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The Adiabatic Hall Effect in Semiconductors*
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Calculations are carried out to determine the relative difference between the isothermal and adiabatic
Hall coefFicients of typical semiconductors. The isothermal Hall effect requires a constant temperature in
the plane of the electric current Qow and Hall 6eld, whereas the adiabatic Hall effect is delned by the alter-
native requirements that the temperature gradient be zero in the direction of the electric current flow and
the heat current be zero in the direction of the Hall ffeld. The relative difference (R —R;)/R; is studied for
the (1) classical impurity semiconductor, (2) degenerate semiconductor, and (3) classical semiconductor at
high temperatures. For the thermal and electrical conductivities characteristic of silicon and germanium,
the relative diQerences are found to be of the order one percent or less, thus indicating that it usually is not
necessary to distinguish between the isothermal and adiabatic conditions in interpreting measured Hall
values. Tabulated values are presented in such form that the relative difference may be readily calculated
for any semiconducting sample of known electrical conductivity, thermal conductivity, and variation of
carrier density with temperature.

I. INTRODUCTION

HE Hall eGect' is the production of a transverse
electric potential diGerence across a conducting

sample as a result of the deQection of current. carriers
when a magnetic fmld is applied in a direction perpen-
dicular to the current Bow. At equilibrium the electro-
static force due to the Hall field balances the magnetic
force on the moving charges composing the current.
The Hall coefFicient, R, is defined by the relation'

R=E„/j~
where j, is the longitudinal electric current density,
E„the transverse electric field intensity, and H, the
magnetic 6eld intensity. The transverse electric current
density j„is assumed to be zero. Kinetic theory of con-
duction indicates that, if the current carriers all have
the same sign, R depends upon e, the number of carriers
per unit volume, and e, the magnitude of charge on each
carrier:

temperature in the plane of the current and Hall field;
i.e., the temperature gradients dT/dx and dT/dy must
be zero. The absence of a temperature gradient does not
insure the absence of the heat current resulting from
the electrons if electric or magnetic fields are applied.
Thus, the "adiabatic" Hall eGect is defined by the
alternative requirements that dT/doc and the heat
current in the I' direction must be zero. In actual Hall
effect measurements, it is usually impracticable to take
the precautions necessary to eliminate the transverse
temperature gradient; and so there is doubt as to
whether the isothermal or the adiabatic conditions apply
the more closely to an experimental situation. The
object of this paper is to calculate the di8erence between
the isothermal and adiabatic Hall coe%cients under
varying assumptions as to the nature of the sample;
these assumptions correspond particularly to the ob-
served characteristics of silicon, germanium, and tel-
lurium samples.

R= wr/4M, (2)
II. GENERAL EXPRESSION FOR THE ADIABATIC

HALL COEFFICIENT

where r is a numerical factor and the sign of E. is the
sign of the charge on the carriers.

Accurate determination of electron density from
measured values of the Hall coeS.cient requires knowl-
edge of the proportionality factor r, which depends
upon (1) the statistical distribution of the electron
velocities in the presence of electric and magnetic fields,
(2) the dependence of the mean free path upon electron
velocity, and (3) the temperature variation and heat
Bow in the sample.

The "isothermal" Hall effect' requires a constant

*Work assisted by contract between U. S. Signal Corps and
Purdue Research Foundation.

f Now at Naval Ordnance Plant, Indianapolis, Indiana.' E. H. Hall, Am. J. Math. 2, 287 (1879); Phil. Mag. 10, 301
(1880).

2 Derivations in this paper are carried out in the electromagnetic
system of units.

'The terms "isothermal Hall effect" and "adiabatic Hall
effect" were introduced by R. Gans, Ann. Physik 20, 293 (1906).

