pointed out that a negative quadrupole moment is in agreement with the predictions of all the simple nuclear models that have been proposed for Li⁷. However the magnitude and even the sign of $Q(\text{Li}^7)$ must still be considered to be in doubt for the following reasons:

(1) The quantity q is the difference between two very nearly equal terms which represent, respectively, nuclear and electronic contributions. The electronic term in q is much more sensitive than the dissociation energy to changes in the wave function. Because of this sensitivity improved wave functions may lead to quite different values of q. One of us (M.A.M.) is repeating the calculations with the more accurate 18-term wave function.

(2) The variational wave function has been determined for only one internuclear distance, R = 2.98A. The assumption made about the variation of q with R was based on calculations made with a simpler wave function.

(3) The experimental value of eqQ is rather uncertain, since the satellite maxima could not be resolved. There seems to be little doubt, however, about the sign.

(4) No average was made over the vibrational states of the molecule, and no account was taken of rotational distortion. The resulting errors are probably very small.

(5) In both of the wave functions used in these calculations, the 1s functions are of the form $e^{-\alpha r}$. No account has been taken of the shielding effect due to the quadrupole moment induced in the 1s shell. Sternheimer⁹ has calculated a correction factor for this effect in atoms. He finds that for the excited lithium atom the observed nuclear quadrupole moment should be multiplied by the factor 1.148. Although our use of molecular wave functions for the valence electrons precludes a direct application of Sternheimer's result, it seems likely that the correction would be of the same order of magnitude.

It seems unlikely that $Q(\text{Li}^7)$ can be calculated with reasonable accuracy from the observed quadrupole interaction energy until a molecular wave function for Li₂ is developed which will compare in accuracy with the James-Coolidge function for H_2 .

We are indebted to Dr. R. J. Finkelstein and Dr. R. D. Present for their valuable suggestions and discussions concerning this work and to Dr. H. M. James who kindly made available his manuscripts on the Li₂ molecule.

Note added in proof .- The calculations with the 18-term James function mentioned previously have been completed, and the following results were obtained: dissociation energy = -0.51 ev (James originally gave -0.62 ev due to a slight error in his calculations). Using R = 2.98 A: q' = -0.0030 atomic unit, $Q(\text{Li}^7) = -4.2 \times 10^{-26}$ cm².

⁹ R. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244 (1951); 86, 316 (1952).

PHYSICAL REVIEW

VOLUME 90, NUMBER 4

MAY 15, 1953

Excited States of Even-Even Nuclei* GERTRUDE SCHARFF-GOLDHABER

Brookhaven National Laboratory, Upton, New York (Received January 20, 1953)

A general survey of excited states of even-even nuclei yields the following results: The *n*th excited state has usually a spin $I \leq 2n$. For n=1, the assignment I=2+ (even parity) is compatible with experimental results for 66 out of 68 nuclei investigated. For n=2, of 26 nuclei investigated, about one-third have I=2+, onethird I=4+, and one-third miscellaneous spins of both even and odd parities. The energy of the first excited state plotted against the number of protons or neutrons in the nucleus varies rather smoothly and reaches maxima at closed shells. Wherever the first excited state is very low, e.g., in the rare earths region and for the heavy elements from thorium up, the one-particle model for odd A nuclei is likely to break down except for the ground state. The lack of isomers of odd proton nuclei below magic number 82 may be due to this fact. The average energy of the first excited state of the even-even core in this region is of the order of 0.1 Mev, whereas this energy is of the order of 0.5 Mev for the core of the corresponding odd neutron nuclei (N < 82). Isomerism in even-even nuclei is discussed. The results are compared with theoretical predictions derived from an extended j-j coupling model and from the liquid drop model of the nucleus.

I. INTRODUCTION

CINCE the strong spin orbit coupling model^{1,2} Dimplying a "shell structure" of the nucleus was suggested several years ago, nuclear physics has gravitated toward the study of odd A nuclei. This model, which received its first impetus from a consideration of the pronounced stability of certain nuclear species, soon scored a series of important successes wherever the prediction of spins and parities of nuclear states entered, e.g., in the fields of beta-decay and of isomeric states. However, at the same time a number of features

became apparent which seemed to contradict a rigorous single particle picture, such as the large values found for the matrix elements of a number of E2 transitions, the sign and size of quadrupole moments, and the scarcity of odd-proton isomers for elements with 50 < Z < 82. Also, the model in its present form does not provide a basis for quantitative prediction of energies of nuclear states.

Obviously, some interaction of the single particle with the even-even core has to be taken into account. Whether the whole core has to be considered^{3,4} or, in first approximation, only the "loose" particles with the

^{*} Work was supported by the U. S. Atomic Energy Commission. ¹ M. G. Mayer, Phys. Rev. **75**, 1894 (1949); **78**, 16 and 22 (1950).

² Haxel, Jensen, and Suess, Phys. Rev. 75, 1766 (1949).

³ J. Rainwater, Phys. Rev. **79**, 432 (1950). ⁴ A. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 26, 14 (1952).

Xe ¹²⁸	
X e ¹²⁶	
Te ¹²⁴	Pu 238
Te ¹²²	Th 228
Cd ¹¹⁴	Ra 226
Callo	Ra 224
Pd ¹⁰⁶	Em 222
Mo ⁹⁶	Em ²²⁰
Mo ⁹⁴	D- 214
0 88	P0 212
ST (or i+)	P0 208
5r**	Pb 206
Kr ^{°°}	Pb 204
Se'	Pb
Se (or 1.)	Hg
Ge ⁷⁴ (011+)	Hg
Zn (or i+)	Pt 196
Zn (0ri+)	Pt 194
Ni (ori)	Os 188
Ni 58	Os
Fe	W
Ti ⁴⁸	W N
Ti ⁴⁶	Hf ¹⁸⁰
Ca (or 1 +)	Hf 176
Ca ⁴²	Yb 170
A 40	Er 166
Δ 38	Dy 160
Si (01 (+)	Gd 152
Ma ²⁴	5m ¹⁵²
Nio 22	S
No ²⁰	Sm ¹⁴⁸
	Nd 144
0 12	142
0.0	NO (or (+)
ыe D. ⁸	0 134
 ве	ва

FIG. 1. Distribution of known spins and parities of first excited state of even-even nuclei. For methods of determination and references see Table I, columns 6 and 7. For 66 nuclei, a spin assignment of 2 and even parity is compatible with experimental results. In 53 of these cases a spin 2 and even parity can be assigned with certainty. For eleven more nuclei a spin of 2, even, seems probable, but the possibility that their first excited state has a spin 1, even, cannot be excluded. For two other cases, it can only be said that $I \leq 2$ for the first excited state. See Secs. II, 1 and III, 1 of text.

same quantum numbers (l, j) as those of the odd particle,^{5, 6} is not yet clear.

At this point, it seems of great interest to survey our empirical knowledge of even-even nuclei, for its own sake as well as to promote a better understanding of odd A nuclei.⁷

We restrict ourselves here to a survey of the spins and parities of the first 3 excited states of even-even nuclei and of the energy spacings between the ground state and these 3 excited states.

FIG. 2. Distribution of known spins and parities for the second excited state of even-even nuclei. The light nuclei show a preference of spin 4 and even parity for their second excited state. This is in agreement with theoretical expectations for nucleon pairs with low j. States with odd parity can be described as the result of "splitting up" of a pair of nucleons. See Secs. II, 2 and III, 2 of text. According to a private communication by F. Metzger, Os^{186} has also 2+ for its second excited state.

⁵ D. Kurath, Phys. Rev. 87, 218 (1952).

⁶ B. H. Flowers, Phys. Rev. **36**, 254 (1952); Proc. Roy. Soc. (London) **215**, 398 (1952); and previous publications. ⁷ Preliminary notes: G. Scharff-Goldhaber, Phys. Rev. **87**, 218 (1952); Physica **18**, 1105 (1952).

For the ground state of a nucleus, it is generally assumed that an even number of equivalent nucleons couple to zero angular momentum and, of course, even parity. Only a small number of nuclear spins of eveneven nuclei have actually been measured.⁸ but many experimental facts indicate that this assumption is correct. We therefore base our conclusions on spins and parities of excited states on the assumption that the ground state of an even-even nucleus has a total angular momentum (hereafter called spin) I=0 and even parity.

II. RESULTS OF THE SURVEY

1. Goldhaber and Sunyar⁹ pointed out in 1951 that the first excited states of even-even nuclei have predominantly spin I=2 and even parity.¹⁰ The summary of the first excited states with spin and parity known at that time yielded nineteen examples supporting this "2+ rule" and seven contradicting it. These seven cases consisted of two cases with spin 0, even, and five with spins 1 and 3, some of them with odd parity.

Meanwhile a great number of new spin assignments have been made, often with more accurate methods.

	FIRST EXCITED STATE	SECOND EXCITED STATE	
80%-		4+	FIG. 3. Percentage distribution of spins and parities of ground state
60%- 40%-	2+	2+	and first two excited states of even-even nu- clei. See Secs. II, 3 and III, 3 of text.
20%-		MISC.	

Figure 1 shows the distribution of spins and parities of first excited states of even-even nuclei: Apart from 2 nuclei, no sure exception from the 2+ rule for the first excited state exists. The nuclei listed range from very light (Be⁸) to very heavy (Pu²³⁸). There are now altogether at least 66 nuclei for which a 2+ assignment is compatible with experimental results. Of these, 53 nuclei have 2+, 11 have either 2+ or 1+, and 2 have either 2+ or $1\pm$.

The two exceptions, O¹⁶ and Ge⁷², have spin zero and even parity in their first excited state. No γ -radiations are observed in these cases. The transition from the much investigated 6.05-Mev state of O¹⁶ takes place by pair emission with a half-life of 7×10^{-11} sec,¹¹ whereas the 0.68-Mev state¹² of Ge⁷² decays by means of internal

⁸ J. E. Mack, Revs. Modern Phys. 22, 64 (1950)

 ⁹ M. Goldhaber and A. W. Sunyar, Phys. Rev. 83, 906 (1951).
 ¹⁰ Independently, Horie, Umezawa, Yamaguchi, and Yoshida [Prog. Theoret. Phys. 6, 254 (1951)] discussed the spins and par-ities of first and second excited states of some even-even nuclei.

