (p I
&r I q) exp( —I). (2.22)

os ——(2m)' i dtA„'(t)A, '(—t) dk

Cq) oo, (2.16)

and Fredholm theory is not immediately applicable to
the equation in this form. This difficulty can be over-
come by the device of Poincare, ' stated at the end of
the previous section. Predholm theory can be applied
in a slightly modified form to our equation, provided"

g,(~. (2.17)

For the moment we will assume this condition to be
satisfied and will show in the next section how all
fields of physical interest can be included.

Assuming (2.17), the unique convergent solution for
any strength of field is given by replacing o.2 by zero
in the general formulas of Sec. 1. By (1.3), (2.8), and
(2.12) this is

XTr[y„Sp(k) y,Sp(t k) ]. —(2.15')

The integral over k is the expression which occurs in
the vacuum polarization and is divergent. (This is
obvious from the graph of 0.2, which is the well-known
loop of two electron lines. ) Thus, os diverges for any
choice of A'. By (1.16) it follows that

This is precisely the solution by iteration, properly
normalized, which is derivable from (2.1) by standard
methods and was originally given by Feynman. ' This
is a rather surprising result, since the iteration (p I

Rr I q)
has, in general, a finite radius of convergence, and from
Feynman's point of view the term exp( —I) is intro-
duced simply as a normalizing factor. This identity of
the normalized iterated solution and the Fredholm
solution is a special property of the system under dis-
cussion and is a direct consequence of the relation
(2.14) between the Fredholm determinant and the
vacuum expectation value of the 5 matrix. The identity
is not true for static external fieMs, which, for reasons
which will be made clear in the next section, cannot
be regarded as a particular case of the time dependent
field.

%e remark finally that the above theory can equally
well be applied to the calculation of pair creation. Also,
since electrons interact with each other explicitly only
through the exclusion principle on the initial and final

states, we can consider any number of electrons or
positrons. This has been shown by Feynman. '

3. FREDHOLM CONDITION AND THE
STATIC FIELD

A. The Fredholm Condition

where

(Pl~lq) =(~(P)~,(&, P)N(q))/exp( —I'), (2.18)

(2.19)

We have yet to establish the condition (2.17), which

justifies the application of the Fredholm theory to
(2.9). From (1.17) and (2.10),

and & is defined by (1.7) applied to (2.10). The suKx q
on 6, denotes that it is also a function of q. By (2.11)
and (2.13)

(p I
S

I q) = exp( —I.) {u(p}A, (X, p) u(q) )/exp{ —L')
= (u(p)A, (l~, P)N(q)) exp[ —osX'/2]. (2.20)

The factor in curly brackets is essentially the resolvent
of the Fredholm solution of '(2.9) and is thus an integral
function of X. The ~2 which occurs in the other term is

' This result was obtained previously by M. Neuman. See
reference 11.

' We are actually employing a generalization of Poincare's
result, which has been proved by numerous authors LF. Smithies
{private communication) j.

Cs= )dktdksdtdm

x
I
A(t —ki)SF(kt)A(ki —~)S~(~)

XA(t —ks)SF(ks)A(ks —rit)S~(~)
I

(3 1)

"This has been calculated directly by J. Schwinger and others.
The result in our notation is quoted by R. Karplus and N. M.
Kroll, Phys. Rev. 77, 536 (1950). That the real part is 6nite can
be inferred, however, from the unitarity of the S matrix. I.et

S= 1+eS1+e'S2+
Since S is unitary,

S2+S2*=—S151 .
Therefore,

R]L2~,g=(o)s,ys, *lo) = —~ l(ols, l p, q) I,

where the right-hand side is the total probability of creating one
pair, calculated to lowest order. This is finite.
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where J„is the current producing the external field. Sy
a Fourier transformation this is equal to the energy
density of the field, integrated over all space and time.

Now the transition probability

~-= f(P(sfq) I' (3.3)

is the probability for the whole of time and the whole
of space. For purely general fields this is in6nite and.
there is, in fact, no physically significant cross section
that one can consider for such a 6eld. We consider now
the space extension only. In most cases the field will

be defined throughout space, but will be effectively
nonzero only over a finite region. In such a case the
probability for the whole of space gives the probability
for the whole 6eld, which is the physically significant
quantity. Alternatively the fieM may have some general
periodicity in a lattice with some cell volume v. One
may then ask for the cross section per cell. This may
be calculated by considering the probability for all
space for a 6eld equal to the given field over a large but
finite volume V(»v) and zero elsewhere. The boundary
should be made smooth and taken large enough for
surface effects to be negligible.