The kinetic theory of conduction, ' ' based upon the
Lorentz solution of the Boltzmann equation, leads to
the following set of equations for the electrical and
thermal current densities:

j =L„E,+LrsH, Eo+L,edT/dsc+L, 4H, dT/dy,

jo= L&sH,E,+L»E„—L&4H, dT/dr+ L—red T/dy,

w, =Ls&E,+LssH, E„(Les+Ir r)d T/dx—
+Ls4H, dT/dy,

w„= LssH, E,+LsrE„—Ls4H,dT/dsc-
—(Lss+ trr)dT/dy.

(3)

Here m and m„represent thermal current per unit area
in the I and F directions, respectively, and ~L, is the

4H. A. Lorentz, The Theory of Etectrols (G. E. Stechert and
Company, New York, 1923), p. 63 and note 29.

'A. Sommerfeld and N. H. Frank, Revs. Modern Phys. 3, 1
(1931).
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TAsLE I. CoeKcients appearing in the electrical and thermal
current density equations (current carried by electrons onlyb).

4+em " Bfpn'l—vdv
3 p Be

4~e' " BfoL12=
3m o Be

f, —~P,'(;+—T,'-,(',)—),a.-
4~e Bfo e

L14= vP—' —+T—— edv
3m o Be T dT T

4mme (', BfpL» —— g e41—

ader

6 0 Be

47rF ",BfpL v'l'=vdv
6 o B»

4vrm " Bfp e d
L33——— v4/ —+T—— edv

6 p Be T dT T
4me Bfp e

L34= —— 8 l — +T—— Sdg
6 p Be T. dT T

a The symbol fp represents the unperturbed electron distribution function,
l the mean-free-path, and e the kinetic energy mv~/2, where m is the effective
mass. The symbol g represents the chemical potential (or Fermi level).

b Those coefficients which include an odd power of the electron charge
are reversed in sign, and those with an even power of e retain the same sign
if holes, rather than electrons, carry the current.

thermal conductivity associated with the lattice vibra-
tions, as distinct from the thermal conductivity asso-
ciated with kinetic energy transfer by conduction elec-
trons. The coe%cients I.,7, are integrals dependent upon
the mean free path, the distribution function, and the
chemical potential (Fermi level); these coefficients are
given explicitly in Table I.

The total thermal conductivity ~ is defined as
231,/(dT/dx—) under the conditions j,=dT/dy=H, =O.

Equations (3) yield the expression

K (L13L31/Lll)+L33+ KL= K8+ KL, (4)

This relation serves as the basis for comparing the
adiabatic and isothermal Hall coefficients through evalu-
ation of the ratio R,/R, or the relative difference
(R,—R;)/R;.

The following discussion explicitly applies to e-type
or electron conductors, but an exactly parallel treatment
applies to p-type or hole conductors; thus the results
obtained in the following sections are equally valid for
23- and p-type conductors.

2m3 (l
exp

k' ( kT)

where m denotes effective mass, f' the chemical potential
or Fermi level, and e the electron kinetic energy; the
zero of energy is taken as the bottom of the conduction
band.

The coefficients L;& of Eqs. (3) all involve integrals
of the form

III. THE ADIABATIC HALL COEFFICIENT FOR A
CLASSICAL IMPURITY SEMICONDUCTOR

At low temperatures conduction in a semiconductor
is due to electrons which have been excited from the
impurity levels to the conduction band. At a tempera-
ture depending upon the sample, nearly all of the
impurity atoms are ionized and "exhaustion" occurs.
At higher temperatures electrons may be excited from
the filled band to the conduction band (intrinsic con-
duction). The classical impurity region is defined as
lying above the temperature at which it is necessary ts
use quantum statistics but below the temperature at
which intrinsic conduction becomes significant. In this
range one uses the distribution function

where ~, represents the conduction electron contribution
to the thermal conductivity.