 ¹¹ Devons, Hereward, and Lindsey, Nature 164, 586 (1949).
 ¹² Bowe, Goldhaber, Hill, Meyerhof, and Sala, Phys. Rev. 73,

^{1219 (1948).}

FIG. 4. Energies of first excited states of even-even nuclei plotted against number of neutrons. Points for isotopes of the same element are connected with straight lines. The corresponding proton number, encircled, appears next to the connecting lines. (See Secs. II, 4 and III, 4 of text.)

conversion with a half-life of 0.3 μ sec. These lifetimes are in agreement with theoretical expectations.¹³ Possible interpretations of these 0+ states will be given in Sec. III, 1.

2. The distribution of spins and parities for the second excited state of even-even nuclei, as represented in Fig. 2, indicates that spin 2 or 4 and even parity is preferred.

¹³ S. D. Drell, Oak Ridge National Laboratory Report ORNL-792 (unpublished). Among the light nuclei spin 4 predominates. For medium heavy and heavy nuclei both possibilities appear. In addition, spins of 1 or 3 occur, and some second excited states have odd parity. Outstanding is again O^{16} with a spin of 3-, and Pb^{204} , with 7-.

It must be borne in mind that the identification of a state as a second excited state is not always certain, since a second excited state, e.g., of low spin 0 or 1, situated between a 2+ and a 4+ state may be poorly

populated and hence be missed, if the 4+ state is mainly excited. It is much less likely that a first excited state is missed, unless it should turn out to have a very high spin. In that case it would be a metastable state. There is at present no evidence for the occurrence of low-lying, long-lived metastable states in even-even nuclei.

The spins of the second excited state will be further discussed in Sec. III, 2.

3. The percentage distribution of spin and parity of

FIG. 5. Energies of first excited states of even-even nuclei are plotted against number of neutrons. (a) $N \leq 60$. (b) N>60. Energies for nuclei differing by 2, 4, or 6, protons are compared, where possible. "Energy columns" for nuclei with either a magic neutron or proton number are cross hatched; energies of double magic nuclei are shown by black columns (see Sec. II, 4 of text).—For Te¹²⁶ a value of 0.64 Mev should probably replace the 2 alternative energy values shown in the figure.

the ground state and the first two excited states is shown in Fig. 3. From this distribution and from the fact that very few long-lived even-even isomers exist, one can deduce that, as a rule, $I \leq 2n$ for the nth excited state of an even-even nucleus. Occurrence of an isomer would imply a spin change $\Delta I \geq 3$ between two successive states.

The only long-lived even-even isomers known at present are Pb^{204m} (68 min), Hf^{180m} (5.5 hr), and Pb^{202m} (5.6 sec). Pb^{204m} decays by means of a two step (E5-E2) isomeric transition.¹⁴ Its isomeric state is the 7-state mentioned under II, 2. For Hf^{180m} and Pb^{202m},¹⁵ spin and parity of the isomeric state are not known. Hf^{180m} emits a very complex γ -ray spectrum, suggesting that the isomeric state is probably the fourth excited state and that its spin $I \ge 7.^{14}$

4. We come next to a consideration of the energy of the first excited state. Goldhaber and Sunyar⁹ have already pointed out an interesting regularity: In the rare earth region first excited states of very low energy, of the order of 100 key or less, occur, from which transitions to the ground state with matrix elements >1(some with $|M|^2 \sim 150$) take place.

Meanwhile, a systematic survey of the energies of all reasonably well-assigned first excited states of even-even nuclei has been carried out.^{7, 16-18} The result is shown in Fig. 4. Here, the excitation energy is plotted against the number of neutrons in the nucleus. From this graph, the following conclusions may be drawn:

A. The energy of the first excited state of even-even nuclei varies smoothly and decreases—in general—with increasing mass number. However, the curve has strong maxima for the "double magic" nuclei, O¹⁶, Ca⁴⁰, and Pb²⁰⁸, i.e., nuclei with a magic number of neutrons and a magic number of protons. Smaller maxima occur for nuclei with a magic number of neutrons and still less pronounced maxima for nuclei with a magic number of protons. As mentioned above, a deep and smooth trough appears in the rare earth region between the neutron numbers 82 and 126 and the proton numbers 50 and 82. After having reached a maximum for Pb²⁰⁸, the curve descends again in the heavy element region to an energy as low

¹⁴ M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179 (1952). ¹⁵ N. J. Hopkins, Phys. Rev. 88, 680 (1952).

 $^{^{16}}$ Independently, a similar survey was made by P. Preiswerk and P. Stähelin, Helv. Phys. Acta 24, 623 (1952).

¹⁷ For heavy elements, the dependence of the excitation energy of even-even nuclei on A has been considered by F. Asaro and I. Perlman, Phys. Rev. 87, 393 (1952). ¹⁸ A. H. Wapstra [Physica 18, 799 (1952)] discusses the branch-

ing ratio for alpha-emission leading to the first excited state of an even-even nucleus.

as 40 kev. At the last point, which denotes the first excited state of Pu²⁴², no indication of an eventual rise is noticeable. On the whole, several remarkable regularities may be discerned in Fig. 4: e.g., a certain symmetry around the points for Sn stands out. The element lines for neighboring elements are frequently arranged in parallel, which would indicate, as Preiswerk and Stähelin¹⁶ have pointed out, that it may be possible to construct the energy function for the first excited state as a sum of functions, of which one depends only on the number of protons and the other on the number of neutrons. However, in the environment of "doubly magic" nuclei, this rule seems to be broken: the lines for A(18) and Ca(20) intersect, and the point for Pb^{204} lies below that of Hg²⁰².

B. In a large number of examples, addition of two protons to a nucleus hardly affects the energy of the first excited state. This is emphasized by the representation in Fig. 5 (a) and (b), in which the excitation energies of nuclei with the same number of neutrons are compared. Strong differences appear only where the proton number of one of the two nuclei is "magic." Addition of a *neutron* pair to a nucleus seems to have a slightly more disturbing effect on the position of the first level, as is indicated by the slopes of the lines in Fig. 4 connecting points for isotopes of the same element.

C. If one adds a single nucleon to an even-even core and considers the excitation of the odd nucleon and that of the core in first approximation as independent, one would expect the excitation energy of an odd A nucleus to be at least as low as, or lower than, that of its even-even core. This expectation is found to be in excellent agreement with the facts.

5. In Table I the energies, spins and parities of the three lowest excited states of even-even nuclei are listed. The method of measurement used and the reference are given for each entry. The arrangement of the table and the symbols used are explained in the caption.

Wherever the energy of a first excited state is known with reasonable certainty from the knowledge of a decay scheme or the *Q* value of a reaction, it appears also in Fig. 4. In cases where it is known only that a γ -ray of a certain energy is emitted but the excited state from which it starts is not identified, the energy is given in parentheses in Table I and, as a rule, not included in Fig. 4. For the determination of spin and parity of an excited state a number of different criteria were used. The most prominent among these were: (1) Measurement of the K-conversion coefficient of the γ -ray in question, which allows identification of the order of transition by means of the table of Rose et al.¹⁹ (2) Measurement of the ratio of K-conversion electrons to L-conversion electrons (K/L ratio) and comparison of this value with empirical curves given by Goldhaber and Sunyar.⁹ (3) Measurement of γ - γ angular or polarization correlation. (4) Measurement of β - γ angular correlation. (5) Measurement of angular cor-

¹⁹ Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79 (1951).

relation of γ -rays and particles emitted in a nuclear reaction. (6) Intensity ratio of L-conversion lines.²⁰ (7) Wherever lifetimes were measured, the multipole order of a transition could usually be derived by means of Weisskopf's formulas²¹ or empirical curves.⁹ (8) For the case of β -decay a clue is furnished, if spin and parity of the mother nucleus as well as the character of the beta-spectrum leading to the excited state are known. (9) Measurement of angular distribution²² and polarization²³ of γ -rays from aligned nuclei.

Wherever the lifetime of a first excited state has been measured, it is also given in the table.

III. DISCUSSION

Let us now compare the results of this survey on spins, parities, and energy spacings of excited states of eveneven nuclei with conclusions which may be derived from various nuclear models. We shall start out with the extended strong spin-orbit coupling model: An even number n of equivalent neutrons or protons in an unfilled subshell (quantum numbers l, j), interacting with each other, may be considered.

(1) For this model, under the assumption of short range forces, the lowest state is always caused by the excitation of a single pair of nucleons, with a resulting nuclear spin of 2 and even parity.^{5, 6} This result is clearly in agreement with most of the empirical data: the first excited states of the majority of nuclei are 2+. It also provides a possible explanation for the two certain exceptions: In O¹⁶ the neutron shell as well as the proton shell of 8 is filled. In order to excite this nucleus, we may have to transfer a neutron pair, say, from the $p_{1/2}$ to the $d_{5/2}$ shell, with resultant spin 0, even. Similarly, in Ge⁷² the $p_{1/2}$ neutron shell and the $p_{3/2}$ proton shell may be filled and excitation may take place by raising a proton pair or a neutron pair to a higher configuration.

However, if this model were strictly adhered to, we would not expect 2+ levels for nuclei with filled subshells. In this light the 2+ levels of nuclei like Ce¹⁴⁰ $(h_{11/2}$ neutron shell and $g_{7/2}$ proton shell filled) seem to require additional explanation. On the other hand, this fact would help with the interpretation of spin 1 and even parity in a number of cases, if these assignments should prove to be right: e.g., for C¹⁴ this would correspond to the splitting of a proton pair, ending up with one $p_{3/2}$ and one $p_{1/2}$ proton. Similarly, a 1+ level in Si²⁸ may be due to the splitting of a $d_{5/2}$ neutron pair, with one neutron being transferred to the $d_{3/2}$ shell.

