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Geometrical Characterization of Nuclear States and the Theory of Angular Correlations
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National Bnrea»s of Standar»fs, Washington, D. C.

(Received November 7, 1952}

Degenerate states of nuclei, atoms, or radiations are identified by their tensor properties, that is, by, the
mean values of a set of multipole operators. A treatment is outlined which serves to construct angular cor-
relation functions on a geometrical basis and provides a geometrical interpretation of known correlation for-
mulas; the dynamics of specific nuclear reactions influences only a final averaging procedure.

'HE various degenerate states of a nuclear level
with nonzero spin difFer in geometrical properties

loosely called "spin orientation" or "spin polarization. "
This note points out a geometrical characterization of
the degenerate states of nuclei, atoms, or radiations,
which serves to keep the geometrical elements of angular
correlations separate from the dynamical elements.

The observation of the direction in which a nucleus
has emitted a radiation provides some information
about the "spin polarization" of the nucleus following
the emission. This information, in turn, determines the
directional distribution of radiations subsequently
emitted by the same nucleus. Thus the data on the
geometry of the intermediate nuclear state constitutes
the central element of the angular correlation of suc-
cessive nuclear radiations.

The correlation effect is but one example of problems
in which the information available on a state amounts
to less than the maximum aGorded by quantum me-
chanics. States identified by less-than-maximum infor-
mation are not described by a wave function but by a
density matrix or, in an equivalent but more immedi-

ately operational manner, by the mean values (U ) of a
complete set of operators U .'

The observable characteristics of a degenerate
nuclear state that depend on its "spin polarization"
include its coupling with anisotropic external fields. The
coupling energies are the mean values of irreducible
2~-pole tensor operators TI„which transform under
space rotations like the spherical harmonics I'I„. The
matrix elements of such operators in the (jm) scheme,

(j'm'
I
Ts, I jm), are known to consist of two factors. One

factor depends on the angular momentum quantum
numbers j',j and on the multipole order k as well as
on the "spin orientation" and "multipole orientation"
numbers m', m, and q. This factor may be expressed
as a standard Wigner coeKcient' (kjj'm'

I
kjqm) or

( 1)» "(j—'jm' '—
ml j'jkq—). Being the same function. of

the quantum numbers for all difFerent nuclei, it consti-

' See, for example, the application by L. Wolfenstein and J.
Ashkin, Phys. Rev. 85, 947 (1952},and especially the description
of optical polarization by means of Stokes parameters, G. G.
Stokes, Proc. Cambridge Phil. Soc. 9, 399 (1852); U. Fano,
J.Opt. Soc.Am. 39, 859 (1949};D. L. FalkoG and J.E.Macdonald,
J. Opt. Soc. Am. 41, 861 (1951),which led to the ideas presented
here.

'See, for example, E. U. Condon and G. Shortley, Theory of
Atomic Spectra (Princeton University Press, Princeton, 1935},p.
71.

tutes a purely geometrical element. The remaining fac-
tor, independent of the "orientation" quantum numbers
m', m, and q, indicated by (j ".Tsj ) (&r (j'Ilq'll j)»s de-
pends on the kind and strength of the interaction and
on the nuclear structure, i.e., is different for diGerent
nuclei with equal j's.

A tensor operator, for which the second factor of the
matrix element equals 1 for a speci6ed pair of quantum
numbers (J'J) and zero otherwise, is a universal func-
tion of quantum numbers and therefore a purely
geometrical element. Consider now a degenerate energy
level of a nucleus, atom or radiation, which may include
states with different angular momentum quantum
numbers J, J' . De6ne the tensor operators UI„&

' )

by the matrices

(j'm'I Us(('
' 'I jm)

=(—1) (j'jm' —mlj'jkq)—b;.&.b;~» (1)

where k runs from
I
J—J'I to J+J', q from —k to k,

and (J'J) take all pairs of values pertaining to the
energy level. This set of operators is "complete" in the
sense that any matrix (j'm'

I
T

I jm) can be represented
as a linear combination of matrices (1) and, particu-
larly, that the density matrix of any state A of the
energy level is completely determined by the set of
mean values (Us, ( '~&)("&. The- irreducible tensors
(U (J J))(A) ((Us&(J J))(A) (U&& (J s))(A) ) may
be called "state multipoles, "owing to their relationship
with multipole moments and interactions. For example,
the state of spin j with fully random spin orientation
("natural spin polarization" ) is identified by the multi-
Poles (Us, (~'~&)=(2j+1) lbtz b;sb»b«. The factor hso

indicates that all multipoles vanish in this unpolarized
state (except the scalar (Use(ss&), whose magnitude
represents a trivial normalization constant). For a
state of paramagnetic polarization, at least the dipole
(U, (~~&) must be W0.4

A technique based on the concept of "state multi-
poles" has been applied to the theory of angular corre-
lations, ' but its detailed publication has lagged pending

' G. Racah, Phys. Rev. 62, 438 (1942), Sec. 3.
4For relativistic electrons and neutrinos a complete set of

quantum numbers includes not only jand m but also k= ~(j+&}.
Similarly for p-rays one must add a quantum number of "electric"
or "magnetic" multipolarity. Such quantum numbers must be
treated like j's and one should actually write them alongside the
j's, for example, (Us( 's' s&).' National Bureau of Standards Report 1214 (1951).
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FIG. 1. Diagram of conservation of momentum andj quantum numbers.

improvements of the tensor operator algebra formalism
in collaboration with G. Racah. An outline of the
technique follows.