The isothermal Hall coefficient E; is found from
Eqs. (3) by setting j„=dT/dx=dT/dy=0 and solving
for

+ /j*II L12(L11 +L12 II* )

2' l~8fp/8 plan,

where 2n and P are integers. Define

u= p/kT ~

(10)

—(2kT)~m '~+" ~ u~Pfpdu= (2kT)~m —&~+»—R &. (12)
eJ 0

L12/L1 1 ~ (6)

The weak field approximation that terms containing
the second or higher power of the magnetic field strength then the integral (10) may be written as
are negligible is used in this paper; hence Eq. (5)
reduces to

The adiabatic Hall coefficient 8 is also obtained
from Eqs. (3), but the auxiliary conditions arej„=dT/dx
=m„=0.Thus one obtains

Equation (8) combined with Table I and Eq. (12),
gives the result

L12{L33+KL+ (L13L32/L12) )g.=
Lll {L33+KL+ (L13L31/Lll) l

oT k'
R,=R, 1+ F(l, i, T)—(13)

Fquations (4) and (6) are used to reduce the above to where 0 is the electrical conductivity (L») and where

Lip (L32 Lpi)
R,=R; 1+

K L12 Ill
%21 E 2 IC21 T d

I'(f, &, T)= — -+—
~

—
I

. (14)
Rl 1 R~ 2 +11
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The Fermi level for a classical semiconductor is given by and lattice scattering, respectively. Define the functions

and thus

t =kT ln
2(2snzkT)'*

(15)

and

G (b)= ~ " '( '+b') 'd (25)

d (ii kdl 3k
dTiTJ mdT 2 T

(16) Hs(b) = e "sz'(szs+b') 'dN, ; (26)

t= ye". (17)

When p= 0, the mean free path is constant with respect
to energy, corresponding to the case when lattice scat-
tering' alone is present; if p=2, the mean free path is
approximately that associated with impurity scat-
tering. ~ One can write

E,s= —2nz'k set'"~(p(kT) "}~V(n+PP+1), (18)

and thus Eq. (14) reduces to

1 T dry
~(f, i, T)=(-: p)l -p+ +

2 I dT)
(19)

For lattice scattering only (p=0), Eq. (13) becomes

In the classical impurity region, scattering of the
conduction electrons both by the lattice and by im-

purity ions may be important. Hence it is of interest
to consider the mean free path as given by

then Eq. (14) becomes

oTk G'4(b) Hyv s(b)
E,=R, 1+——

s e' Gs(b) Hs)s(b)

lG4(b) 3 T dn
Xi —+ I (7)

Gs(b) 2 n dT I

The required functions G&(b) and H&(b) have been
evaluated by numerical methods.

Examination of Eqs. (20), (21), and (27) shows that
the ratio E,/R; is de. pendent upon temperature, elec-
trical conductivity, thermal conductivity, the tem-
perature rate of change of carrier density, and the
nature of the scattering encountered by the carriers. In
the following paragraphs R,/R, is evaluated under
several sets of conditions chosen to correspond to the
observed characteristics of semiconducting samples.

A. The Gans Expression

o T k' (1 1 T de i i

k e' E4 2 e dT) I

(20)

Gans' considered only the electronic contribution to
the thermal conductivity and took the mean free path
as independent of energy. He used s/o T= ~,/o T= 2k'/e'
and hence found

and for impurity scattering only (p= 2), it becomes
R,—R; 1 1T dn

o.Tk'( 15 3 Tdrt)
i

2 e dT) I

(21) R' 8 4ndT
(28)

1/&= 1/lz, +1/Iz, (22)

where lz=yes=y(kT)'e' and Iz, is independent of e.
Then

where

2m3 p" e "u~+'&du

ks "s (I'+b')s
(23)

b'—=lz/ f y(kT)'} = 6pz/pz„ (24)

in which p& and pL, are the resistivities due to impurity

It is seldom that either of the two limiting cases,
completely dominant lattice scattering or completely
dominant impurity scattering, exists throughout the
impurity temperature range. The effective mean free
path / for combined scattering may be taken as

This indicates an appreciable difference between the
isothermal and adiabatic Hall coe%cients; the dif-
ference is even more pronounced for impurity scattering
in which case one obtains

3 3 T o's

2 SndT
(29)

However, the measured heat conductivity of a semi-
conductor at ordinary temperature is far greater than
that obtained by the assumption of electronic thermal
current alone. This fact indicates a large contribution
to heat conductivity from the lattice, so that Eqs. (28)
and (29) are not valid.