In particular, on this basis doubly magic nuclei are not expected to have a lowest excited level with spin 2+. We have already seen that this is borne out for O^{16} which has a first excited state 0+. Spin and parity of the first level of Ca⁴⁰ (20-20) are not yet determined.

²⁰ J. W. Mihelich, Phys. Rev. 87, 646 (1952); Gellman, Griffith, and Stanley, Phys. Rev. 85, 944 (1952).

 ²¹ V. F. Weisskopf, Phys. Rev. 83, 1073 (1951).
 ²² Daniels, Grace, and Robinson, Nature 168, 780 (1951);
 Gorter, Poppema, Steenland, and Benn, Physica 17, 1050 (1951).
 ²³ Bishop, Daniels, Goldschmidt, Halban, Kurti, and Robinson, Phys. Rev. 88, 1432 (1952).

Pb²⁰⁸ (82–126), however, is known to have I=2, even, in its first excited state, in disagreement with this rule. Pryce²⁴ has discussed this difficulty in some detail.

Another explanation for the 0+ level of O^{16} has been given on the basis of the alpha-particle model.²⁵

The liquid drop model yields a spin of 2 and even parity for the first excited state of any even-even nucleus. Therefore, the spin of the first excited state of Pb²⁰⁸ is compatible with it. For light nuclei this model is, however, expected to break down.

On the whole, it may be said that the evidence concerning the spin of the first excited state does not allow a definite distinction between the various models to be made at present.

(2) For the second excited state of an even-even nucleus, the extended spin-orbit coupling model as defined in Sec. II, 1 predicts 4+ for 2 nucleons or 2 holes with $j = 5/2, 7/2, 9/2, 11/2, \cdots$, if it is assumed that no change of configuration takes place.^{26,27} For 4 nucleons with j=7/2 and 4 or 6 nucleons with i=9/2, however, a second 2+ state is possible. This fact may explain why light nuclei (low i values) have predominantly a second excited state with I=4+, whereas for medium heavy and heavy nuclei both possibilities appear. In this simplified model (no interaction between protons and neutrons) a 3+state appears for the first time for 4 or 6 nucleons with j=9/2. At least one of the two 3+ states in Fig. 2, that of A³⁸, cannot be explained in this way. If one considers the interaction of 2 loose protons and 2 loose neutrons with the same j, one finds that a 3+ state may result. However, for A³⁸ (filled neutron shell) this assumption does not apply. In addition, even under the assumption of the splitting up of a pair of nucleons a 3+ state cannot be explained for A³⁸. The 1+ state of Nd¹⁴⁴ may be attributed to the coupling of the spin 2+ of a proton pair with that of a neutron pair. The I=0+state of Pd¹⁰⁶ may be due to the change of configuration of a neutron pair.

The odd parity states require a change of configuration of at least one nucleon in the j-j coupling model. The I=3- state of O¹⁶ may be interpreted as due to the splitting up of a $p_{1/2}$ neutron pair, with one neutron changing over to a $d_{5/2}$ state. According to Dennison,²⁵ four alpha-particles can also be coupled to give a spin 3-. The I=7- state of Pb^{204m} can be ascribed to the splitting up of an $i_{13/2}$ neutron pair with one neutron going to the $p_{1/2}$ shell.

The predictions made on the basis of the "liquid drop" model⁴ for the second excited state of an eveneven nucleus are: I=0, 2, or 4; even parity.

(3) For the higher excited states not too definite conclusions can be drawn in the framework of the "loose particle" picture. However, the rule derived empirically: $I \leq 2n$ for the *n*th excited state is in agree-

²⁷ D. C. Peaslee (unpublished).

ment with this model and also with the liquid drop model. The only well-studied case of an even-even isomer, that of Pb^{204m} which was discussed above, is an exception to the rule $I \leq 2n$. In this connection the isomer Mo^{93m} is of interest.²⁸ It can be explained as due to isomerism of the core (spins 2, 4, 8 for first, second, and third excited state, respectively), while the odd neutron probably does not change its configuration.

(4) The rather smooth variation with A of the energy of the first excited state of an even-even nucleus and the deep troughs between closed shells may speak for the existence of interconfigurational mixing.29 The greatest amount of mixing takes place in the middle of a shell, which has the effect of lowering the level in question due to the interaction of various configurations.

The low energies of first excited states in the rare earth region may be responsible for the scarcity of oddproton isomers for 50 < Z < 82, which, as mentioned above, presents one of the difficulties for the strict single particle model: Since the even-even core is easily excited, the single proton may prefer to couple with the 2+ state of the core to form the first excited state. Thus, the requirement for isomerism, $\Delta I > 3$, will be very rarely realized. On the other hand, the core excitation energies for 50 < N < 82 are of the order of 0.5 Mev, which is usually higher than the excitation energy for the single neutron. Hence, a great number of isomers appear for odd neutron isotopes.¹⁴

The generally smooth behavior of the energy function agrees well with the liquid drop picture, but the specific features of this function cannot be derived from it. However, it is possible to compare the distortion parameter β^4 derived from different nuclear properties, namely, from quadrupole moments and the variation of isotope shifts, with the same parameter β derived from the energies of the first excited states of even-even nuclei. This has been carried out by Ford.³⁰ The fit is fairly good in the rare earth region, where a liquid drop model seems to be most adequate, but differences appear for lighter nuclei. For the heaviest nuclei few data on quadrupole moments and isotope shifts exist.

SUMMARY

In conclusion, it may be stated that both the j-jcoupling model and the "liquid drop model" of the nucleus can explain the regularities found for spins and parities of first and second excited states of even-even nuclei. The extended j-j coupling model can explain more specific features, but not all the spins of these low-lying states. The smooth variation of the energy spacing between the ground state and the first excited state may be understood on the basis of the liquid drop model, but not the shell structure aspects of the energy spacing. The assumption of interconfigurational mixing may be necessary for a qualitative understanding of both features. Apart from the theoretical interest the

 ²⁴ M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952).
 ²⁵ D. M. Dennison, Phys. Rev. 57, 454 (1940).
 ²⁶ H. J. Maehly and P. Stähelin, Helv. Phys. Acta 25, 624 (1952).

²⁸ M. Goldhaber, Phys. Rev. 89, 1146 (1953).
²⁹ A. de-Shalit and M. Goldhaber (unpublished).
³⁰ K. W. Ford, Phys. Rev. 90, 29 (1953).

smooth variation found for the energy of the first excited state as a function of proton and neutron number has many experimental uses, e.g., in the studies of decay schemes and inelastic scattering of particles.

I should like to thank M. Goldhaber for frequent inspiring discussions, and A. de Shalit and J. Weneser for enlightening arguments of a theoretical nature.

REFERENCES TO TABLE I

- (T1) J. T. Dewan et al., Phys. Rev. 86, 416 (1952).
 (T2) F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 24, 321 (1952).
 (T3) V. L. Telegdi, Phys. Rev. 84, 600 (1951).
 (T4) Cohen, Schafroth, Class, and Hanna, Phys. Rev. 87, 206 (1952).
 (T5) R. Malm and W. W. Buechner, Phys. Rev. 81, 519 (1951).
 (T6) Hubbard, Nelson, and Jacobs, Phys. Rev. 87, 378 (1952).
 (T7) G. M. Lewis, Phil. Mag. 43, 690 (1952).
 (T7) G. Harris and W. T. Davies, Proc. Phys. Soc. (London) A65, 564 (1952).
 (T9) Devons, Hereward and Lindsay, Nature 154, 564 (1952).
- (T9)
- (1952). Devons, Hereward, and Lindsey, Nature **164**, 586 (1949). D. E. Alburger, Phys. Rev. **88**, 1257 (1952). D. E. Alburger, Phys. Rev. **76**, 435 (1949). Himman, Brower, and Leamer, Bull. Am. Phys. Soc. **28**, No. 1, 41 (T10) (T11) (T12) (1953).

- (1953).
 (T13) D. E. Alburger and E. M. Hafner, Brookhaven National Laboratory Report BNL-T-9, July 1949 (unpublished).
 (T14) E. L. Brady and M. Deutsch, Phys. Rev. 78, 558 (1950).
 (T15) S. D. Bloom, Phys. Rev. 88, 312 (1952).
 (T16) Hausman, Allen, Arthur, Bender, and McDole, Phys. Rev. 88, 1296 (1952).

- (T17) H. Slät: (T17a) J. Amb (T18) P. M. J (T19) J. E. 1 (1953) W H. Slätis and K. Siegbahn, Arkiv Mat. Astron. Fysik 4, 485 (1952).
 J. Ambrosen, Nature 169, 408 (1952).
 P. M. Endt *et al.*, Phys. Rev. 86, 518 (1952).
 J. E. May and B. P. Foster, Bull. Am. Phys. Soc. 28, No. 1, 41 (1952).
- (1953).
 (T20) R. W. King, Beta Decay Schemes and Nuclear Structure Assignments, Washington University, St. Louis, 1952 (unpublished).
 (T21) H. H. Landon, Phys. Rev. 83, 1081 (1951).
 (T22) D. M. van Patter et al., Phys. Rev. 83, 212 (1951).
 (T23) R. H. Dieke and J. Marshall, Phys. Rev. 63, 86 (1943).
 (T24) Arthur, Allen, Bender, Hausman, and McDole, Phys. Rev. 88, 1292 (1952).

