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The Capture and Loss of Electrons by Fission Fragments*
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We calculate the eRective charge of fission fragments passing through a low pressure gas. We first
compute, on a classical basis, the cross section for capture of an electron by a fission fragment of relatively
arbitrary charge and velocity. We then develop a rough theory which gives the cross section for loss of an
electron through interaction with a gas atom. From these two cross sections we readily obtain the eRective
charge. The eRective charge of a fragment will increase with the pressure of the substance through which it
passes. We note the probable importance of anomalous eRects in hydrogen and helium. We find general
agreement between theoretical predictions and experimental results.

I. INTRODUCTION
' 'N this paper we will consider the problem of calcu-
' - lating the average number of electrons which a
fission fragment possesses as a function of its nuclear
charge, velocity, and the density and atomic weight of
the material through which it passes. We take the term
"effective charge of a fragment" to mean the fragment's
nuclear charge minus the average number of electrons
which it has under given conditions.

The problem of determining the effective charge of
a fission fragment has been discussed by Bohr
I.amb;4 Knipp and Teller and Brunings, Knipp, and
Teller. All of these authors have agreed in treating the
electrons of the fragments as a Fermi-Thomas gas.
They then made physically reasonable but relatively
arbitrary assumptions to obtain the effective charge as
a function of fragment nuclear charge and velocity. It
is the aim of the present paper to develop a theory
which is somewhat less arbitrary or ambiguous than the
previous formulations. It is believed that the calcula-
tions here made have some claim to quantitative
accuracy.

I.et us consider the passage through a gas of a frag-
ment of nuclear charge 40e or 50e, effective charge of
the order of 10e, and velocity of the order of 4o,c,
where a = (137) ' a,nd c is the velocity of light. Inasmuch
as the eGective charge of a fragment will at any instant
be determined by a statistical balance between the
fragment's capture and loss of electrons, we wish to
calculate the cross section for the fragment to capture
an electron from the gas atom, and the cross section for
the fragment to lose an electron in an interaction with
a gas atom. Since we are most interested in the ratio of
these cross sections, it may be important to treat them
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by similar methods; we may thus hope that some inac-
curacies inherent in the necessarily approximate
methods employed will not a8ect the ratio.

I.et us for the present consider that we have the
fragment passing through a gas of moderate atomic
number (of order 10:The special cases of hydrogen and
helium will receive some attention in Sec. IU). I.et us
further assume that the successive collisions of a frag-
ment with gas atoms are independent. This means that
there is sufFicient time between collisions in order that
fragment electrons which were either raised to highly
excited states or newly captured in such states in the
last previous collision, will be able to decay to some of
the lowest available fragment states before the next
collision. We thus ignore ionization in two or more
steps and take any captured electron to be no diGerent
from other fragment electrons in subsequent collisions.
It appears that we hereby limit ourselves to passage
through rather rarified gases as will be seen in Sec. V.

Theories of the capture of electrons by o.-particles
and protons have been developed classically by Thomas, '
and quantum mechanically by Oppenheimer' and
Brinkman and Kramers. ' For our case the fission frag-
ment will have an effective charge of the same order as
the nuclear charge of the gas atom, and it is clear that
a perturbation or Born approximation method is not
valid for a treatment of the capture problem. On the
other hand, the electrons will necessarily be captured
in fairly high quantum states for which the picture of
classical orbits has some validity, and thus a classical
approach suggests itself. It is then important to make
sure that we can define the positions of our electrons
with sufFicient accuracy to be able to introduce mean-
ingful impact parameters. It must not be necessary to
define electron momenta to an accuracy which would
imply position uncertainties as large as the impact
parameters. We shall see that, although this limitation
is serious, it is generally possible to define the momen-
tum and position of a gas atom electron well enough to
justify qualitatively a classical approach.

7 L. H. Thomas, Proc. Roy. Soc. (London) 114, 661 (1927).' J. R. Oppenheimer, Phys. Rev. 31, 349 (1928).' H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. Amster-
dam 33, 973 (1930). See also J. D. Jackson and H. SchiR, Phys.
Rev. 89, 359 (1953).
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A quantum -mechanical perturbation theory would
seem to have more validity for the calculation of the
loss cross section, since the influence of the gas atom
on the tightly bound fragment electrons is generally
small. But in view of the large amount of momentum
that must be given to a fragment electron to remove
it from the fragment, we may hope that the large
allowable uncertainty in electron momentum may
permit one to localize the electron position suKciently
to somewhat justify also a classical approach. To this
we shall turn our attention in Sec. III, where it will be
further argued that the gas atom may be approximately
treated as a Coulomb potential, in which happy case
classical and perturbation calculations coincide.
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II. THEORY OF CAPTURE

It is difficult for a fragment to capture a free electron.
This it can do only if the electron collides inelastically
with a fragment electron or suGers a radiative collision; .

otherwise the total energy of the electron in the rest
system of the fragment is non-negative, and the electron
moves in a hyperbolic orbit. However, it is diGerent for
an electron bound in a gas atom: When fragment and
gas atom are separated by a distance large compared to
atomic dimensions, the fragment exerts virtually no
inRuence on an electron bound in the gas atom. Since
the atom is electrically neutral, it will experience only
a small net polarization force and may approach quite
close to the fragment without having its electrons par-
ticularly accelerated toward the fragment. Hence, when
the electron is finally liberated from the gas atom, it
may have a sufficiently small velocity so that its total
energy in the fragment rest system is negative, allowing
it to be captured.