B. Exhaustion Temperature Range: dn/d T =0

In many samples the conduction electron density
does not change measurably over a portion of the tem-

6A. Sommerfeld and H. Bethe, Handbech der Physik (Julius
Springer, Berlin, 1934), Vol. 24, No. 2, p. 558. 8 V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 82, 977

~ E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950). (1951}.
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TAnLE II. F(l, f', T) as a function of the ratio of impurity
to lattice scattering in a classical impurity semiconductor.

pi/(pi+pi&

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

b2 =6pl/pz,

0
2/3
3/2

18//

6
9

14
24
54

s'(t, g, r~

0.2500
0.0816—0.0160—0.113—0.250—0.375—0.581—0.816—1.15—1.72—3.75

perature range. In this "exhaustion" region the assump-
tion drs/dT=O may be made and the function F
simplified accordingly. Equation (20) leads to

(31) leads to (E —E;)/E; values in the range —5)& 10 4

to —5X10 '. Again the adiabatic and isothermal values
are practically indistinguishable.

If both lattice and impurity scattering are con-
sidered, the function Ii is evaluated numerically in
accordance with Eq. (27); the results are given in
Table II. If one takes s= 0.59 watt/'K-cm and
o T= 3&& 10' 'K-mho/cm, the fractional difference
(R, E,)/—E; varies from +0.1 percent to —1.4 percent
as the proportion of impurity scattering increases from
zero to unity.

C. Low Temperature Range: dn/d T~0
The assumption drs/dT= 0 is not a good approxjma

tion throughout the classical impurity region. An ex-
pression for drs/dT may be obtained from the classical
equilibrium equation:"

E,—E; 1 ~Tk'
)4~ e'

(30) 2(2srnskT) & (
exp IT]' (32)

8,—E; 15 o-T k'

4 ~ e'
(31)

This relation is applicable under conditions such that
o T is in the range 10'—10' 'K mho/cm, and thus Eq.

' K. Lark-Horovitz, National Defense Council Report 14-585,
p. 61, Nov. , 1945, unpublished.

'0 A. Grieco and H. C. Montgomery, Phys. Rev. 86) 570 (1952).
n Given as 0.84 watt/cm-'K by J. W. Mellor, ComPrehensive

Treutise of Inorganic Chemistry (Longmans, Green and Company,
New York, 1925), Vol. VI, p. 152.

"W. %; Scanlon, Purdue Progress Report on Semiconductor
Research (January, 1948).

which is applicable in the exhaustion range if only
lattice scattering exists.

Measurements of the heat conductivity of ger-
manium"' give 0.59 watt/cm-'K at room temperature
and little deviation from this value over a wide tem-
perature range in the neighborhood of 300'K. Since the
thermal conductivity of silicon" is about the same as
for germanium, the (R Ee)/E; values—are also about
the same for equivalent 0-T values; the thermal con-
ductivity of tellurium" at 300'K is about one-tenth
that of germanium and hence the fraction (E, R;)/R, —
is ten times higher for tellurium than for germanium for
a given o-T value.

The relative difference between the adiabatic and
isothermal Hall coefficients, as calculated from Eq. (30)
with x=0.59 watt/cm-'K, varies from 2&&10 s for
oT=6'K mho/cm to 3&&10 ' for oT=9X10"Kmho/
cm. Hence one can conclude that the adiabatic and
isothermal Hall coefficients are practically indistin-
guishable for the type of sample to which Eq. (30)
applies.