The treatment of the time is exactly analogous.
Either the field is gefined for all time in such a way
that it is effectively nonzero only for a finite period (in
this case co„ is, directly, the physically signi6cant ex-
pression) or it has a periodicity r. In this latter case the
probability per period v can be calculated from u„, for
the field switched on for a long, but finite time T(»r).

In any signi6cant case, the 6eld considered is nonzero
only over a finite region and for a 6nite time. For such
6elds the energy integral E is 6nite. But this integral
is only convergent if A(k) falls off faster than k ' for
large k.'" Therefore, for any time-dependent 6eld for
which a physically reasonable cross section can be con-
sidered, we have

c~( pp

and Fredholm theory is applicable.

B. The Static Field

(3.4)

For a static field the expression of physical signifi-
cance is not co, but co, the probability per unit time.

This is not true if A (x) is singular at the origin, but such
cases may be included by introducing a suitable factor to smooth
out the singularity.

It must be shown that this is convergent. It is not true
of C2 as it was of C&, that by a change of variables one
can produce. a divergent factor, independent of A(k).
Dyson has shown that the convergence of such integrals
can be estimated by counting powers. On this basis it
can be seen that Cs converges, provided A(k) falls off
faster than k ' for large k.

Consider the expression

E= f J'„(k)A„(k)d4k= k'A„(k)A„(—k)d4k, (3.2)

To derive this exactly from the S matrix, Eq. (2.1), it is
necessary to consider the field to be on for an infinite
time, Since the argument above depended essentially
on the fact that the field was only "on" for a 6nite time,
the static field requires special consideration.

A static 6eld is

A„(k) =A„(k)8(ks), (3.5)

where lt is the space part of k. Energy is conserved in
any real process, so that

f(0 fSf0) fs=1.

Thus, (0(S(0) is simply an (infinite) phase factor and
probability amplitudes are given directly by (P(R(q).
Define M'(p, q) by

M(P, q) =M'(p, q) ~(Po —qo). (3.6)

The solution by iteration for M'(p, q) and hence
(P(Rr fq) is obtained by substituting (3.5) and (3.6)
into (2.6)."The integral equation for M'(p, q) is, from
(2.9),

M'(p, q) = XA'(p —q) —2~X' f A'(p —k)Ss(k)

where
XM'(ir, q) dk, (3.7)

Ss(k) =Sp(k, Ps) (3.8)

is given by (2.7) with ks replaced by ps. The Predholm
solution of (3.7) can be performed analogously to the
solution of (2.10). The condition for the applicability
of Fredholm theory is the convergence of the three-
dimensional analog of (3.1). This can be deduced from
the convergence of

f
ii

f 'A„(k)A„(—k)dk.

~-= l(p(R(q) I'&(ps —qs)&(0).

This is, of course, in6nite, but the final factor is

(3.11)

)F/2

8(0) =Lim Lim—
2' oo x-+0

e'"dt =Lim(T/2~), (3.12)
+~00

where T is the time for which the field is on. The prob-
ability per unit time is

oi= Lim(oi„/T) =—
l (y( R

l q) f 'b(p, —qs). (3.13)
2x

"R.H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (195k).

This is the integral of the energy density over all space
(but not time), which must converge for any physically
reasonable 6eld, as in the previous section.