During the early stages of a fragment-atom collision,
the external force on a gas-atom electron is small com-
pared to the force binding the electron in the atom. For
any electron that is to be captured, there will come a
time during the collision when the force on the electron
caused by the fragment becomes larger than the binding
force, and thereafter the force between gas atom and
electron is of secondary importance. Thus the following
treatment suggests itself as a simpli6cation of the dif-
6cult two-center problem posed by capture: In con-
sidering the possible capture of any electron we ignore
the eGect of the fragment on the gas atom, i.e., polari-
zation, until the force on the electron in question caused
by the fragment is equal to the force binding the electron
in the atom. Thereafter we ignore the effect of the gas
atom and consider the newly liberated electron to be
captured, if and only if its total energy in the rest
system of the fragment is negative.

In this approach we use the Fermi-Thomas model of
the atom in order to obtain the space and velocity dis-
tributions of electrons in the gas atom. We are favored
in this choice because the outermost electrons, which
are poorly described by the Fermi-Thomas model, are

Fro. 1(a). Cross sections for capture 0., and loss os of an
electron by fission fragments of nuclear charge 40e passing
through low density oxygen; as functions of fragment velocity.
The nu~ber of' electrons s which the fragment lacks for electrical
neutrality is indicated as 0(s).
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FIG. 1(b). Capture and loss cross sections for fragments of nuclear
charge 50e in oxygen.

seldom captured and because several electrons con-
tribute almost equally to the capture cross section, thus
implying no inconsistency in a statistical model.

Consider the interaction of a fragment of eGective
charge s and velocity v with an electron which has a
velocity v, in its own Fermi-Thomas atom and is
subject to a binding force F,. Assuming that the electron
is liberated at fragment-atom separations large com-
pared to the dimensions of the fragment or gas atom,
the force on the electron due to the fragment will be
equal to the binding force when gas atom and fragment
are separated by rp such that P, = harp '. At this separa-
tion we assume that the electro'n is liberated, and there-
after we ignore the gas atom. The electron's potential
energy is now —sprp ', and its kinetic energy in the
fragment rest system is -', nz(v+v, )'. It is convenient to
introduce vp, the minimum speed relative to the frag-
ment which an electron at distance rp from the fragment
nucleus must have in order to escape. Then the condition
for capture is ~v,+v~ &~os. From simple geometry it,

follows that the probability of capture, P(tt, ss, v,), may
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be written

~(v, vp, v.)=o, fv —v,
J

&vp

=1, v+v, ~& vp (1)
=-', Lvp' —(v —v,)'j/2vv, . v —v, & vp& v+v,

For an electron which is initially located at a definite
position r, in the gas atom, the value of ro is determined
(for given fragment charge). Our approximation consists
in the assumption that all electrons of this type are
liberated at ro so that the cross section for liberation of
such electrons is ~ro'. The cross section for their capture
is o,=mrp'P(v, vp, v,). This expression must then be
integrated over a distribution of electrons (rp, v„vp)
consistent with the Fermi-Thomas model of the gas
atom.

This calculation has been carried through for a
number of fragments in oxygen, and some of the result-
ing total capture cross sections are plotted in Fig. 1.
The calculation has also been carried far enough for
fragments in argon to show that the total capture cross
sections are very nearly twice the values for oxygen. It
appears that over most of the periodic table, excluding
very light elements, the capture cross section for any
given fragment will increase with z of the gas somewhat
more slowly than linearly, with the increase becoming
slower with larger z.

Some general features of the capture process emerge
in our calculation. First of all, as is physically evident,
it is difficult for fast fragments to capture slow (outer)
electrons or for slow fragments to capture fast (inner)
electrons. More quantitatively, it is relatively improb-
able for a fragment of velocity 4ac to capture outer
electrons which have velocities ~ac, or inner electrons
which have velocities ~Znc if Z, here the atom nuclear
charge, is ~&7.

Second, we note that the capture cross section for a
fragment of given effective charge decreases rapidly
with the fragment velocity. " This is because, other
things being equal, a fast fragment will be less likely
than a slow fragment to capture the slower electrons
of a gas atom which will be liberated with large cross
sections. It will capture faster gas atom electrons better
than the slow fragment, but these electrons are liberated
with small cross sections. Hence, the total capture cross
section will decrease with velocity.

It is of interest to compare this decrease with that
recently observed in the case of protons"" and with
the theories of Bohr, ' and Brinkman and Kramers. '
The observed capture cross sections for protons in
hydrogen and air decrease somewhat more steeply than
our capture cross sections for fragments. Bohr estimated
0., ~ ', which is a stronger velocity dependence than
found even in the proton experiments. The calculations

MThe effect is somewhat mitigated in the physical case of
capture, because the effective charge of a fragment will increase
with velocity.

"H. Kanner and F. L. Ribe, Phys. Rev. 83, 1217 (1951).
"H. Kanner, Phys. Rev. 84~ 1211. (1951).

of Brinkman and Kramers (giving o, v ") are not
strictly applicable to any of the above cases.