If impurity scattering dominates, as may occur at
the low temperature end of the exhaustion range for a
low resistivity sample, Eq. (21) predicts that

N ED
Cm 8 eV

n pi/ 0
cm ' (pJ. +pl,) F'(l, g, 1') mho/cm (R& —R&)/R&

10' 0.07 6.784X10" 0.1 0.299
0.2 —0.0514
0.3 —0.334
0.4 -0.697

10'~ 0.03 6.846X 10'6 0.5 —0.685
0.6 —1.02
0.7 —1.39

10'8 0.01 6.875X 10'8 0.8 —1.54
0.9 —2.23

1.3
1.1
0.93
0.79

66
53
42

285
163

0.49X10 '
—0.0/2X10 '
—0.39X10 '
—0.70X10 '
—57X10 '
—69X10 6

—74X1o '
—560X10 '
-460X10 '

where S is the number of ionizable impurities (don. ors)
per unit volume and ED the activation energy required
to excite an electron from the donor level to the con-
duction band. From Eq. (32) one obtains

(33)

Table III gives values of (R —R,)/R; calculated from
Eq. (2/) by using the dss/dT expression of Eq. (33).
Numerical values of E, Eo, pr/pz, , and o have been
chosen so as to be representative of germanium sample
of varying degrees of purity; the value 0.59 watt/cm-'K
has been used for.the thermal conductivity. The largest
di6erence, about 0.5 percent, is found in the impure
material having X=10" per cm'. Recent measure-
ments"" of the thermal conductivity of germanium at
at low temperatures indicate that at 100 K the value

'3 R. H. Fowler, Proc. Roy. Soc. (London) A140, 505 (1933).
'4I. Kstermann and J. E. Zimmerman, U. S. Once of Naval

Research report from Carnegie Institute of Technology, 1950,
unpublished.

'5 J. F. Go8, Purdue University, private communication.

TABLE III.Relative difference between adiabatic and isothermal
Hall coefhcients at 100'K calculated with dn/dT found from dis-
sociation equation.
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of E may be as high as 3 watt/cm-'K, and thus the in three different ways, depending upon the value of f*:
(E, E—~)/E, values of Table III may be too high by
a factor as large as 5.

IV. THE ADIABATIC HALL COEFFICIENT OF
A DEGENERATE SEMICONDUCTOR

J„(g*)=g( 1)~—
~»,~r*q—i~+&l I'(k+ 1) (38)

Hall eBect measurements of germanium and silicon
samples show that samples with large impurity content
become degenerate at low temperatures. "" In this
case the classical distribution function of Eq. (9) is
replaced by the Fermi-Dirac distribution function

(2) t*))0: An asymptotic expansion due to Som-
merfeld" can be used:

(39)

where
2m3

f0
, h3

(» f) —t

1+exp!
(kT

(34)

a»„——2C2, (k+1)(k) (k—2r+2),

C2, =(1—2' 2') pm 2"

Is=1

(1+gu —r~) —I

h'

where i*=t/kT In a d. egenerate sample the impurity
content is high and the temperature relatively low; thus
impurity scattering dominates and one can take 1=iI
=p»'= p(kT)'zP. Equation (18) is replaced by

2m3 IA+2pg'4 g dN
E., &

— &P(——kT
k' "o (1+»" r*)'

2m3 I +'&—'dl
v'(kT) "( +2P), (33)

h' 1+e"-r'

v'(kT) "(~+20)J-+2s-t(f *)
h3

where JI,(g*) is the Fermi-Dirac integral of kth order.
With the change of statistics, d/dT(f/T) is no longer
given by Eq. (16); instead

and the remainder (R2„is given an upper limit by the
relation

(R,.& (2&+2)a,„+2(f.*) —--

(3) f
~ a small positive quantity: For f* between 0

and about 4, the error incurred by using the asymptotic
expression (39) is prohibitive. In this range JL(f'*) must
be found by numerical methods. The integrals Ji(f*),
and J,Q'*) have been tabulated by McDougall and
Stoner" at close intervals in the range 4&1—*&20
Table IV gives values of Jq(f*), for k=2, 3, 7/2, and
9/2, evaluated by the authors for use in this paper.