- (T25) L. Ruby and J. R. Richardson, Phys. Rev. 80, 760 (1950).
 (T26) N. Hole and K. Siegbahn, Arkiv. Mat. Astron. Fysik. 33A, No. 9 (1946).
 (T27) R. M. Steffen, Phys. Rev. 80, 115 (1950).
 (T28) M. L. Good, Phys. Rev. 81, 891 (1951).
 (T29) P. Morrison, Phys. Rev. 82, 209 (1951).
 (T30) J. A. Harvey, Phys. Rev. 82, 209 (1951).
 (T31) K. Siegbahn, Arkiv. Mat. Astron. Fysik 34B, No. 4 (1947).
 (T32) J. R. Beyster and M. Langer, Phys. Rev. 79, 606 (1950).
 (T33) J. A. Bruner and M. Langer, Phys. Rev. 79, 606 (1950).
 (T34) F. T. Porter and C. S. Cook, Phys. Rev. 81, 640 (1951).
 (T35) F. Metzger and M. Dauger, Phys. Rev. 85, 551 (1950).
 (T36) G. F. Pieper, Phys. Rev. 88, 1299 (1952).
 (T37) P. S. Jastram and C. E. Whittle, Phys. Rev. 69, 306 (1946).
 (T39) B. Hamermesh, Phys. Rev. 87, 528 (1952).
 (T40) Robinson, ter Pogosian, and Cook, Phys. Rev. 75, 1099 (1949).
 (T41) Way, Fano, Scott, and Thew, Nuclear Data (National Bureau of Standards Circular 499, 1950).
 (T42) M. Deutsch and L. G. Elliot, Phys. Rev. 63, 321 (1943).
 (T44) K. Strauch, Phys. Rev. 79, 487 (1950).
 (T45) Bishop, Daniels, Goldschmidt, Halban, Kurti, and Robinson, Phys. Rev. 76, 435 (1949).
 (T46) D. E. Alburger, Phys. Rev. 76, 435 (1949).
 (T47) M. Deutsch and K. Siegbahn, Phys. Rev. 77, 680 (1950).
 (T48) A. H. Williams and M. L. Wiedenbeck, Phys. Rev. 78, 612 (1950).
 (T48) A. H. Williams and M. L. Wiedenbeck, Phys. Rev. 78, 61 (1950).
 (T49) Biower, Hinman, Lang, Leamer, and Rose, Phys. Rev. 84, 231 (1951).
 (T51) G. Friedlander and D. E. Alburger, Phys. Rev. 75, 619 (1949).
 (T50) Brower, Hinman, Lang, Leamer, And Rose, Phys. Rev. 84, 231 (1951). (T25) L. Ruby and J. R. Richardson, Phys. Rev. 80, 760 (1950). (T26) N. Hole and K. Siegbahn, Arkiv. Mat. Astron. Fysik. 33A, No. 9

- (150) Brower, Hinman, Lang, Leamer, and Rose, Phys. Rev. 80, 1054 (1952).
 (T51) G. Friedlander and D. E. Alburger, Phys. Rev. 84, 231 (1951).
 (T52) Roderick, Meyerhof, and Mann, Phys. Rev. 84, 837 (1951).
 (T53) A. Mukerji and P. Preiswerk, Helv. Phys. Acta 23, 516 (1950).
 (T54) Bowe, Goldhaber, Hill, Meyerhof, and Sala, Phys. Rev. 73, 1219 (1948).
 (T55) A. Berneddetti and Exaria Phys. Rev. 75, 1219 (1948).

- (T55) (T56) (T57) (T58) (T59) (1948).
 McGowan, deBenedetti, and Francis, Phys. Rev. **75**, 1761 (1949).
 Johansson, Cauchois, and Siegbahn, Phys. Rev. **82**, 275 (1951).
 J. J. Kraushaar and M. Goldhaber, Phys. Rev. **89**, 1081 (1953).
 Siegbahn, Hedgran, and Deutsch, Phys. Rev. **76**, 1263 (1949).
 C. M. Huddleston and A. C. G. Mitchell, Phys. Rev. **88**, 1350 (1952).
 D. G. Karraker and D. H. Templeton, Phys. Rev. **80**, 646 (1951).

- (159) C. M., Huddleston and A. C. G. Mitchell, Phys. Rev. 86, 1350 (1952).
 (T60) D. G. Karraker and D. H. Templeton, Phys. Rev. 80, 646 (1951).
 (T61) H. R. Muether and S. L. Ridgeway, Phys. Rev. 80, 750 (1951).
 (T62) D. T. Stevenson and M. Deutsch, Phys. Rev. 80, 1202 (1951).
 (T63) F. R. Metzger and H. C. Amacher, Phys. Rev. 83, 1202 (1951).
 (T64) D. N. Kundu and M. L. Pool, Phys. Rev. 76, 183A (1949).
 (T65) P. Preiswerk and P. Stähelin, Helv. Phys. Acta 24, 300 (1951).
 (T66) Medicus, Preiswerk, and Scherrer, Helv. Phys. Acta 23, 299 (1950).
 (T67) P. Stähelin and P. Preiswerk (private communication from H. Medicus).
 (T68) House, Colligan, Kundu, and Pool, Phys. Rev. 86, 654 (1952).
 (T700) D. Maeder and P. Preiswerk, Helv. Phys. Acta 24, 625 (1951).
 (T700) F. A. Johnson, Proc. Roy. Soc. (Canada) 46, A135 (1952).
 (T71) M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179 (1952).
 (T72) Arfken, Klema, and McGowan, Phys. Rev. 86, 413 (1952).

- R F F G O L D H A B E R
 (T73) D. E. Alburger, Phys. Rev. 88, 339 (1952).
 (T74) M. Goodrich and E. C. Campbell, Phys. Rev. 85, 742 (1952).
 (T75) Johns, Cox, and McMullen, Phys. Rev. 86, 632 (1952).
 (T77) E. D. Klema and F. K. McGowan, Phys. Rev. 87, 524 (1952).
 (T78) Blaser, Boehm, and Marmier, Helv. Phys. Acta 24, 623 (1950).
 (T79) M. J. Glaubman and F. R. Metzger, Phys. Rev. 87, 203 (1952).
 (T81) J. W. Barnes and A. J. Freedman, Phys. Rev. 84, 365 (1951).
 (T82) M. L. Perlman and G. Friedlander, Phys. Rev. 84, 365 (1951).
 (T83) D. T. Stevenson and M. Deutsch, Phys. Rev. 84, 4071 (1951).
 (T84) K. Siegbahn and N. Hole, Phys. Rev. 70, 133 (1946).
 (T85) Roberts, Elliot, Downing, Peacock, and Deutsch, Phys. Rev. 64, 268 (1943).
 (T86) A. P. Smith *et al.*, Phys. Rev. 87, 454 (1952).
 (T87) Maienschein, Bair, and Baker, Phys. Rev. 80, 420 (1950).
 (T88) Waggoner, Moon, and Roberts, Phys. Rev. 80, 420 (1950).
 (T89) S. Katcoff and M. McKeown (private communication).
 (T90) M. M. Cransden and W. S. Boyle, Phys. Rev. 84, 1067 (1951).
 (T91) B. L. Robinson and L. Madansky, Phys. Rev. 84, 000 (1951).
 (T93) B. L. Robinson and L. Madansky, Phys. Rev. 84, 001 (1951).
 (T94) E. N. Jensen *et al.*, Phys. Rev. 80, 663 (1950).
 (T95) D. E. Alburger *et al.*, Phys. Rev. 82, 322 (1951).
 (T96) D. E. Alburger and T. Kraushaar, Phys. Rev. 86, 633 (1952).
 (T96) Mack, Prickett, and Pool (verbal report).
 (T90) Mack, Prickett, and Pool (verbal report).
 (T91) Hoff, Rasmussen, and Thompson, Phys. Rev. 88, 943 (1952).
 (T93) Mack, Prickett, and Pool (verbal report).
 (T94) H. S. Katz and M. R. Lee, Phys. Rev. 85, 137 (1951).
 (T100) J. K. Long and M. L. Pool, Phys. Rev. 85, 137 (1952).
 (T101) C. T. Hibdon and C. O. Muehlhause, Phys. Rev. 88, 943 (1952).
 (T102) H. Katz and M. R. Lee, P

- 734 (1952).
 (T112) F. K. McGowan, Phys. Rev. 87, 542 (1952).
 (T113) G. Wilkinson, Phys. Rev. 80, 495 (1950).
 (T114) Brown, Bendel, Shore, and Becker, Phys. Rev. 84, 292 (1951).
 (T115) Muller, Hoyt, Klein, and DuMond, Phys. Rev. 88, 775 (1952).
 (T116) F. R. Metzger and R. D. Hill, Phys. Rev. 82, 646 (1951).
 (T116a) F. Metzger, private communication.
 (T117) F. K. McGowan, Phys. Rev. 81, 1066 (1951).
 (T118) Richmond, Grant, and Rose, Proc. Phys. Soc. (London) A65, 484 (1952).

(T152) D. C. Dunlavey and T. Seaborg, Phys. Rev. 87, 165 (1952). (T153) J. Kyles, Edinburgh (private communication to Wapstra, Amster-dam).

dam).
(T154) J. Teillac, Compt. rend. 230, 1056 (1950).
(T155) G. Scharff-Goldhaber, Brookhaven National Laboratory Report BNL-103, p. 17 (unpublished).
(T156) B. Zajac, Phil. Mag. 42, 264 (1952).
(T157) G. Albouy and J. Teillac, Compt. rend. 234, 829 (1952).
(T157) G. Albouy and J. Teillac, Compt. rend. 234, 829 (1952).
(T158) D. A. Orth and G. D. O'Kelley, Phys. Rev. 82, 758 (1951).
(T159) A. Prohaska, University of California Radiation Laboratory Report UCRL-1395 (unpublished).
(T160) G. D. O'Kelley, 1243 (1051)

(T160) G. D. O'Kelley, UCRL 1243 (1951).