For consideration of the loss calculation it is im-

portant to note how the electronic structure of a gas
atom disintegrates as a fragment passes by. To get an
idea of this efI'ect, suppose we divide the Fermi-Thomas
oxygen atom into eight spherical shells, each containing
one unit of charge, compute the binding force on each
shell and thus the liberation radii 2'0' for the shells.
The liberation radii, so computed, for the outer six
oxygen electrons in interaction with a fragment of
effective charge 8.9 are successively 9.2, 5.9, 2.1, 1.2,
0.90, and 0.65ap, (ap ——Bohr radius). Thus the oxygen
atom begins to lose electrons already a long way, 10ap,
from the fragment, and it loses of the order of half of
its electrons in a collision with impact parameter ao.
Very few of these electrons can be captured by the
fragment; most of them will simply escape.

We note that any attempt to refine these calculations
in the framework of classical mechanics must be viewed
with suspicion. If one attempted to localize the elec-
tron's position and follow its motion. under the inQuence
of the various forces more closely, one would imply
uncertainties in the electron energy large compared to
to the energy itself, and the whole correction would be
spurious.

III. THEORY OF LOSS

We seek the probability for a fragment to lose an
electron in a collision with a gas atom. For this problem
a quantum-mechanical perturbation approach has some
validity, at least if the nuclear charge of the gas atom
is smaller than the effective charge of the fragment.
One could consider the efI'ect of the passing gas atom as
a small perturbation of the electron wave function and
calculate the probability for the electron to be knocked
out of the fragment.

A difhculty in this calculation is the appropriate
choice of the perturbing potential. As we have seen at
the end of the last section, the gas atom becomes in-
creasingly ionized as it approaches the 6ssion fragment.
In the approximation used in the last section, the suc-
cessive ionizations occur at definite "liberation dis-
tances" from the fragment. Thus an oxgyen atom
approaching a fragment of eGective charge 8.9 will act
like a singly charged ion between distances 9.2 and
5.9ao from the fragment, like a quadruple charged ion
between 1.2 and 0.9ao, etc. Given the impact parameter
b and the velocity v, the perturbing potential due to the
oxygen atom can therefore be written down as a function
of time and its eRect on the fragment electrons calcu-
lated by time-dependent perturbation theory.

While this calculation would be perfectly feasible, it
was considered too cumbersome for the present work.
A simpler method oGers itself immediately. Consider
first a fragment passing through hydrogen or helium.
'These light atoms will lose their electrons at relatively
large distances from the fragment, and hence, during a
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close collision the fragment will see a proton or a-par-
ticle, vaguely accompanied by one or two electrons. We
shall say more concerning the motion of these electrons
in Sec. V. Anyway, it appears that appropriate per-
turbing potentials are those for a proton or o.-particle.

With more complicated gas atoms the situation is not
so clear. However, the consideration is simpli6ed if we
again treat the collision between gas atom and fragment
electron by classical mechanics. This approach may be
suggested by fairly large quantum numbers of the
electron, and its justification will be discussed shortly.
Because of the large binding energies of the fragment
electrons, large amounts of momentum must be trans-
ferred from the gas atom to the electron to enable the
electron to escape from the fragment. This is only
possible classically for close collisions. Now the frag-
ment electron is rather close to the fragment nucleus,
and therefore close approach between gas atom and
fragment electron automatically means close approach
between atom and fragment itself. For such close
approach, however, we know that the gas atom will be
highly ionized. The perturbing potential at large
distances and low degrees of ionization of the gas atom
atom is therefore irrelevant, and we may consider the
gas atom to have some high effective charge s u// the
time.

Quantitatively, we determine the effective charge s of
the gas atom and the loss cross section 0. simultaneously

by the following consideration. For any giver 2, we can
calculate the cross section for removal of a given frag-
ment electron (i.e., one of given binding energy).
Because we are now dealing with a perturbing Coulomb
potential, this cross section is easily calculated and is
essentially the same in classical and quantum me-
chanics; let us call it x/ . Then, using a classical picture,
essentially all passages with gas atom-electron impact
parameters less than / will lead to ionization, those
greater than / will not. We shall now choose s in such a
way that the electric field at a distance / from the
nucleus of the gas atom is just ze/P In othe.r words,
s shall be an effective charge at the distance / from the
gas atom nucleus, while at the same time x/2 is the
cross section for removal of the fragment electron by a
Coulomb 6eld of charge s.

If / and s are simultaneously determined in the manner
described, it is found that s corresponds to about the
highest degree of ionization which the gas atom can
reach, barring direct hits on the fragment. An electron
which passes at distance / from the gas atom will not

- appreciably penetrate the remaining electronic structure
of the atom, 'hence will be perturbed by what is very
nearly a pure Coulomb field. Electrons that pass even
closer will enter regions of the "gas atom" where the
6eld is stronger than assumed, but they will be lost in
either picture.

The question arises as to the validity of these classical
arguments. For its escape to be possible, a fragment
electron must be given a large amount of energy. This

means that a correspondingly large uncertainty in the
initial electron momentum may be tolerated and that
we can therefore localize the electron to a region small
compared with, or of the order of, that given by relevant
impact parameters without implying a prohibitively
large momentum uncertainty. Interactions which
produce loss will correspond to impact parameters of
the order of 2Z, '/mv', where Z&~ the nuclear charge
of the gas atom. For oxygen or heavier gases this will
be of the order ao, and the classical approach will have
about as much validity as in the case of capture.