Table IV also gives value of F(l, t', T) calculated
from Eq. (37) for —4& t'*(20; de/dT is taken as zero
in this evaluation. As l

* assumes large positive values,
F approaches zero; this is consistent with the conclusion
of Sommerfeld that E =E, for a metal.

Estermann and Zimmerman" have measured the
thermal conductivity, at low temperatures, of an

TABLE IV. Values of the Fermi-Dirac integral J»(f ") aud F(l, f, 7 )
for a degenerate semiconductor (impurity scattering only).

(36) re J,(r*)
dT (T) i n dT T & J=;(f*)

Now the adiabatic Hall coefficient can be written in
the form of Eq. (13) with

4 J3(l*) 11 Jw»(l*)
F(l, f, T)=

»(f*») 9 Jn2(i*)

4J (f*) ) 2T «i J:(0*)
X — ' —

! 3+
3 J,(t*) ( n dT~ J;(f*)

(37)

The integral J~(i*) has been discussed by McDougall
and Stoner, "who treat the evaluation of the integral

' W. W. Scanlon, Ph.D. thesis, Purdue University, 1948, un-
published.

'~ G. L. Pear»on and J. Bard»en, Phys. Rev, 75, 865 (1949).
"C.S. Hung and J. R. Gliessman, Phys. Rev. 79, 726 (1950)."J.McDougall an.d E. C. Stoner, Trans. Roy. Soc. (London)

A237, 67 (1936).

0.21287
0.350'78
0.57782
0.95137
1.56496
2.57067
4.21327
6.88232

11.184
28.83
70.76

162.6
346.7
687 3

1273
2223
3687
,5847
8926

13 184
18 920
26 482
36 257
48 684
64 248
83 488

106 992
135 402
169 419

0.95830
1.57956
2.60314
4.28883
7.06295

11.6329
19.105
31.347
51.290

135.4
346.6
846.2

1947
4200
8500

16 206
29 279
SO 430
83 281

132 532
204 150
305 550
445 804
635 840
888 663

1 219 590
1 646 455
2 189 874
2 873 483

0.03656
0.06018
0.09896
0.16252
0.26626
0.43456
0.70510
1.1343
1.803
4.312
9.445

18.87
34.49
58.12
91.74

137.36
196.99
272.61
366.23
479.86
615.48
775.10
960.72

1174.3
1418.0
1693.6
2003.2
2348.8
2732.5

0.10977
0.18084
0.29780
0.49002
0.80532
1.32088
2.15984
3.51520
5.68220

14.39
34.30
75.73

154.3
291.0
513.0
853.4

1351
2051
3005
4269
5806
7986

10 583
13 778
17 659
22 318
29 854
34 373
41 985

—4.0-3.5—3.0-2.5—2.0—1.5—1.0—0.5
' 0.0
1.0
2.0
3.0
4,0
5.0
6.0
7.0
8.0
9.0

10
11
12
13
14
15
16
17
18
19
20

"A. Sommerfeld, Z. Physik 47, 1 (1928).

3.736
3.729
3.714
3.691
3.656
3.612
3.560 '

3.396
3.324
2.773
2.232
1.736
1.34
1.04
0.814
0.647
0.522
0.429
0.357
0.301
0.257
0.223
0.194
0.170
0.151
0.134
0.120
0.108
0.0981
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impure germanium sample having a 25'C resistivity of
0.0021 ohm-cm. They found K (in watt/cm-'K) equal
to 1.9 at 65'K, 1.1 at 15'K, and 0.05 at 3.6'K. If these
K values are used, Eqs. (37) and (13) yield values of
(R;—R,)/(aR;), at 65'K, dropping from 9.3X10 ' to
0.89X10 ' ohm-cm as f* increases from —4 to 10; the
corresponding variation at 15'K is from 3.8)(10 ' to
0.36&(10 ', and at 3.6'K the range is fr m 2.0)&10 ' to
0.19&10 '. Since 0- for degenerate germanium samples
is between 100 and 1000 mho/cm in this temperature
range, one finds that (R, R,)/—R; is of the order 10 '
to 10 ' and thus that there is no appreciable diGerence
between the adiabatic and isothermal Hall coeS.cients
of a degenerate germanium sample.