Consider the emission (or absorption) of radiation in
the transition from a nuclear level u to a level b. The
conservation of momentum in the transition is repre-
sented by the triangular diagram in Fig. 1. Each side
of the triangle corresponds to one "reactant" (level a,
level b, radiation). We also label it with a pair of
quan. turn numbers (j'j) which correspond to those of
a set of state multipoles (Ub(i'i)). (When there is no
degeneracy in j, i.e., when one reactant has a definite
angular momentum jo, there is only one pair of j's,
namely, (jbj()).) The geometries of the three reactants
are interdependent and the technique aims at ex-
pressing the "state multipoles" of any one of the three
in terms of those of the other two. The usual situation
is one in which (1) no information is available on the
orientation of J, so that

(Ub(i 'i'&) &a& = (2ja+ 1) bb&'a'jalb0y

and (2) the emitted radiation has been detected by a
polarization analyzer P in. a direction q, which deter-
mines the state multipoles (Ub('"'i"))(~~). Owing to
the isotropic geometry of the state a, the state multi-
poles of k, (Ub(i"ib))( &, are bound to be proportional
to the radiation multipoles (Ub('"""))(')~). However,
the radiation geometry would impress itself in full
detail onto the geometry of b only if the angular
momenta J, and Jb were parallel, i.e., if j,=0. Otherwise
the coupling through the randomly oriented J, has a
smearing effect which results in a "depolarization
ratio"

(U„(ib' is) )(b)/ (Ub (ii' &)) (e&)( ] (2)

This ratio may be described as the transformation
coeKcient from a coupling scheme (L(j,j)0, (j,'j,)k]k}
to ([(j,j„')jb', (j,j,)jb$k} and is equal, to within a
normalization constant, to the Racah coeS.cient
~(i'i.i b'i » kj.).'

In a process of emission of two or more successive
radiations, the diagram of conservation of momentum

(Fig. 2) can be broken down into triangles. The "reac-
tants" at the outer contour of the diagram are amenable
to geometrical observation, in principle, but usually a

correlation is established between the observations on
two radiations only. Starting from the triangle con-
taining the first observed radiation, one can "resolve"
each triangle in succession, as for the triangle in Fig. 1
above. In this manner one constructs an expression for,
the expected multipoles (Ub('»a))('"a) of the second
radiation. These multipoles equal the multipoles
(Ub(i»'»)«'~» of the first radiation, reduced by a
depolarization ratio S& which depends on the j's of all
other "reactants. "The detection of the second radiation
by a detector q2P2 defines a different set of multipoles,
(Ub('»»)«' ".The predicted probability of detection
by this detector is essentially the projection of the
"expected" multipoles onto the detector's multipoles,
that is, the sum of multipole scalar products

Qb(Ub(ilia) )(axa) . (Ub(i&2) )(caP2)

= +blab(Ub(i&A) )(%&i'1) ~ (Ub(ia&a) )(ca&a) (3)

(i„', i„)

FIG. 2. Angular momentum diagram for the emission of a
neutron in the transition from u to 6, followed by an unobserved
y, from b to c, and by a p-process from c to d. "Reactants" whose
geometry is observed are marked by a cross. The J„vector is to
be considered under conditions of strong spin-orbit coupling of
the neutron, the dotted vector under conditions of strong spin-spin
coupling with the nucleus. The spin-orbit coupling of electrons,
neutrinos, and photons cannot be resolved, because of relativity
(see reference 4).

This is a basic angular correlation function between
(q)P() and (q2P2), which depends only on quantum
numbers j. Therefore, it is a purely geometrical entity.
This function pertains to a specified set of pairs of
numbers (j,'j„jr'jr, jb'j b,

~ ~ ) for each nuclear level
and each radiation.

If various sets of j's have to be considered, a grand
average must be performed over the corresponding cor-
re1ation functions. Here is where the dyriumics of the
radiation emission by a specific nucleus enters into
play; it determines the "weights" of the various elements
in the average.

Formulas derived according to this procedure~ are
quite similar to formulas derived independently by F.
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Coester and J. M. Jauch' and fully equiva1ent to those
given by various authors, especially by Racah. '

e F. Coester, Helv. Phys. Acta, 26, 3 (1953).Personal commu-
nication in advance of publication is gratefully acknowledged.