Prom (3.6),

(p(R (q) =u(y)M'(p, q)u(q) 8(ps —qs)

=(p (R( q) ~(P —qo). (3.10)
Thus,
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Note that owing to the extraction of a 8-function
factor in the derivation of (3.7) from (2.10), it is Not

true that the Fredholm determinant d(X) of (3.7) is
equal to (0~5~0). Consequently, for a static field, the
iterated solution, (y~ Rr ~q), (Born approximation) is
vol the same as the Fredholm solution. This is in
agreement with the conclusion of Jost and Pais. '

The authors are indebted to Dr. N. Kemmer for
numerous discussions and particularly Dr. F. Smithies
for much help with the theory of integral equations.
One of us (A.S.) would like to thank the Education
Department of the Punjab Government, Pakistan for
a grant enabling him to stay at St. John's College,
Cambridge.
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Spherically Symmetric Solutions in Nonsymmetrical Field Theories. I.
The Skew Symmetric Tensor*

P. C. VAIDYA

Vullubh Vzdyunugur, Anund, India
(Received August 1, 1952)

The spherically symmetric form of the skew tensor g;&, given by Papapetrou, is not suKciently general.
V'

A more general form is found. This necessitates a reconsideration of the program of spherically symmetric
solutions in nonsymmetrical field theories initiated by Papapetrou. The present paper makes a beginning
in this direction.

The new form of the spherically symmetric tensor g;& is derived from a consideration of the infinitesimal
V'

rotation of a sphere about a diameter. It is hoped to use this form to obtain nonstatic solutions in nonsym-
metrical Geld theories which will correspond to solutions of a radiating star in general relativity.

I. INTRODUCTION
' QAPAPETROU' initiated the study of rigorous

(nonapproximate) solutions in the various unified
field theories by showing that the skew symmetric
tensor g;s with only g,4= w(r, t) and g» ——v(r, t) sine as

the surviving components, is spherically symmetric.
This form of the tensor was the starting point for a
number of investigations in this direction. Papapetrou
himself worked out the solutions of the field equations
of Schrodinger. ' Rigorous solutions of the field equations
of Einstein and Strauss' were given by Kyman. 4

Bandyopadhyaya' gave a simple solution of the latest
unified field theory of Einstein. ' Recently Bonner~ has
satisfactorily solved the problem of finding static
spherically symmetric solutions in Einstein's unified
field theory. All these investigations began with the form
of g;I, found by Papapetrou.

A nonsymmetrical tensor field can be split up into
its symmetrical and skew symmetrical parts. Ke write

g's =ge+ gts,

the bar or the hook below the sufFixes distinguishing
the two parts, respectively.

*This work was done under the Springer Research Scholarship
of the University of Bombay, Bombay, India.

' A. Papapetrou, Proc. Roy. Irish Acad. AS2, 69 (1948).
For field theory of Schrodinger, see E. Schrodinger, Proc. Roy.

Irish Acad. ASI, 163 (1947).' A. Einstein and E. G. Strauss, Ann. Math. 47, 731 (1946).
4 M. Wyman, Can. J. Math. 2, 427 (1950}.' G. Bandyopadhyaya, Nature 167, 648 (1951).

A. Einstein, hleawseg of the Relotessty (Methuen, London,
1950), Appendix II.' W. B. Bonner, Proc. Roy. Soc. (London) A209, 353 (1951);
A210, 427 (1952).

For spherically symmetric solution the form of g;&

is well known from general relativity. In order to find
the spherically symmetric form of g;&, Papapetrou con-

V'

sidered the rotation of a sphere about a diameter I'OP'
and compared the values of the various components of
g I, before and after the rotation at the point P on the
sphere and the axis of rotation. Since a rotation through
a right angle will interchange the components per-
pendicular to OP, these would vanish at a point on the
axis of rotation. Hence Papapetrou's method will
naturally give the components of g,& along the radial
direction only. That is why only gi4. and g» (which cor-

'V 'V

respond to the radial components of magnetic and
electric Geld, respectively) survived in his tensor. In
what follows we consider an in6nitesimal rotation of a
sphere and compare the values of g,7, at a point not on

V'

the axis of rotation. %e shall, of course, recover
Papapetrou's components; but we shall also find that
there are some other components of g;I, which are

'V

nonzero.

II. INFINITESIMAL R,OTATIONS OF A SPHERE

In this section we shall be interested in the two-
dimensional geometry of the surface of a sphere of
radius a. The fundamental quadratic form P on this
surface is given by

it = ttsdes+ ps sjnsgdys =gss(dgs)s+gss(dgs)s. (2.1)

The contravariant components P, (tt= 2, 3) of an
infinitesimal transformation which would represent a
motion of the sphere ia.to itself, satisfy the following