(110) F. K. McGowan, Phys. Rev. 81, 1066 (1951).
(1118) Richmond, Grant, and Rose, Proc. Phys. Soc. (London) A65, 484 (1952).
(119) J. W. Mihelich (private communication).
(1120) T. C. Chu, Phys. Rev. 79, 582 (1950).
(1121) Cork, LeBlanc, Stoddard, Childs, Branyan, and Martin, Phys. Rev. 82, 258 (1951).
(1121a) Mihelich, de Schalit, and Gillon, (private communication).
(1122) J. M. Cork et al., Phys. Rev. 83, 222 (1951).
(1123) C. E. Whittle and P. S. Jastram, Phys. Rev. 87, 203 (1952).
(1124) M. Lindner, Phys. Rev. 84, 240 (1951).
(1125) R. M. Steffen and D. M. Roberts, Phys. Rev. 83, 222 (1951).
(1126) P. Stähelin, Phys. Rev. 87, 375 (1952).
(1127) I. G. Elliot and J. L. Wolfson, Phys. Rev. 82, 333 (1951).
(1128) C. Y. Fan, Phys. Rev. 87, 375 (1952).
(1129) J. W. Mihelich, Phys. Rev. 87, 646 (1952).
(1130) R. L. Graham and R. E. Bell, Phys. Rev. 84, 380 (1951).
(1132) G. Wilkinson, Phys. Rev. 79, 326 (1950).
(1133) N. J. Hopkins, Phys. Rev. 79, 326 (1950).
(1134) Sunvar, Alburger, Friedlander, Goldhaber, and Scharff-Goldhaber, Phys. Rev. 78, 326 (1950).
(1135) M. Goldhaber and A. W. Sunyar, Phys. Rev. 83, 906 (1951).
(1136) S. deBenedetti and G. H. Minton, Phys. Rev. 83, 906 (1951).
(1137) D. E. Alburger and Friedlander, Phys. Rev. 83, 944 (1952).
(1139) G. Lindström, Phys. Rev. 87, 678 (1952).
(1141) H. Slätis and K. Siegbahn, Arkiv, Fysik 4, 485 (1952).
(1141) H. Slätis and K. Siegbahn, Arkiv, Fysik 4, 485 (1952).
(1144) M. Miwa, S. Kazeyama, J. Phys. Soc. Japan 5, 416 (1951).
(1142) D. G. E. Martin and H. O. W. Richardson, Proc. Phys. Soc. (London) A62, 223 (1950).
(1144) H. Slätis and K. Siegbahn, Arkiv, Fysik 4, 485 (1952).
(1144) M. Siwa, S. Kazeyama, J. Phys. Soc. Japan 5, 416 (1951).
(1144) Way, Fano, Scott, and Thew, Nuclear Data, National Bure

TABLE nd the ind the scritted st fithe environments have old habe	I. The l correspondence of the last correspondence of the last end of the last of the las	known ener nding refer been produ the state wa ate of nucle the method adhered to. . D. Hill [R.	First even. When \mathbb{R}^{R}	ins and Juder ' a nuc rmined is reacl easurer rremen lodern	I parities of the f "Method" the n lear reaction, the lear reaction, the by measuring th hed by β decay, ment of γ -ray end ts with a curved Phys. 24, 179 (19)	irst thre nethod (e bombs he energ this is ergies th (52)] we	e excitu of prod arded n ry of the indicate gamm re exter	ed states of uction of th ucleus A , th a outgoing $1ad by (Z-1)ad by (Z-1)ion used bya$ -ray spectth nsively used	even-event ne excrete ne incorrise $arrite(1)^{A}\beta^{-1};$ $f(1)^{A}\beta^{-1};$ $F(1)^{$	ven nuc ed statt ning pa r this is t is i vy <i>et al.</i> are in eference	clei are l rtticle b s indicate reached l in Nucle dicated l dicated l ses usual!	isted. C as the and the of by the of electric sar Data of "crys	olumns outgoin e remar on capt (Natio st; γ ."	XX and X l of measuring particle of k "c obs."] ture or positional Bureau As bases for As bases for	XI referred to the second sec	ar to th excitated incated ission, intrvey, (in the falt-lif ion ener ion ener been ob the nota Circular Circular Circular	fe of the sgy is giv served, thon used 499) and ferences	first excited en. Wherever fashion: A - his is also . A is $(Z+1)is (Z+1)if thereverthe articlesto previous$	i state rer the +b-c. stated. A E.C. upple- by M. work.
ucieus	L	Ш	Furst ex	Verted sta	tte VT	, []	ATTL	26C	cond excitt	ed state	ИХ			L	hird excit	ed state	VITT	AIA	2.2	14.4
ı	E_{a}	Method	Refer- ence	Spin and parity	Method	Refer- ence	$_{\rm Mev}^{E}$	Method	Refer- ence	Spin and parity	Method	Refer-	E Mev	Method	Refer-	Spin and parity	Method	ALA Refer- ence	AA Half-life of first excited state	Refer-
He	1.71	$Li^{7}+t-\alpha$	(T1)																	
Bes	2.94	a obs a obs	(T2)	2+	$C^{12}+\gamma$; energy distr. of α 's measured	(T3)	4.05	Li+d-n	(T2)				4.9	Li+d-n	(T2)					
Beio	3.37	$\operatorname{Be}^{9}+d-p$ p and γ obs	(T2)	a +	$p-\gamma$ ang. correl. ang. distr. of	(T4) (T2)	6.3	$Be^{g}+d-p$	(T2)				7.38	$Be^{9}+d-p$	(T2)	3+		(T2)		
Cr2	4.44	$N^{M+d-\alpha}$ α and γ obs	(T5)	5+	$\mathbb{B}^{\mu\nu\alpha\mus}_{\gamma-\gamma}$ ang. correl.	(T6)	7.5	Be⁰+α−n	(T2)	0 2	Internal pair for- mation	(T2)	9.62	$N^{14}+d-lpha$	(T5)			^	<3×10 ⁻¹³ seo	(T7a)
					$p,\gamma,\gamma(\theta)$	(LL)	1~	$Be^{\theta} + \alpha - n$	(T8)		coeff.									
C14	6.110	$C^{13}+d-p$ γ obs	(T2)	1 or 2	Energy distr. of internally formed	(T2)		600 empd												
\$O16	6.05	F ¹⁹⁺ $p-\alpha$ α and pairs obs	(T2)	÷	pair emission; energy distr. of positrons and elec- trons: lifetime	(T2)	6.13	$F^{19}+p-\alpha$ other reactions	(T2)	3 3	αγ ang. correl.	(T2)	6.91	$F^{19}+p-lpha$	(T2)	2+	αγ ang. correl.	(T2)	7×10 ⁻¹¹ sec	(T9)
New	1.631	$\begin{cases} F^{20}\beta^{-} \text{ from} \\ F^{19}+d-p \\ \text{sl; pe^-, Compting the } \end{cases}$	(T10)	2+ or 1+	r decay argument	(T10)	2.2 ?	$Ne^{20}+p-p'$	(T2)				4.3	$F^{19}+d-n$ Ne ²⁰ +p-p'	(T2)		i.			
Ne ²²	1.277	Na ²² β ⁺ ; sl; pe ⁻	(T11)	2+	From ft value of 0.542 Mev positron and shape:		3.4	$F^{19} + \alpha - p$	(T2)				4.5	$F^{19} + \alpha - p$	(T2)					
					I = 2. Udd parity excluded by lack															
					of measurable lifetime.															
					K conv. coeff.	(T12)														•
 Doubt Le given i comparis comparis fented in I Se⁷⁸: No Mo⁹⁸: 0. Pd¹⁰⁸: 0. Yel³⁰: pt 	iully assign parenth assign of the parenth of the set o	gred energy v reses in the se se energies w .3 energy vali ems correct a reems too high reems correct .537 state low	values fo econd co rith the ues fits. ssignme h. rest as p	or the fir blumn. J energy nt. nt.	rst excited state The following is function repre- in Fig. 4.		$\begin{array}{c} Ba^{128}: \ 1\\ Ba^{188}: \ \\ Ba^{188}: \ \\ Sm^{448}: \ 0\\ Sm^{448}: \ 0.\\ Sm^{148}: \ 0.\\ Gd^{158}: \ 0.\\ Gd^{158}: \ 0.\\ Gd^{158}: \ 0.\\ Hf^{178}: \ 0.\\ Hf^{178}: \ 0.\\ \end{array}$	Mev seems tr 1.2 Mev seems tr 4.5 Mev seer energy desir 58.4 Mev seem 58.8 Mev fits 7792 Mev fits 1 Mev} More	oo high; ns more rms too able. s slightly well. t well. accurate	about 0. probable low. Be r too hig	7 Mev ex e than 0.9 etter mea th. th.	pected. Mev. surement	t of the	W182: OS-190 OS-192 Hg200 Hg200 Hg200 this isor Po210;	The tw 0.17 Mc 0.283 M 0.283 M 0.283 M 0.289 M 0.89 M 1 Mev s	o values ev fits fa fev prob fev fits ev seems naition.	i given ar iirly well. ably corru- best. s high. A asonable.	e chosen tr ect. lower ener.	o fit the plot gy γ -ray ma	best. r follow