We now turn to the quantitative calculation of the
loss cross section. Let hk, denote the initial momentum
of the fragment electron relative to the fragment
nucleus and hk the momentum of an electron sta-
tionary in the fragment relative to the gas atom. Then
hk= h(k +k,) is the initial momentum of the fragment
electron relative to the gas atom. If hk~ is the final
momentum of the electron relative to the gas atom, then
k~ ——k, and the momentum change Aq will be given by
2hk sin(0/2), where 8 is the angle of scattering. The final
momentum relative to the fragment is hk'= hkr —hk .
Now let kko be that minimum value of the momentum
which the electron in question must have relative to
the fragment in order to be free. Then the condition for
ionization or loss of this electron which must be imposed
on its 6nal momentum is k' ~& ko. All these momenta are
shown in a k space diagram in Fig. 6.

For a Coulomb potential of strength s, the difterential
scattering cross section is

do./dQ= (2ms '/h')1/g4. (2)

Case I.—(2k —kp&~k,)

o z, (k , kp(r), k.(r))

3~z' ~2(kpP+k„') q )k +k.y

4apPk. 'k ( kpP —k,' ) Ekp —k )

k 2k 2k —kp

k„+k, kp —k. kp —k„
(3a)

To find the loss cross section for an electron charac-
terized by (k„kp) we must integrate do for all k'~)kp.
This integration is outlined in the Appendix. We may
then calculate the average loss cross section as a func-
tion of the distance r of the fragment electron from the
fragment nucleus. From the Fermi-Thomas model of
the fragment we compute three parameters as a func-
tion of r, namely, (1) kp(r), (2) k, (r), where hk, (r) is the
maximum value of the initial momentum which an
electron at r can have, i.e., the momentum of an electron
at the Fermi level, and (3) D(r), where D(r)dr is the
number of fragment electrons between r and rdr.

The loss cross section per electron as a function of r
is shown in the Appendix to be
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Case II. (2k —kp~& k )—
o.I,(k„, kp(r), k.(r))

3prz' -
~2(k '+kp') q ~k +k.q—1 /in(

4ap'k 'k ( kpP —k,' ) (k„—k )

—k,k
. kp' —k ' k„'—k, '

(3b)

In addition, o.i,=0 if 2k —kp& —k.
Finally, the total cross section for loss by the fragment

is obtained by integrating the cross section per electron
multiplied by the electron density over the fragment
volume,

o (k„, s)= oi,(k„, kp(r), k,(r))D(r)dr. (4)
0

The integrand of Eq. (4) has a fairly pronounced maxi-
mum. This is because D(r) is very small for r near r,„
and 0L, decreases rapidly as r becomes smaller. The
charge of the gas atom, s of Eqs. (3), is determined by
demanding that the loss cross section per electron at
the maximum of the integrand in (4) is equal to the
geometrical cross-sectional area of that region of the
gas atom within which there are one nucleus of charge
Z and Z—z electrons. As remarked earlier, the value
of z thus obtained is in each case about equal to the
number of gas atom electrons which have been liberated
under the inhuence of the fragment, at the time when
the gas atom and fragment are separated by a distance
about equal to the fragment radius. We may essentially
conclude that a fragment electron is with high prob-
ability removed from the fragment, if and only if it is
"hit" by the gas atom, i.e., if the gas atom passes close
enough to the fragment so that the fragment electron
penetrates the remaining atom electronic structure.

Using Eqs. (3), (4) and the above criterion for deter-
mining z, we have computed loss cross sections for

1 I
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FIG. 2. Effective charges of fragments of nuclear charge 40'
and Sos passing through lour density oxygen, as functions of
fragment velocity.

various fragments in oxygen. Some results are shown
in Fig. 1. The values of eRective z for oxygen which are
obtained vary from about 2 with fragments of eRective
charge about 5 to about 6 for fragments of eRective
charge approximately 20. Loss cross sections have also
been computed for fragments in argon, and these are
found to be larger than those for oxygen by a factor
which for effective fragment charge &8 is about 2.2
and is smaller for smaller fragment eRective charge.

It is worth noting that the loss cross section for a
fixed effective charge increases with fragment velocity
in the region considered. This is a,pparently contrary
to observations with protons"" and the Born ap-
proximation, where cri. decreases with velocity. How-
ever, since in reality the fragment eRective charge
increases with velocity, the loss cross section for a
fragment will actually decrease with increasing frag-
ment velocity.

IV. THE EFFECTIVE CHARGE

If we know the capture and loss cross sections as
functions of fragment charge and velocity, 'it is a simple
matter to 6nd the most probable number of electrons in
a fragment as a function of its velocity. We shall see
that the most probable number is essentially the average
number, and hence from the intersections of the capture
and loss curves in Fig. 1 we may obtain effective charge
as a function of velocity and nuclear charge. The
eRective charges of fragments of nuclear charges 40 and
50 in oxygen are plotted as functions of the velocity in
Fig. 2.

Our results may be compared with previous calcu-
lations, which are summarized in reference 6. Bohr
estimated the eRective charge z of a fragment of
nuclear charge Z to be z=Z'v, where n is measured in
units of Q.c. We see that Bohr's values of eRective
charge are greater than ours by factors of 1.30 or more.
The effective charges calculated in (3) and (6), by
Knipp, Teller, and Brunings, are greater than ours by
the order of at least 30 percent for fragment velocities
greater than 3nc, but are in better agreement with ours
for smaller velocities. It appears that their second
choice of "critical electron velocity" gives much better
(i.e., lower) values of the effective charge for high frag-
ment velocities. Our results are in rather close agree-
ment (of the order of 10 percent) with those of Lamb. 4

The eRective charges of fragments in other gases
than oxygen but of 'comparable atomic number are
about the same as those in oxygen. Thus our calcula-
tions indicate that the eRective charge in argon will be
about 2 percent larger than in oxygen when the eRective
charge )8; smaller for lower values of the eRective
charge. We may conclude that for a large range of
atomic weights of stopping gases, the eRective charge
is essentially independent of the stopping gas.