"G. Racah, Phys. Rev. 84, 910 (1951). The scalar product
(Us&'»'»)&s~r» (Us&&'»'»)&smo» corresponds to the Zo,D&e'„,Cso*Cs,
in Racah's E&l. (8), the depolarization ratio Ss to the product of
Ws. See also the general treatments of the angular correlations

The author is greatly indebted to G. Racah for a Iong
series of discussions.

by L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. (to
be published); of the angular distribution of scattering and reac-
tion cross sections by J. Blatt and L. C. Biedenharn, Revs.
Modern Phys. 24, 258 (1952); of the production of polarized
particles in nuclear reactions by A. .Simon and T. A. Welton,
Phys. Rev. 89, 886 (1953). The results of all these papers may
be derived by the procedure outlined above.
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Nuclear Levels Associated with Zirconium 95 and Niobium 95t
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Using sources of zirconium 95, both as a fission product and as derived from neutron capture in enriched
Zrg, in magnetic spectrometers, a study has been made of the beta- and gamma-energies and of the half-
lives associated with the radioactive decay. Zirconium 95 emits three beta-rays of energy about 910, 405,
and 360 kev, each followed by a gamma-transition leading to a radioactive daughter product, niobium 95.
The gamma-energies are 758, 725, and 235.2 kev. The niobium 95 decays by beta-emission, of energy 165
kev, to molybdenum 95 with accompanying gamma-energies of 753 and 768 kev. The observed transitions
are found to Gt a level scheme that is not incompatible with shell theory.

Item Half-life
Energy in Mev

PEa RWb MSKe HLd Ne

Zr" pI 65 days
pg
+I
'y2

Nb" ys 90 hr
Nb" pI 35 days

YI

0.80
0.29
0.85 0.91

0.887
0.400

0.708
0.216

0.14 0.14 0.146
0.78 0.75 0.92 0.758

1,00
0.39
0.92
0.73 0.73
0.23
0.15 0.163
0.77 0.771 0.76

a M. Pool and J. Edwards, Phys. Rev. 67, 60 (1945).
b W. Rail and R. Wilkinson, Phys. Rev. 71, 321 (1947).
e Mandeville, Scherb, and I eighton, Phys. Rev. 74, 888 (1948).
d J. Hugdens and W. . Lyon, Phys. Rev. 75, 206 (1949); Radiochemical

Studies. ' The Fission Products (McGraw-Hill Book Company, Inc. , New
York, 1950), Paper No. 90.

e V. Nedzel, National Nuclear Energy Series, Plutonium Project Record,
Vol. 9, Div. IV and earlier papers in Plutonium Project Reports.

& C. Fan, Phys. Rev. 81, 300 (1951).
s Zucker, Mandeville, Shapiro, Mendenhall, and Conklin, Bull. Am.

Phys. Soc. 28, No. 1, 58 (1953).

LONG-LIVED radioactivity in zirconium, ob-
tained as a 6ssion product from uranium, was

first observed' in 1940 by Grosse and Booth. Con-
temporary studies determined' the half-life of the ac-
tivity to be 63 days and associated it with the isotope
of mass 93. Subsequent investigations have shown that
the activity is more likely in zirconium 95, which de-
cays to radioactive daughter products in niobium 95.
Many measurements have been made of the beta- and
gamma-energies in 'the decay processes, with a rather
wide divergence in the expressed values, as shown in
Table I.

TABLE I. Previous data relative to Zr'~ and Nb'~.
TABLE II. Electron energies associated with Zr" and Nb'5.

Electron energy,
kev

216.1
232,6
235.0
706.3
722.7
733.0
739.6
748.6
765.8
678

Interpretation

X (41)
L, (41)
M (41)
E (41)
L (41)
E (42)
E (41)
E (42)
L (42)
K (Pb)

Energy sum,
kev

235.1
235.3
235.5
/25. 3
725.4
753.0
758.6
768.6
768.7
766

TABLE III. Gamma energies due to transitions in Nb'~ and Mo'~.

Nucleus Energy, kev K/L ratio

In the present investigation specimens of Zr" have
been obtained both as a 6ssion product and as produced
in the pile by neutron capture in enriched (92 percent)
zirconium 94. The gamma-energies have been deter-
mined from electron lines derived from internal con-
version and from photoemission in lead radiators.
Photographic magnetic spectrometers of high resolu-
tion have been employed and it is believed that the re-
ported results are accurate to plus or minus 0.2 percent.
The decay of Zr" has been followed for more than a
year and its half-life appears to be 65.2&1 days. A
metastable state of niobium 95 with a half-life of 90

)This investigation received the joint support of the U. S.
OfFice of Naval'Research and the U. S. Atomic Energy Com-
mission.' A. V. Grosse and F. Booth, Phys. Rev. 57, 664 (1940).

2 Sagane, Kojima, Miyamoto, and Ikawa, Phys. Rev. 57, 1179
(1940).

235.2
725
758
753
768

4.5&0.6
5.0&1.0

7.6~0.6