EXCITED STATES OF EVEN-EVEN NUCLEI

96					G	ERTRU	D	E :	SĊ	H A	RI	7 F -	- G	ΟL	DH	ABER						
	IXX	Refer- ence																				
	XX Half-life	of first excited state																				
	XIX	Refer- ence																				
	IIIAX	Method																				
l state	ПЛХ	Spin and parity																				
uird excited	XVI	Refer- ence	(T13) (T16)	(T13)	(T17a)	(T19) (T13)	(T21)	(T22)										(T39)	(T36)	(T41)	(T16)	
	XV	Method	$Mg^{2k}+p-p'$ Al+ $p-\alpha$	$Na^{23}+\alpha-p$	$Mg^{zz}+d-p$	γ obs, scin Al $^{2r}+d-n$; n obs	Al ²⁷ + α -p	p - r come. Si ²⁹ + $d - p$	<i>p</i> 008									$\begin{array}{l} {\rm Ti} + n - p; \beta^- \\ {\rm scin.} \\ 3\gamma^{\rm s} {\rm in \ cascade} \end{array}$	$T^{49+d-p}_{n-2h_2}$	$p_{ns}^{p}\beta^{+}; E.C.$	s Cr+ <i>p−p</i> ′	
	XIX	$_{ m Mev}^E$	5.51 4.24	4.0	4.00	4.91	4.9	3.8										3.29	4.14	3.13	2.99	
-	XIII	Refer- ence	(T14) (T15) (T17)									(T27) -					(T34) (T35)	(T37)				
	ХП	Method	$\gamma - \gamma$ ang. correl. pair conv. coeff.									γγ ang. correl.				1	K conv. coeff. γ-γ ang.	γ-γ ang. correl.				
d state	X	Spin and parity	4+									3+					4+	+++			(T16)	
nd excite	X	Refer- ence	(T13)	(T13)	(T17a)	(T19) (T13)	(T21)	(T22)	(T23)	(T24) (T25)		(T26)					(T34)	(T38) (T40)	(T36)	(T41)		
Seco	IX	Method	Mg ²⁴⁺ p−p' Na ^{24→} β ⁻ ; γ obs	$\operatorname{Na}_{2}^{2}+\alpha-p$ Mo ²⁵ +d-n	$Mg^{\infty}+d-p$	γ obs, scin Alzr+d-n; n obs	$A ^{2\eta} + \alpha - p$	$p - \gamma$ could. Si ²⁹ + $d - p$	$p \text{ obs} \\ S+p-p'$	S+ <i>p-p'</i> СІ м Е.С.; β+	sl; ce~; pe ⁻	Clase-					Sc46β-	Sc ⁴⁸ β ⁻ sl; pe ⁻ , Compt. V ⁴⁸ β ⁺ ; sπ; pe ⁻ . Compt.	$T^{49}+d-p$	p 008 Mn ⁵² β ⁺ ; E.C.	$c_{r+v-v'}$	p obs
	IIIA	$E_{\rm Mev}$	4.14	2.85	3.00	4.47	3.6	3.5	4.34	3.81 3.30		3.75					2.01	2.31	3.0	2.40	2.43	
	(F	Refer- ence	(T14) (T15) (T17)			(T20)						(T27)	(T29)		(T32)	(T33)	(T34) (T35)	(T37)				
Ð	IA	Method	γ-γ ang. correl. pair conv. coeff. shape of pair spectrum nair conv. coeff.	•		Analysis of disint. scheme. Spin of Alss is 3+, loo ft=4 87						$\gamma - \gamma$ ang. correl.	Analysis of disin-	tegr. scneme	$\beta - \gamma$ ang. correl.	from shell model considerations and shape of β^+ spectrum the structure of the shape of the shape of the structure shape of the shap	K conv. coeff. γ-γ ang. correl.	γγ ang. correl.				
ited stat		Spin and parity	*			2+ or 1+						2+	2+		3+	$\frac{1}{2+}$	5+	2+				
First exc.	IV	Refer-	(T13)	(T17a)	(T18)	(T19) (T13)	(T21)	(T22)	(T23)	(T25)		(T26)	(T28)	(T30)	(T31)	(T33)	(T34)	(T36)	(T36)	(T38)		(T41)
	Ш	Method	$\begin{array}{l} \operatorname{Mg}^{24} + p - p' \\ \operatorname{Mg}^{24} + n - n \\ \operatorname{Na}^{24} - \beta^{-}; \\ \gamma \text{ obs} \end{array}$	$Mg^{25}+d-p$	$Mg^{25}+d-p$	$\begin{array}{l} \operatorname{ppt} \\ \gamma \ \mathrm{obs}, \ \mathrm{scin} \\ \mathrm{Al}^{27+}d-n; \\ n \ \mathrm{obs} \\ \mathrm{Al}^{28}(\beta^-); \\ \sim \mathrm{obs} \end{array}$	$Al^{27} + \alpha - p$	$p-\gamma$ coinc. Si ²⁹ + $d-p$	$p \text{ obs} \\ S+p-p'$	p obs Cl ³⁴ E.C.; β ⁺	sl; ce ⁻ ; pe ⁻ ; Compt.	Clas _β -	K40 E.C.; s;	pe^- ; Compt. $Ca^{40}+p-p'$	p 0.05; a $K^{42}\beta^{-}$	P = Y counc. Sc4β+, E.C. sπ; ce ⁻ ; pe ⁻	Sci6β-	Ti47+d-p p obs	$T^{49} - d - p$	p obs Mn ⁵² (5.8-day)	E.C. 8+	V ⁵² β ⁻ ; a
	L	$E_{\rm var}^{\rm a}$	(1.38)	1.84	1.825	1.8	2.3	2.25	2.25	2.13		2.15	1.459	3.8*	1.51	1.16	1.12	1.33	1.58	1.46		1.45
Jucleus	I		₂Mg²₄	2Mg ²⁶		4Si ²⁸	(Si ³⁰		23	, iz		8A38	8A40	nCa₄₀	nCa42	nCa44	22 Ti 46	2T148	21150	4Cr52		

TABLE I.—Continued.

GERTRUDE SCHARFF-GOLDHABER

		ХХ	Refer- ence											(T55)												
		XX	of first excited state											0.3×10 ⁻⁶ sec_												
		XIX	Refer- ence																							
		XVIII	Method																							
	d state	ХVІІ	Spin and parity																							
	hird excite		Refer- ence		(T41)													(T41)								
	T	XV	Method		$Mn^{56} \beta^-$, s													scint.								
		XIX	$E_{ m Mev}$		2.98													2.67								
		XIII	Refer-					(T35)	(T48)									(T57)		•					(T63)	
ed.		пх	Method					γ pol.	orrel.	orrel.		nalysis of isintegr.	cheme	erived rom decay	sheme			·γ ang.							C conv. oeff.	
ontinu	state	x	Spin and parity					+	0 (0		2+ (or /	ω	1+ or d 2+ f	ø			2+							3- } (or c	2-)
е I.—С	nd excited	X	Refer- ence		(T41)			(T46)	(T47)			(T53)		(T41)				(T57)		(T59)					(T41)	
Tabl	Secol	IX	Method		$Mn^{56}\beta^-$, s			Co* B ⁻	sl; pe ⁻			Ga ⁶⁶ E.C.; β ⁺ sl; pe ⁻	Compt.	Ga"2 β - sl; pe ⁻				As ⁷⁶ β^- , scint.		$Rb^{82}\beta^+$	sl; pe ⁻				Rb ⁸⁸ β ⁻ Yss E.C., β ⁺	
		IIIA	E_{Mev}		2.66			2.507	2.512			2.762		0.84				1.21		1.378					2.76	
			Refer- ence				(T45)	(T45a) (T35)	(T48)		(T50)	(T52)	(T53)	(T54)	(T56)	(TTEQ)	(001)	(T57)				(T59)		(T62)	(T63)	
		IA	Method	-			γ ang. correl. for aligned nuclei	K conv. coeff. $\gamma - \gamma$ polarization	direction correl.		K conv. coeff.	derived from decay scheme	derived from decay scheme	K conv. coeff. and lifetime	derived from	amono pomore	derived from decay scheme	$\gamma - \gamma$ ang. correl.				Analysis of disin- terretion scheme	ofform Torm Son	$\beta - \gamma$ ang. correl.	K conv. coeff. Y ⁸⁸ K capt.	
	sited stat	Δ	Spin and parity				2+3	2+			\leq	2+ or 1+	2+ or 1+	+0	2+	; ; ; ;	2+ (or 1+)	2+				2+		2+	(or +	1+)
-	First exc	IΛ	Refer- ence	(T42)	(T41)	(T43)	(T44)	(T46)	(T47)		(T50)	(T51)	(T53)	(T41)	(T56)	(TEC)	(001)	(T41)	(T41)	(T58)	(T59)	(T60)	(T59)	(T61)	(T41)	(T64)
		H.	Method	Mn ⁵⁴ E.C.	$Mn^{56}\beta^{-}$, s	$Co^{56}\beta^+$ sl; pe ⁻	Co ⁵⁸ E.C., β ⁺ sl; ce ⁻	Co ⁶⁰ β ⁻	sl; pe ⁻ Co ⁶⁰ β ⁻	sl; ce ⁻	Cu ⁶⁴ E.C., β^+	si, ce Cu ⁶⁶ β ⁻ si; ce ⁻	$G_{a^{88}}\beta^+$ sl; pe ⁻ ,	$\operatorname{Gan}_{\beta}\beta^{-}$ sl; ce ⁻	As ⁷⁴ E.C. β ⁺	or v 2, po	AS™P Sπ√2; pe [−]	As ⁷⁶ β^{-} ; s	As ⁷⁸ β ⁻ , a Br ⁷⁸ , E. C., e ⁺	Br ⁸² β ⁻ ; ce ⁻ ; s	$\operatorname{Rbsz}_{\beta^+}$	$\operatorname{Rb}^{\operatorname{sl};\operatorname{pe}^-}$ $\operatorname{Rb}^{\operatorname{sl}}\operatorname{E.C.};\beta^+$	Rb ⁸⁴ E.C.; β^+	sa ; ce ; sciii. Rb ^{se} β ⁻ sl : ne ⁻	Rb ⁸⁸ β ⁻ Y ⁸⁸ E.C., β ⁺	s Nb ₉₀ β+; a
		L =	$E_{ m a}^{ m a}$	0.835	0.845		0.805	1.332	1.338	с т	1.34	1.044	1.10	0.68	0.5963	0 69 69	7000.0	0.567	(0.27) (0.046)	(1001.0) 0.77	0.768	0.85	0.89	1.076	1.853	(2.03)
	Nucleus	I		24Cr ⁵⁴	26Fe ⁶⁶		26Fe ⁵⁸	28Ni60		Miles	28 Nie	80Zn ⁶⁶	30Zn ⁶⁸	32Ge72	32Ge74	C.74	19045	34Se ⁷⁶	34Se ⁷⁸	a6Kr ⁸²		36Kr ⁸⁴		38.Sr ⁸⁶	38.Sr ⁸⁸	40Zr ⁹⁰