From our cross sections, we may deduce the prob-

"J.H. Montague, Phys. Rev. 81, 1026 (1951).
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ability for a fragment of velocity v and nuclear charge
40 or 50 to have any arbitrary effective charge. For any
definite velocity and nuclear charge of our fragment, we
have a most probable value of fragment charge, call it
so, such that a, (zo)~oq(zo), where o,(s) is the cross
section for capture of an electron by a fragment of
effective charge s, and o 1.(s) is the cross section for loss
of an electron by a fragment of effective charge s.
If 1V(s) is the number of fragments having effective
charge s, the equilibrium distribution of E(s) will be
such that the probability of going from s to s+1 will
equal the probability of going from s+1 to s, or

lV(s)o J.(s) =X(s+1)o,(s+1). (5)

To the extent to which o,(s) and oL,(z) may be repre-
sented by curves of exponential form, 1V(z) will have a
Gaussian form about so."Thus, if we set

ol, (s)= o I,o expLP (s—so) ],
o,(s) =o,o expLn(z —sp)],

we find

&( ) =&( o) PL'(P — )( —o)'] (6)

provided we set or,o= o,o expL:', (n+P)]
From our cross sections and (5) we may also compute

E(s), and this has been done for a fragment of nuclear
charge 40 and velocity 4.75c. The results are indicated
in Fig. 3 and compared with the Gaussian of Eq. (6)
which is seen to be a good fit. We find that most
probable, average, and rms values of s agree to within
about 2 percent. It appears that for a wide range of
fragments the equilibrium distribution N(s) is roughly
a Gaussian with width at half-maximum equal to
one-third the most probable value so.

We then may multiply P(v, )dv, by Eq. (1) and integrate
over electron velocities to get a total capture cross
section in terms of the liberation distance.

The velocity distribution for large e, behaves as v, '.
This makes it very dificult for a fragment of high
velocity to capture a hydrogen electron. A hydrogen
electron will be liberated at a large distance from the
fragment and must have a high velocity relative to its
own nucleus, the proton, for capture to be possible;
but such high velocities are rare.

To estimate a liberation radius one may extend some
considerations introduced by Lamb. 4 By considering
the saddle in the potential given by a fragment and a
proton, it is easy to show that capture of a hydrogen
electron is quite possible for proton-fragment separa-
tions of about (2+4+s)ao. As a liberation radius, how-
ever, we wish a separation for which it is probable that
the electron will escape from the proton to the fragment
in the order of 3X10 ' sec. By estimating barrier
transparencies, solid angles subtended by the saddle of
escape, and times required for an electron to get
through the saddle, one finds that the liberation radius
is of the order of (2+s)ao.

Fortunately, the total capture cross section is insen-
sitive to the liberation radius. For example, a variation
of 25 percent in the liberation radius produces only
about a 2 percent change in the effective charge of a
fragment.

The cursory character of these estimates is all too
apparent, but we might hope that they would give the
capture cross section within a factor of 2 or so, and we
have used them to compute eGective charges in hy-
drogen. The results are indicated in Fig. 4. The curves

V. HYDROGEN AND HELIUM

The cross section for loss. of an electron by a fragment
interacting with a hydrogen atom presents no new
problems, for this may be calculated using Born
approximation with the perturbing potential of a bare
proton. The results of Sec. III may be taken over with
the s of the gas atom put equal to 1.

To obtain a simple picture of capture in hydrogen,
we shall start by adapting our previous treatment of
capture from a many electron atom. That is, we retain
the notion that before liberation the electron moves in
an unperturbed fashion, while after liberation it is
aware only of the existence of the fragment. However,
we take into account the velocity distribution of the
hydrogen electron in detail instead of using the Fermi
distribution. The probability that an electron in the
hydrogen ground state has velocity between v, and
v,+dv, is

yl O4
b(W I—

l.2—

I.O—

IO
iz)

.l57 (Z-IR)

32 'v~

P(v,)dv, =— dv, .
v (1+v,')4

"This Gaussian was suggested by Niels Bohr.

05

FIG. 3. Distribution of fragment charges about the most prob-
able value, which is 12 for a fragment of nuclear charge 40 and
velocity 4.75cxc in low density oxygen. The capture and loss
cross sections are shown above.
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are considerably steeper, straighter, and higher than
for fragments in oxygen. This is just a reflection of the

difhculty which a fragment, especially a fast one, has in
capturing a hydrogen electron. The curve is also, as will

be seen in Sec. VI, in marked disagreement with experi-
ment, being too high at least for high fragment ve-
locities.