V. THE ADIABATIC HALL COEFFICIENT OF A
CLASSICAL SEMICONDUCTOR AT HIGH

TEMPERATURES

The high temperature behavior of a semiconductor is
characterized by thermal excitation of electrons from
the full band to the conduction band. When both elec-
trons and holes take part in conduction, the two
currents are additive. It is convenient to retain the
formal notation for the electrical and thermal current
density equations (3) in applying them to semicon-
ductors displaying both electron and hole conduction.
This may be done by defining "total" coeKcients
L,3(t) which are appropriate algebraic sums of coef-
ficients L,3(1), ascribed to electrons, and Lt3(2), due to
holes. The L,3(1) and Lt3(2) coeflicients are the ex-
pressions of Table I except that the mass, mean free
path, and carrier density carry the subscript 1(electrons)
or 2(holes). The difference in the sign of charge is cor-
rectly taken into account if those coefficients L;&(2),
such as L12(2), which include e to an odd power are
pre6xed by a negative sign. By following this convention

TAsr, z V. Coefficients L;2(t) for a high temperature semi-
conductor.

L&&(t) =n1ep1+ n2ep2

37''8
L12(t}= (nlt21 n2442 )8

k dn1 dn2
L12(t) ( l 1nt2n2422)+&& t21——122—

2 dT dT

3w dn1 4'sg
L14(t) =—kT PP——P22—

8 dT dT

L2, (t) = 2tt T(n1141 n2422)— —

L»(t) =—kT(n1tttp+n2p2 )16
3k~T k'T' dn1 dn2

L22(t) = (n1t21+n 2@2)+2 t21—+t22-
e e dT . dT

9~ k2T
L34(t) nlp1 n2p2 +Tpl Tp216 e dT dT

. 2 (2)$
t21, 2 etl, 2(ntl, 2kT)

3 ~

one obtains

L»(t) =L»(1)+L»(2) 2

L (t)=L.(1)—L (2),

L3,(t) =L3,(1)—Ls, (2),

L33(t) =L33(1)+L33(2),

I.12(t) = L12(1)—L„(2),
L.(t) =L.«1)+L.«2),

(40)
L32(t) =L32(1)+L„(2),
L34(t) =L34(1)—I.34(2).

Since the sign of charge has now been provided for, e
denotes only the magnitude of the electron charge„a
positive quantity, in all of the L,&(1, 2) integrals.

Classical statistics and a mean free path independent
of energy are used in evaluating L;&(t). Table V gives
these coeKcients in terms of the electron and hole
mobilities, tti and tt2, respectively. Equation (8) is valid
if each L;3 appearing therein is taken as a "total" L,e(t).
Thus one gets

where

T k'
R.=R,

(
1+——~a ~,

Kes )
(41)

2 = f42(n, c n2) +2tt 2—T(cdn, /d T dn2/d T)—,

nic n2 3 nic +ns8=
7

'n1C+ n2 4 'n1C n2

where Ez is the width of the forbidden energy gap. If
ni =ns+N and dN/dT=O, then

dni dns ntns ( Eg'l
I 3+ I(N'+4ntns) ' (43)

dT dT T 4 kT)

The relative diBerence between R and R; is calcu-
lated for germanium samples from Eq. (41) and pre-
sented in Table VI. . The following numerical values
were used in these computations:

gg —0,74 ev 22
2

tti ——1.7X10'T '* cm'/volt-sec "
K= 0.586 watt/cm-'K. ' "

The values of Table VI show again that there is no
appreciable di8erence between R and R; since
(R,—R~)/R; is of the order of one percent or less for
temperatures as high as 900'K and conduction electron
concentrations as low as 10"cm '.