EXCITED STATES OF EVEN-EVEN NUCLEI

008 008	п ^{E,a} 0.930 0.87 0.87 0.770 0.770	III Method Nb*2 E.C. sl ; pe ⁻	IV. Befer-		AT VI				,	l state				E.	hird excited	state				
22	E. ^a Mev 0.930 0.87 0.770 0.770 (0.86)	Method Nb ⁹² E.C. sl; pe ⁻	Rofer-		TA	(F	VIII	IX	×	XI	XII	XIII	XIX	XV		ПЛХ	ШЛХ		XX	IXX
262 292 296 296 296 296 296 296 296 296	0.930 (1.5) 0.87 0.770 (0.86)	Nb ⁹² E.C. sl ; pe ⁻	ence	Spin and parity	Method	Refer- ence	$_{ m Mev}^E$	Method	Refer- ence	Spin and parity	Method	Refer- ence	$E_{ m Mev}$	Method	Refer- ence	Spin and parity	Method	Refer-	Half-life of first excited state	Refer- ence
29 44 95 89 00 00	(1.5) 0.87 0.770 (0.86)	si pe	(T65)																	
96 88 90	0.770 (0.86)	$T_{c^{94}} E.C., \beta^+$ $T_{c^{94}} E.C., \beta^+$ sl; Compt.	(T41) (T66)	2+	K conv. coefi.	(T66)	2.73	Tc ⁹⁴ E.C., β ⁺ sl; Compt.	(T66)	3+	derived from decay	(T66)	3.27	Tc st E.C. sl; Compt.	(T66)	2+	derived from decay scheme	(T66)		
e) -	(0.86)	Tc* E.C.	T(66)	$^{2+}$	K conv. coeff.	(T67)	1.60	Tc* E.C.	(T66)	3+ or	scheme K conv.	(T67)	1.84	Tc* E.C.	(T65)					
	0.55	Tc ¹⁰ E.C.; a Tc ¹⁰⁰ β^- Rh ¹⁰⁴ β^- ;	(T68) (T69) (T70)					sl; ce ⁻ , pe ⁻		4+	coeff.			sl; pe-						
- 9	0.555 0.513	Agus β + Rhat β -; sl; Agus β + sl: ∞ -	(T70a) (T71)	5+	γγ ang. correl. K conv. coeff.	(T71) (T73)	1.137	Rh106 8- Ag106 8+	(T71)	+	γ—γ ang. sorrel.	(T71)	1.55	Rh ¹⁰⁶ β ⁻ Ag ¹⁰⁶ β ⁺	(T71)	53	γγ ang. sorrel.	(T72)		
	0.42	Ag ¹⁰⁸ E.C.	(T74)					si; pe						sl; pe-						
-	0.656	Ag ¹¹⁰ β ⁻ In ¹¹⁰ β ⁺	(T71)	2+ (or	K conv. coeff.	(T71)	1.415	Ag ¹¹⁰ β ⁻ In ¹¹⁰ β ⁺	(T71)	×			1.54	Ag ¹¹⁰ β ⁻ In ¹¹⁰ β ⁺	(T71)					
-	0.550	In114 E.C. sl; pe ⁻	(T71)	5+2	$\gamma - \gamma$ ang. correl.	(T71) (T76) (T77)	1.263	In ¹¹⁴ E.C. sl; pe ⁻	(T71)	2+	γ—γ ang. correl.	(T71) (T76) (T77)	1.856	In ¹¹⁴ E.C. s; pe ⁻	(T75)	0 or 2 6	derived from lecay	(T75)		
	1.274	In 116 B-	(T71)				2.09	$I_{n^{116}}\beta^-$	(T71)				2.36	In ¹¹⁶ β ⁻	(T71)		scheme			
	1.30 0.568	Sbim E.C. Sbim β^-	(T78) (T71)	5+	$(\beta - \gamma) + (\gamma - \gamma)$ ang. correl.	(T71)	2.20 1.24	si; pe [–] Sbize E.C. Sbize <i>β</i> –	(T78) (T71)	5+ 5+	γγ ang. :orrel.	(T71)		sl; pe ⁻						
	0.607	Sbiza B-	(T71)	5+	K conv. coeff. $\beta - \gamma$ ang. correl. K conv. coeff.	(T79) (T80)				-	K conv. coeff.	(T79)								
0	0.64	II SEC.	(T82)		$(Sb^{124}\beta^-)$															
90	0.4 or	Schie B- Sbize B-	(T81)				1.3	Sb126 <i>β</i> ⁻	(T81)											
	0.382	$I_{126}\beta^{-}$	(T82)	2+	$\beta - \gamma$ ang. correl.	(T83)														
~	0.428	It β^{-1} ce sl; ce sl; ce	(T84)	2+ (or 1+)	derived from beta) spectra	(T84)														
	0.537 or 0.667 or 0.744)	I ¹³⁰ β ⁻ sl; ce ⁻	(T85)																	
		No γ , Cs ¹³⁰ β^+ scin.	(T86)																	
8	0.68	I ¹³² β^- scin.	(T87)																	

598 GERTRUDE SCHARFF-GOLDHABER

	IXX	Refer-																			(T104)				(T108)		(T110)
	XX	Half-life of first excited state																			<3×10-9	sec			1.8×10-9	sec	1.7×10-9 sec
	XIX	Refer- ence				(16L)																					
	ШАХ	Method				γγ ang.	correl.																				
d state	ПЛХ	Spin and parity				5																					
ird excite	XV XV	Refer-				(T41)		(T92)																			
	XV	Method				Cs ¹³⁴ B	sl; ce ⁻ . pe ⁻	Cs ¹³⁸ β-	scin.																		
	XIX	$E_{ m Mev}$				1.93		2.88																			
	(IIX	Refer- ence				(T14)			(L63)			(T96)					й.	(T101)									
	их	Method				$\gamma - \gamma$ ang.	correl.		$\gamma - \gamma$ ang.	correi.		γ-γ ang. correl.						K/L ratio									
d state	x	Spin and parity				4+			4+			<u>+</u>						4+									
nd excite	×	Refer- ence				(T41)		(T92)	(T41)			(T95)						(T101)									(T71)
Sec	IX	Method				Cs134 B-	sl; ce ⁻ , pe	Cs138 β-	scin. La ¹⁴⁰ β^-	s, ce ; scut.		$P_{r^{140}}\beta^-$ sl: pe ⁻	:					Sm ¹⁴⁹ neutron	capt.	2							Ho ¹⁶⁶ β ⁻ sl; pe ⁻
	VIII	$_{\mathrm{Mev}}^{E}$				1.36		2.42	2.42			2.185						(0.777)									1.44
	[]	Refer- ence				(T14)			(T93)	(T94)		(196)				(109)		(T101)		(T103)	(T103)		(T106)	(T106)	(T107)		(T71)
	IA	Method				γ-γ ang. correl.			$\gamma - \gamma$ ang. correl.	derived from shape	of β spectrum and decay scheme	γ-γ ang. correl.	÷.			K conv. coeff.		K/L ratio		K/L ratio	K/L ratio		Rel. int. of L lines	Rel. int. of L lines	$K \operatorname{conv. coeff.}$		K/L ratio lifetime
ited stat	Δ	Spin and parity				2+			2+	2+	1+) 1+)	(or 2+	1+)			(2+)		(2+)		2+	$^{2+}$		2+	$^{2+}$	2+		2+
First exc	Ν	Refer- ence	(T88)	(T89)	(T90)	(T41)	(T41)	(T92)	(T41)	(T94)		(T95)	(T96a)	(1000)	(197)	(T98)	(T100)	(T101)		(T102)	(T102)	(T105)	(T106)	(T106)	(T41)	(T109)	(171)
	Ш	Method	Cs134 E.C.?	Ι ¹³⁶ β ⁻	scin. Lai $^{32}\beta^+$	a Csi34β ⁻	sl; ce ⁻ , pc ⁻ Cs ¹³⁶ β ⁻	a C ₈ 138 β-	La140 8-	$P_{r142}\beta^{-}$	si; pe	$Pr^{144}\beta^{-}$ sl; pe ⁻	Pr146 8-	scin	Eu ¹⁴⁶ E.C.	Eu148 E.C.	$^{a}_{Pm^{148}eta^{-}}$	a Sm ¹⁴⁹ neutron	capt. sr:ce	Eu152 E.C.	$\mathbb{E}^{\mathrm{u}_{152}}\beta^{-}$	$\operatorname{Eu}_{154}\beta^-$	Gd_{-n}	Gd+n	$s\pi$; ce ⁻ Tbite β^-	sl; ce ⁻ Ho ¹⁶² E.C.	H0 ¹⁶⁶ β ⁻ sπ; ce ⁻
	п	$E_{\rm a}$ Mev	(1.03 or 1 17 %	1.38	(1.0)	0.794	(0.9)	(1.2)	1.6	1.576		0.695	(0.490)	(002-0)	(0.45)	(0.69)	(~0.54)	0.3367		0.122	0.3441	0.122	(0.0888)	(0.0792)	0.085	(~0.1)	0.080
Nucleus	I		4Xe ¹³⁴	4Xe ¹³⁶	6Ba ¹³²	6Ba ¹³⁴	6Ba ¹³⁶	6Ba ¹³⁸	sCe ¹⁴⁰	0Nd142		•Nd144	941Å		2Sm146	2Sm148		2Sm150		$2 \mathrm{Sm}^{162}$	4Gd152	4Gd154	4Gd156	4Gd158	6Dy ¹⁶⁰	$^{6}\mathrm{Dy^{162}}$	8Er166

TABLE I.-Continued.