It may be that because of the smallness of the capture
and loss cross sections, new effects will show up. in the
interactions of fragments with hydrogen atoms. In
particular, the capture of liberated electrons through
inelastic collisions with the fragment may be of im-

portance. Thus a liberated electron may pass through
the outer regions of a fragment and interact with a
fragment electron so that in the final state (a) both
electrons have been raised to the continuum and are
free, (b) one electron is free and the other bound, or
(c) both electrons are bound in the fragment. The first
process would lead to loss but should be much smaller
than proton-induced loss because of the low kinetic
energy of the liberated hydrogen electron. The second
process does not contribute to net capture or loss. The
cross section for a capturing collision of type (c) may
be a substantial fraction of the cross section for proton
induced loss and thus lead to a large increase in the
total capture cross section and a considerable lowering
of the effective charge. To obtain a good idea of this
effect one would like to consider the interaction between
an electron bound in the fragment and a free electron
and to calculate the probabilities of transitions to final
states in which both electrons are bound. A time-
dependent perturbation calculation would seem appro-
priate.

The above interactions will be of considerably less
importance in capture from heavier gases. This is
because in a heavier gas the regular capture and loss
cross sections will be larger by about the square of the
number of electrons liberated from the gas atom, while

the cross section for inelastic capture of liberated elec-
trons will go only linearly with this quantity.

Fro. 4. Effective charges of fragments of nuclear charge 40e
and 50e passing through low density hydrogen and helium; as
functions of fragment velocity.

We have also considered the possibility of capture of
a liberated electron with the emission of radiation.
This appears improbable. The natural cross section for
measurement of bremsstrahlung is s'n'ao'. Even for
fragment nuclear charge of the order of 50 and photon
energies of the order of 100 ev, the relevant cross
sections appear too small.

The capture of hydrogen electrons may be somewhat
expedited by the diatomic nature of hydrogen. To
estimate this effect we may consider the momentum
distribution of an electron in a hydrogen molecule or
molecular ion to be that of an electron around a
"proton" of charge 1.2e $niz , H. .A. Bethe, Handbuch
der I'hysik (J. Springer, Berlin), Vol. 24—17. This con-
siderably enhances the probability of capture but lowers
the effective charge vs velocity curve by only about
5 percent.

These considerations have been applied to helium,
taking both electrons in 1s states and ignoring the
electron-electron interaction. The effective charge
curve, Fig. 4, is mucb lower because high intern3, 1

velocities are much more probable for helium electrons.

VI. COMPARISON WITH EXPERIMENT

To be able to compare our calculations with experi-
mental values of the effective charge, we need to know
the properties of fragments from the slow-neutron
fission of O'". In particular, we are interested in most
probable initial energies, masses, and nuclear charges,
and also the expected variations in these quantities.

Leachman'~ has recently completed time-of-flight
measurements which give the most probable velocities
of U'" fragments as 6.49nc and 4.42a. for light and
heavy fragments. This gives most probable masses of
about 96 and 140 and most probable energies of 100
and 68 Mev.

These energies are considerably higher than those
which have been inferred from measurements of the
total ionization produced by fragments. "" For ex-
ample, Brunton and Hanna obtained 94.5 and 60.2
Mev. However, in converting total ionization to energy
loss, it had been assumed that ~, the number of electron
volts per ion pair, is the same for fragments as for n
particles. Knipp et a/.""have recently pointed out that
many of.the recoiling gas atoms have low ionization
e%ciencies and that co should be larger for fragments
than O.-particles. Agreement between the time-of-Right
and ionization measurements is obtained if we assume
the energy-ionization ratios co of the most probable

'5R. B. Leachman, Phys. Rev. 83, 235 (1951), and private
communication.

W. Jentschke and F. Prankl, Z. Physik 119, 696 (1942)."Flammersfeld, Jensen, and Gentner, Z. Physik 120, 450
(1943).

"M. Deutsch and M. Ramsey, U. S. Atomic Energy Commis-
sion Report MDDC-945, 1945 (unpublished)."D. C. Brunton and G. C. Hanna, Can. J. Research 28, 190
(1950).

20 Knipp, Leachman, and Ling, Phys. Rev. 80, 478 (1950).
2' J. K. Knipp and R. C. Ling, Phys. Rev. 82, 30 (1951).
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light and heavy fragments to exceed co of uranium 0.
particles by factors of about 1.05 and 1.12, respectively.
Leachman's higher energies appear to give better
agreement with measured values of the total energy
of 6ssion" and fragment masses obtained from chemical
analysis. "

The ionization measurements show that 15 percent
variations in energy and mass are very common for
both fragments.

The initial effective charges of fragments in low
pressure gases have been measured by Lassen. '4 The
fragments are deQected in the magnetic field of the
Copenhagen cyclotron, and the eGective charge is
determined by combining the measured value of Hp
with an estimate of the fragment momentum. When the
deQecting chamber is 6lled with oxygen at a low
pressure ( 1 mm Hg), the effective charges of the light
and heavy fragments are about 16.1~ 0.5 and 14.8

0.5, respectively. These numbers are somewhat
larger than those given by Lassen himself since our
value of the momentum exceeds his by about 6 percent.
The corresponding numbers from our theory (Fig. 2)
are about 15.5 and 13.5. In hydrogen the experimental
values are about 16.7 and 13.3, while in helium they
are about 14.9 and 12.2. The calculated values, from
Fig. 4, are 22.5 and 16 for hydrogen and 16.5 and 12.5
for helium. Taking the molecular effect into account
for hydrogen, we get about 21 and 15, so that a marked
discrepancy remains. Theory and experiment agree
that effective charges are higher in hydrogen than in
helium, and in both gases there is a greater diGerence
between the charges of the light and the heavy fragment
than in heavier gases, the spread being greatest in
hydrogen.