2' A. H. Wilson, The Theory of Jtt/Ietals (Cambridge University
Press, Cambridge, 1936), p. 67.

2' Lark-Horovvitz, Middleton, Miller, and Walerstein, Phys. Rev.
69, 258 (1946).

"G.L. Pearson, Phys. Rev. 76, 1/9 (1949).
'4Pearson, Haynes, and Shockley, Phys. Rev. 78, 295 (1950).

and c=tt, /tt2. The quantities dni/dT arid dn2/dT are
estimated from the equilibrium condition 9'

nin2 ——32k '(ntitn2) '*(2rkT)' exp( Eg/kT), (42)—
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VI. SUMMARY

The relative diGerence between the adiabatic and
isothermal Hall coefFicients has been calculated for
various sets of assumptions chosen to correspond to the
observed behavior of semiconducting samples in the
diRerent temperature ranges.

T(oK) N(cm 3) ni(cm ') e2(cm 2) (Ro —Rs) /Rs

300 1.0X 10's 1.0X 10's
300 0.1X10» 0.1X10»
300 0.001X 10's 0.001X10»

50X10-5
5X10 5

0.05X 10-s

TAsLE VI. (R,—R;)/R; for a semiconductor at
high temperatures.

A. Classical Impurity Semiconductor in the
Exhaustion Range

600 1.0X10is 1.01X10»
600 0.1X10's 0 18X10's
600 0.001X10's 0.12X10's

0.014X10's
0 077X 101s
0.12X10»

—4X10-~
—60X10-s—»OX10-'

In this case classical statistics are employed, both
impurity and lattice scattering are considered, and the
carrier density is taken as independent of the tem-
perature. The quantity F of Eq. (13) takes values
between 0.25 and —3.75. When this is combined with
a thermal conductivity of 0.6 watt/'K-cm and an elec-
trical conductivity of 1000 mho/cm, (R, R;)/R,—varies
between 10 ' and 10 ' at 300'K.

B. Classical Impurity Semiconductor at
Temperatures below the Exhaustion Range

The variation of the carrier density with temperature
is calculated from the dissociation equation, and the
conductivities used are varied to correspond to dif-
ferent impurity contents in germanium. The resulting

(R R;)/R; va—lues at 100'K range between 10 ' and
10 ', depending upon impurity content and impurity
activation energy.

C. Degenerate Impurity Semiconductor

This treatment applies at low temperatures to
samples having high impurity content. Fermi-Dirac
statistics are employed, impurity scattering is assumed
to be dominant, and the carrier density is approximately
temperature independent. As f* goes from negative

900 1 OX 10is 3 OX 10is
900 0.1X10» 1.6X 10»
900 0.001X10' 1 4X 10»

3.0X10's
1 6X10's
1.4X 10»

—5.5X10 '
—12X10 '
—13X10 '

D. Classical Semiconductor at High Temperatures

The expression for (R,—R;)/R, reflects the fact that
both electrons and holes take part in conduction. The
magnitude of the relative diGerence increases strongly
w'ith temperature, especially for relatively pure material.
However, even at 900'K, (R,—R,)/R, is not over
about 10 ' for germanium and silicon samples.

Thus one can conclude that the adiabatic and iso-
thermal Hall coeKcients are practically indistinguish-
able as long as the ratio of electrical conductivity to
thermal conductivity, o./», does not appreciably differ
from the values, characteristic of germanium and silicon,
used in the foregoing calculations. For a material such
that o/» is appreciably larger, the relative difference
between E and R; may be readily estimated from the
tabulated values of the F(l, f', T) function.

The authors wish to thank Dr. K. I.ark-Horovitz for
his valuable suggestions during the course of this work.

values, through zero, to increasing positive values, F
values go from —3.75 toward 0, and hence (R R,)/R—;
approaches zero under these conditions.


