-

0.65

0.75

0.7

0.8

0.9

1.

0.85

0.95

Corrected Values of Fowler-Nordheim Field Emission Functions v(y) and s(y)

R. E. BURGESS, Radio Research Station, Ditton Park, Slough, Bucks, England H. KROEMER, Fernmeldetechnisches Zentralamt, Darmstadt, Germany

AND

J. M. HOUSTON,* Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received February 10, 1953)

Corrected values are given for the function v(y) which appears in the exponent of the Fowler-Nordheim equation for field emission from a metal. Values are also given for the function s(y) which relates to the slope of logarithmic plots of the Fowler-Nordheim equation.

ORDHEIM¹ has given an expression for a function v(y), which appeared when he calculated the probability that an electron might pass through a potential barrier composed of a mirror-image potential plus a linear potential that resulted from an applied electric field. This function appears in the exponent of

	LE I. Values of $v(y)$ as		v(y) =
<u>у</u>	v(y)	s(y)	— where
0	1.0000	1.0000	where
0.05	0.9948	0.9995	
0.1	0.9817	0.9981	
0.15	0.9622	0.9958	
0.2	0.9370	0.9926	
0.25	0.9068	0.9885	
0.3	0.8718	0.9835	
0.35	0.8323	0.9777	
0.4	0.7888	0.9711	
0.45	0.7413	0.9637	
0.5	0.6900	0.9554	
0.55	0.6351	0.9464	
0.6	0.5768	0.9366	$K(h^2)$

0.9261

0.9149

0.9030

0.8903

0.8770

0.8630

0.8483

0.8330

* This work was supported in part by the Signal Corps, the Air Materiel Command, and the U. S. Office of Naval Research.

¹ L. Nordheim, Proc. Roy. Soc. (London) **121**, 626 (1928).

0.5152

0.4504

0.3825

0.3117

0.2379

0.1613

0.0820

0

the Fowler-Nordheim equation for electron field emission from a metal. The variable y is a nondimensional function of the applied electric field and the surface work-function.

Burgess and Kroemer have recently independently discovered a mathematical error in Nordheim's analysis. The correct expression for v(y) is:

$$v(y) = 2^{-\frac{1}{2}} \left[1 + (1 - y^2)^{\frac{1}{2}} \right]^{\frac{1}{2}} \times \left\{ E(k^2) - y^2 K(k^2) / \left[1 + (1 - y^2)^{\frac{1}{2}} \right] \right\},$$

$$E(k^{2}) = \int_{0}^{\pi/2} (1 - k^{2} \sin^{2}\phi)^{\frac{1}{2}} d\phi,$$

$$K(k^{2}) = \int_{0}^{\pi/2} (1 - k^{2} \sin^{2}\phi)^{-\frac{1}{2}} d\phi,$$

$$k^{2} = 2(1 - y^{2})^{\frac{1}{2}} / [1 + (1 - y^{2})^{\frac{1}{2}}].$$

 $K(k^2)$ and $E(k^2)$ are the complete elliptic integrals of the first and second kind. In his paper Nordheim defined k incorrectly.

This error renders incorrect Houston's² tables of v(y) and s(y), the latter being defined as: s(y) = v(y) $-\frac{1}{2}ydv/dy$. The function s(y) appears in expressions² for the slope of logarithmic plots of the Fowler-Nordheim equation. In Table I are listed recalculated values of v(y) and s(y) correct to four figures.

² J. M. Houston, Phys. Rev. 88, 349 (1952).