When the region of magnetic deQection is evacuated,
it becomes possible to measure effective charges in the
solid from which the fragments enter the vacuum.
Lassen 6nds that initial effective charges in solids are
about 30 percent higher than in gases. Bohr has noted
that this is no doubt due to competition between the
radiative decay of excited electronic states in the frag-
ment and removal of the excited electrons by collision.
It is observed that for fragments coming from solids,
the heavy fragment has more eGective charge than the
light, contrary to the observation and theory in gases
for initial fragment velocities. In general, the effective
charge of a fragment increases with the pressure of the
substance through which it passes.

Lassen also observes a wide distribution in value of
Hp for both fragments emerging from solids. This
should be and is roughly as in Fig. 3.

As a gas is introduced gradually into the deQection
chamber, the fragments capture electrons from the gas

~ M. C. Henderson, Phys. Rev. 58, 774 (1940).
"Plutonium Project, Revs. Modern Phys. 18, 513 (1946).
'4N. O. Lassen, Kgl. Danske Uidenskab Selskab, Mat. -fys.

Medd. 26, No. 5 (1951). This article contains references to
Lassen's several earlier papers on the subject.

atoms more or less rapidly depending on the gas
pressure. It is of interest to calculate the average values
of the eGective charges of the most probable fragments
as functions of the gas pressure. We take over the
experimental values of the effective charges in solids
and calculate the average values for the most probable
fragments emerging from uranium into argon. Results
are indicated in Fig. 5 for a path length of 20 cm and
initial charges 21 and 23. There is general agreement
with experiment. In particular, the equilibrium charge
is approached much more rapidly by the heavy fragment.

Lassen25 has also measured the specific ionization
produced by a fragment in a gas as a function of its
residual range. One may obtain information on the
variation of effective charge with velocity from these
measurements provided one has a theory for the specific
ionization produced by such large charges. Such a theory
has been developed by Bohr. ' Using this theory and
assuming that the fragment acts as' a point charge, one
calculates from the measured speci6c ionization an in-
itial charge of about 22. The measurements were carried
out at pressures between —,

' and —,'0 atmosphere, but even
admitting some increase of the effective charge with
pressure, there is substantial disagreement with the
magnetic deQection measurements and our predictions.
However, if one multiplies all the charge values as ob-
tained from specific ionization by a constant so as to give
the initial effective charges in agreement with deQection
experiments, one 6nds general agreement of the e8ec-
tive charge vs velocity with our curves of Fig. 2.

When we take into account the compound nature of
the fragment, somewhat better agreement is produced.
An actual fragment will lose energy more rapidly than
a point charge equal to the effective charge because the
actual field, which is stronger than the point Coulomb
field within the fragment, will produce more ionization

Lessens Polntsi
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Heavy Frnement

I
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FiG. -5. Effective charges of most probable 6ssion fragments
emerging from uranium into low pressure argon as functions of
pressure —measurements of Lassen described in reference 24.

~' N. O. Lassen, Kgl. Danske Videnskab Selskab, Mat. -fys.
Medd. 25, No. 11 (1949).
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where p is the azimuthal scattering angle. We wish to
express q; (g) in terms of k„k, k, and p. To do this
we make use of the following equations:

(k')'= q'+k8P+2k, q,

k, q= k,q(cos8t cos8p+sin8t sin8p cosP),

kf 2 k2 g2 2k/ cos02 kf

(A2)

where 8t is the angle between k, and k, and 8p is the
angle between q and k. It follows that

(kl)2 —q2+ k 2

+(k,q/k)[ —
q cos8t+(4k' —q')i sin8t cos@j. (A3)

When q= q; (P), (k')'= kp', so that from Eq. (A3) we
6nd

k.2 -2k—(kp' —k,') (
—cos8+—

(

q
' 2k'(kp' —k ')' k E k,)

F?G. 6. Momenta used in the loss calculation: kk. =initial
electron momentum relative to fragment nucleus. Ak =momen-
tum of electron stationary in fragment relative to gas atom.
kk=initial electron momentum relative to gas atom. bky=final
electron momentum relative to gas atom. Ay= momentum change,
2k sin(e/2). kkp =Minimum momentum relative to fragment
which electron must have to be free. The integration is carried
out over the crosshatched surface of the sphere. For g&~q~, loss
is certain. For q&q'I, loss is impossible. For q2)q)qi, there is a
probability of loss between zero and one.

of the gas. This may add about 5 Mev per cm. Perhaps
the most important new source of energy loss will arise
from loss of electrons by the fragment itself. This is
analagous to the charge exchange energy loss, recently
discussed by Allison et a/. for the passage of protons
through hydrogen. It may amount to the order of 8—10
Mev per cm for initial fragments. Nevertheless, these
two eBects do not su%ce to establish good agreemnnt
between the specific ionization and magnetic deflection
experiments.

It is a pleasure to thank H. A. Bethe for many valu-
able discussions. The author is also indebted to Niels
Bohr, N. O. Lassen, and R. B. Leachman for com-
municating results in advance of publication.