EXCITED STATES OF EVEN-EVEN NUCLEI

								TAB	ГЕ I.—(Continu	ted.									
Nucleus			First exc	ited state	0			Sec	ond excited	d state				Ë	iird excited	state				
I	[=	Ш	ΔI	Δ	IA	(F	ШЛ	IX	X	x	ПХ	XIII	XIX	XV	IVX	Түү	IIIAX	XIX	XX Holt life	IXX
	$E_{,a}$ Mev	Method	Refer- ence	Spin and parity	Method	Refer- ence	$E_{ m Mev}$	Method	Refer- ence	Spin and parity	Method	Refer- ence	E_{Mev}	Method	Refer- ence	Spin and parity	Method	Refer- ence	of first excited state	Refer- ence
70Yb170	0.084	Tm170 β-	(T41)	2+	K conversion coeff.	(T107)														
72Hf176	0.089	$Lu^{176m}\beta^{-}$	(T111)	2+	K/L ratio	(TIII)													1.35×10 ⁻⁹	(T112)
72Hf178	(~ 0.1)	sπ; ce ⁻ Ta (9.35 min)	(T113)																sec	
72Hf189	0.093	E.C., β ⁺ Ta ¹⁸⁰ E.C.	(T114)	2+	K/L ratio	(T114)														
74W180	0.102	$\operatorname{Tatso}\beta^{-}$	(T114)	2+1	K conv. coeff.	(T114)														
74W182	(0.100 or 0.113	sπ; ce ⁻ Taisz β- cryst; γ	(T115)																	
74W186	or outers) 0.123	Re ¹⁸⁶ E.C.	(T116)	2+	$K \operatorname{conv. coeff.}$	(T116)														
76OS ¹⁸⁶	0.137	sπ; ce ⁻ , pe ⁻ Re ¹⁸⁶ β ⁻ sπ; ce ⁻ ; pe ⁻	(T116)	2+	K conv. coeff. Lifetime	(T116) (T117)	0.764	Re ¹⁸⁶ β sl; pe	(T116)	5+	γ-γang. sorrel.	(T116a)							~0.8×10 ⁻⁹ sec	(T117)
76OS ¹⁸⁸	0.154	Re ¹⁸⁸ β-	(T118)	2+	K/L ratio	(T118)													<5×10 ⁻⁹	(T104)
	0.1549	SII; 66	(T119)		K conv. coeff. L _I L _{II} L _{III} int.	(T119)													2	
76OS ¹⁹⁰	(0.17)	Ir190 E.C.	(T120)		ratios															
76Os ¹⁹²	(0.283)	a Ir ¹⁹² E.C.	(T121)				0.4843	Ir ¹⁹² E.C.	(T121)				0.690	Ir ¹⁹² E.C.	(T121)					
78Pt192	(0.316 or 0.295)	Ir ¹⁹² β^- sl; ce ⁻	(T121)				0.6115	Ir ¹⁹² β^- sl; ce ⁻	(T121)				0.783	sι, ce Ir ¹⁹² β ⁻ sl; ce ⁻	(T121)					
		Au ¹⁹² Ε.C. sπ; ce ⁻	(T121a)	_										,				· · ·		
Wild84	0.327	Ir194 8-	(T122)	2 (or	$\gamma - \gamma$ ang. correl.	(T123)	1.81	Ir ¹⁹⁴ β	(T41)	5	γγ ang.	(T123)	2.1	Au ¹⁹⁴ E.C.	(T41)					
	0.328	No γ Au ¹⁹⁴ E.C.	(T124) (T41)	5 -	K/L ratio	(T119)		a Au ¹⁹⁴ E.C. sl; ce ⁻			-191102			o						
78,Pt196	0.358	Au ¹⁹⁶ E.C.	(T41)	2+	$\gamma - \gamma$ ang. correl.	(T115)	0.688	Au ¹⁹⁶ E.C.	(T41)	2+	$\gamma - \gamma$ ang.	(T125)								
80Hg196	0.426	sl; ce ⁻ Au ¹⁹⁶ β^-	(T126)	5+	L conv. coeff.	(T126)		sl; ce ⁻			correl.									
80Hg ¹⁹⁸	0.411	Au ¹⁹⁸ β^- sl; ce ⁻	(T41)	3+	K conv. coeff. L _{II} /L _{III} ratio	{ (T127) { (T128) (T129)	1.087	Au ¹⁹⁸ β ⁻ sπ; ce ⁻	(T127)	5+	K conv. coeff. and 8 ⁻ decay	(T127)							<0.08×10 ⁻⁹ sec	(T130)
80Hg ²⁰⁰	(0.365 or 0.577	TI200 E.C. scin.	(T131)																	
80Hg ²⁰²	or 0.022) 0.427	TI202 E.C. s; ce ⁻	(T132)		-															

600

GERTRUDE SCHARFF-GOLDHABER

Nucleus			First exc	ated stat	e			ъ ,	cona excited	l suarc					Third excite	d state				
I	Ц	III	IV	Δ	IA	IIA	LIIV	IX	X	XI	ХІІ	XIII	XIX	XV	XVI	ТИХ	XVIII	XIX	XX	IXX
-	$E^{,a}_{ m Mev}$	Method	Refer- ence	Spin and parity	Method	Refer- ence	E Mev	Method	Refer- ence	Spin and parity	Method	Refer- ence	E_{Mev}	Method	Refer- ence	Spin and parity	Method	Refer- ence	of first excited state	Refer- ence
82Pb ²⁰²	(0.89)	T1+ <i>p</i> →Pb ^{302m} (5.6 sec) Po ^{206→α(?)}	(T133)												- -					
82Pb204	0.374	Pb ^{204m} I.T.	(T134)	$^{2+}$	K/L ratio		1.279	Ph204m I.T.	(T136)	7 1	Lifetime	(T135)							3×10 -7 sec	(T134)
		81; ce Bi204 E.C. el . ce-			K conv. coeff.;	(T135)		sl; ce			Fotal onv. coeff.									
82Pb206	0.803	Bi ²⁰⁶ α Bi ²⁰⁶ E.C.	(T137)	2+	$\alpha - \gamma$ ang. correl.	(T138)				-	DIAL LAND									
82Pb ²⁰⁸	2.614	Tluss(ThC'') β-	(T139)	2+	γγ ang. correl. pair formation coeff. γγ polarization	(T140) (T141) (T57)	3.20	Tl288(ThC'') β-	(T41)	~ ° ~ °	—γ ang. torrel. /—γ maarization	(T140) (T57)	3.48	T1208 A-	(T41)					
84Po ²¹⁰	(1)	At ²¹⁰ E.C.	(T41)		correl.					4 C)	orrel.									
84Po ²¹²	0.729	a $Bi^{212}(ThC)\beta^-$	(T115)	2+	K conv. coeff.	(T142)	0.83	$Bi^{212}\beta^{-}$	(T41)				1.60	Bi212 β-	(T41)					
84Po ²¹⁴	0.606	$Bi^{214}(RaC)\beta^-$	(T41)	2+	K/L ratio	(T143)			×.											
86Em ²²⁰	0.241	sπ; ce Th ²²⁴ α sπ. ce ⁻	(T144) (T145)	2+	K conv. coeff.	(T145)														
86.Em ²²²	0.188	ssRa ²²⁶ α α fine struc- ture	(T41)	2+	Rel. int. of L lines, K conv. coeff. total conv. coeff. K/L ratio.	(T146) (T147) (T148)														
88Ra ²²²	0.117	$Th^{226} \alpha$ α fine struc-	(T149)																	
88R3 ²²⁴	0.0844	ture 90Th228(RdTh)c & fine struc-	z (T150)	2+	LII/LIII ratio total conv. coeff.	(T150) (T148)														
88Ra ²²⁶ 38Ra ²²⁸	0.0678	$^{0.01}_{10}$ $^{0.01}_{20}$ $^{0.01}_{222}$ $^{0.01}_{222}$ $^{0.01}_{222}$	(T145) (T151) (T152)	5+	Rel int. of L lines	(T146)														
90Th ²²⁶	0.070	ce"; ppl U220 a a fine strue.	(T149)					4												
90 Th ²²⁸	0.060	ture $U^{222} \alpha$	(T152)	2+	Rel. int. of L lines	(T153)		•												
	0.058 0.058	α fine struct. Ac ²²⁸ (M ₅ Th ₂) β	(T149) - (T41)		for γ from Ac ²²² β^{-}															
₉₀ Th ²³⁰	0.055	U ²²⁴ α ce ⁻ ; ppl	(T154)				0.117 or	U ²²⁴ a scin.	(T155)											
	0.050	sein.	(T155)				0.167*													

TABLE I.—Continued.

EXCITED STATES OF EVEN-EVEN NUCLEI

Nucleus			First exc	vited state				Še	ond excite	d state				TT.	nird excited	l state				
I	[=	H	AI	A	IA	IIA	IIIA	IX	×	XI	л	XIII	XIX	XV	XVI	ХИІ	ТПАХ	XIX	XX Helflife	IXX
	$E_{ m v}^{ m a}$	Method	Refer-	Spin and parity	Method	Refer- ence	$E_{ m Mev}$	Method	Refer- ence	Spin and parity	Method	Refer- ence	$E_{ m Mev}$	Method	Refer- ence	Spin and parity	Method	Refer- ence	of first excited state	Refer- ence
90Th ²³⁴	0.048	$U^{238}\alpha$	(T156)	•	-															
	~ 0.045 0.050	ce ; ppl ce ⁻ ; ppl ce ⁻ ; ppl	(T152) (T157)			×														
92U232	0.045	$Pu^{236} \alpha$ ce ⁻ ; ppl	(T152)																	
92U234	0.040	Pu ²³⁸ a ce ⁻ ; ppl a fine struc-	(T152) (T149)																	
92U236	0.044	ture Pu ²⁴⁰ a	(T149)																	
94Pu ²³⁶	(0.150)*	α fine struc- ture Np ²³⁶ β^-	(T158)																	
94Pu ²³⁸	0.045	$s\pi\sqrt{2}$; ce ⁻ Cm ²⁴² α α fine strue-	(T149)	2+	Rel. intensities of L conv lines	(T159)	0.150	Cm ²⁴² a a fine struc-	(T149)											
94Pu ²⁴⁰	0.045	ture ce ⁻ ; ppl Am ²⁴⁴ α	(T152) (T149)					ture												
94Pu ²⁴²	0.038	α nne struc- ture Am ²⁴² E.C.	(T71)																	
%Cm ²⁴²	0.053	$s\pi\sqrt{2}$; ce Am ²⁴² β^- $s\pi\sqrt{2}$; ce	(T160)																	
×∆ *			noisterra	alectror	spectrum show	" in (T16		ts that the s	trongest	eamma-	rav line n	lay have	an energy	of 0.04 Me	.Ve					