I
dQ 1 ' I" dq

1 I' ( 1 1)
(q; '(p) 4k')

(Ai)

APPENDIX

To get from Eq. (2) to Eq. (3), we must evaluate
J'q 'dQ over all scattering angles and k consistent with
fixed k„and k, and (k')' &&kp'. (The k's are explained
in Fig. 6.) We may write

+4k' sin'8 cos'P +b cosrb(e+f cos'g) i, (A4)

where b, e, and f are constants independent of p. It is
important that simply cosP multiplies the radical for
this term gives zero upon integration. If we had taken

~

(cos'p)*' ~, q; '(p) would not depend on the sign of p,
which is incorrect. When we express cos9~ in terms of
k„k, and k, it follows that

1 . 1 1+—
4(kp' —kg')' k' 2(kp' —kg') 2(kp' —k ')'

k,'+k„'

1~ k' —k' k4+k 4—2k'k' 1
+— — —— . (A5)

k4 I 2(kpP —kP) 44(kpP —k,')'

To obtain the loss cross section per electron which is
at distance r from the fragment nucleus, we must
average Q over all velocities which the electron may
have; these will be distributed isotropically and
weighted proportional to k,24k, up to a maximum
value k, . The average may be written

pl, (k„, k, kp) p p k,k

Q dkdk,
4s'/~p' 2) k.'dk, , (A6)

p

where a(k, k„kp) is the loss cross section per electron.
The limits on k and k, must be considered with some

care. We must have k +k, &&k&&~k —k, ~, and for
ionization to be possible we must have k ~&kp —k . It
follows that there will be three cases involving di8erent
limits of integration, the first for 2k —kp(0, the
second for 0&2k —kp&&k„and the third for Zk —kp)k . However, it can be proved that the 6rst two cases
may be covered by the same formula. The proof makes
use of Q being an even function of k, . an=0, if
2k —kp( —k„.
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By elementary if tedious integration we find that for Case II.—(2k —kp~) k )

Case I.—(2k —kp ~& k,)

~ king p &m+&e

~ kp—2A, mrs kp —ktts

t'k„+k. q kp'+k ' 1
=A lni

&kp —k„) 4(k '—k ') 8

1 k k 1 2k —ko

8 k„+k, 4(kp —k,) 8 kp —k„

II
pg, (km+pe

oL,(k„, k, kp)=A k,dk, kQdk
o 4 I~—I.

Apr k +k k '+kp' 1
ln

4 k —k ko' —k ' 2

xk,k +, (A8)
2 kps —k, ' 2(k~' —k ')

(A7) where A=6s'/ap'k, sk . This completes the derivation
of Eq. (3).
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Radiations from Selenium"
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The radiations from 125-day Se ' have been examined by means of a thin lens spectrometer and absorption-
coincidence techniques. Se~s was found to decay to As~~ by orbital electron capture. The energies of ten
transitions (0.0666, 0.0766, 0.0983, 0.1241, 0.1384, 0.2032, 0.2688, 0.2814, 0.3078, and 0.405p Mev) were observed
in the photoelectron and internal conversion spectra determined with the spectrometer. A decay scheme
is proposed on the basis of the absorption-coincidence and spectrometer data. The multipole order of the
98.3-kev transition is discussed.

I. INTRODUCTION

A N'UMBER of investigators' have examined the
radiations from 125-day Se". From lead absorp-

tion measurements Burgus et e/. ' report two gamma-rays
having energies of 0.1-8 and 0.335 Mev; Friedlander et al. '
found a single gamma-ray having an energy of 0.4 Mev;
Cowart et al. ' report two gamma-rays with energies of
0.22 and 0.43 Mev; and Gest and Glendenin' found
two gamma-rays having energies of 0.18 and 0.35 Mev.

* Now at State University of Iowa, Iowa City, Iowa.
t Contribution from the Institute for Atomic Research and de-

partments of physics and chemistry, Iowa State College, Ames,
Iowa. Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission.
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Project Report CN-2839, p. 9 (June, 1945); cited by Seaborg
and Perlman, Revs. Modern Phys. 20, 585 (1948).

3 Friedlander, Seren, and Turkel, Phys. Rev. 72, 23, 888 (1947).
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1406 (1948).
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(1949).

8Cork, Rutledge, Branyan, Stoddard, and Le Blanc, Phys.
Rev. 79, 889 (1950).

The three latter groups found x-rays corresponding to
the E lines from arsenic, indicating that Se" decays
to As~5 by orbital electron capture.

Ter-Pogossian et at. ' examined the photoelectron
spectra of Se", as obtained from lead and uranium radi-
ators, in a 180' spectrometer. They report six, and possi-
bly seven, gamma-rays with energies 0.076, 0.099(?),
0.123, 0.137, 0.267, 0.283, and 0.405 Mev. They did not
obtain an internal conversion spectrum. Cork et a/. ' have
examined the internal conversion spectrum of Se" in
spectrometers using photographic detection techniques.
They report eleven gamma-rays with energies 0.0247,
0.0662, 0.0808, 0.0968, 0.1212, 0.1362, 0.1988, 0.2652,
0.2801, 0.3050, and 0.4019 Mev. They did not obtain a
photoelectron spectrum.

DeBenedetti and McGowan' made a search for a
metastable state in As", by means of delayed coinci-
dences, and obtained a negative result in the range
10 ' to 10 'sec

Reports" have been made at various times on the
decay and transition energies of Se", as determined

'S. DeBenedetti and F. K. McGowan, Phys. Rev. 74, 728
(1948).

'P Jensen, Laslett, and Pratt, U. S. Atomic Energy Commission
Report AECD-1836, 1948; E. N. Jensen, Atomic Energy Com-
mission Report AECD-2399, 1948; Progress Report in Physics,
Iowa State College, ISC-46, 1949 (unpublished).


