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Penetration and Diffusion of Hard X-Rays: Polarization E8ects*
L. V. SPENcER AND CHARLES WOLEEt

ttratiorta/ Bttreatt of Standards, Washirtgton, D. C.
(Received December 15, 1952)

Most calculations of x-ray penetration and diffusion neglect the polarization of the scattered photons. In
this paper an investigation is made of the effect of polarization in a typical x-ray penetration problem. The
Boltzmann equation for polarizable photons is expanded into suitable angular and spatial polynomial sys-
tems; and a calculation based on this Boltzmann equation is compared with a similar calculation which
neglects polarization. The polarization effect increases the intensity of the 100-200 kev secondaries by a
few percent.
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Fro. 1. The geometry
of a Compton scatter-
ing. A photon traveling
initially in the direction
4b' is scattered into a
new direction u. The
plane of scatter includes
the two photon direc-
tions, and the initial and
final reference planes re-
late ao', ao to a reference
direction R.

I. INTRODUCTION
' 'N recent years a number of methods have been dc-
' ~ veloped for calculating spectral intensities of scat-
tered x-rays at various penetrations. "~' Nearly all
calculations have neglected the eGect of polarization in
successive Compton scatterings. It is of interest to
know just how far one is justified in this. An attempt
to evaluate the effect of polarization was made four
years ago by Monte Carlo sampling techniques. ' The
results indicated that the e6ect is quite small.

It can be argued qualitatively that polarization
should increase the x-ray Qux slightly at large penetra-
tions since the effect of polarization is to increase the
likelihood that the successive directions of scattering
of a photon will be coplanar. The e8ect should be more
important at low than at high photon energies.

In this paper we have extended the method of refer-
ence 1 to calculate spectral intensities generated by a
point isotropic source in an inhnite medium, taking
into account polarization. The results con6rm our

expectations of slightly greater Qux at great depths
than is predicted by the simpler theory. Since the
method for performing such a calculation may be of
fairly general interest, we present it in some detail in
the following sections.

IL THE DIFFUSION EQUATION

A beam of partially polarized radiation can be com-
pletely described by the four parameters of Stokes:4'
I, I', I', and I', where I' refers to the intensity of the
beam, P and I2 together describe the degree and direc-
tion of plane polarization, and I3 represents the degree
of circular polarization. %e need not consider circular
polarization because it does not aGect the penetration
of x-rays unless the electrons in the medium are spin
polarized.

In order to write down the Soltzmann equation in
terms of Stokes parameters we need to know how the
Stokes parameters transform if their reference plane is
rotated. ' To determine this we consider a partially
polarized beam of photons which passes through a
"polarization analyzer. " Since the measurement of the
analyzer is independent of our description of the beam,
the Stokes parameters relating to reference planes in-

clined to the plane of the analyzer by angles e& and OI2

must satisfy the relation4

Iro+Irr cos2n, +Its sin2nr
=Is'+Is' cos2ns+Is' sin2ns, (I)

where the subscripts on the I's refer to the reference
plane. If the angle between the reference planes is C,
i.e., nr+C =ns, the Is's can be obtained from the Ir's
by the operation
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I~' —— 0 cos24 —sin24 I»' (2)

,Ig'&,0 sin 24 cos24'~ qI1 ~

4 U. Fano, J. Opt. Soc. Am. 39, 859 (1949).' S. Chandrasekhar, Radkatiee Transfer (University Press,
Oxford, 1950), Chap. I.

'The Stokes parameters are defined operationally by means
of measurements made with a "polarization analyzer. " These
measurements are made with the plane of the analyzer inclined
several different angles to a so-called arbitrary "reference plane. "
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If the Stokes parameters of incident and scattered radiation are referred to the plane of scatter, ' the
Klein-Nishina cross section can be expressed as a matrix which relates the parameters of the scattered
radiation to the parameters of the incident radiation:4

3X'
——QYI
8X

(1 1)
1+cos'+

i
———

i (1—cos.)

1+cos'"

2 cos",

'kpp(X', 'A) kpi(X', ) )3X'
/Th klp(~ y ~) kll(~ 1 ~)

8 'A

0 kpp(X', X),

where ), ) are the wavelengths in Compton units of the incident and scattered radiation respectively, cos is
(1—X+X ) and must, according to the Compton condition, equal cosO' where 0 is the angle between incident and
scattered directions, and

GATI,

is the Thomson scattering cross section.
%e now want to consider a beam of photons which is traveling in a direction a' and which is described by Stokes

parameters relating to a plane defined by the direction pp and a reference direction R. If these photons are scat-
tered into a direction pp, we shall want the Stokes parameters of the scattered radiation related to the plane (p~, R).
To this end we rotate the reference plane of the original parameters through an angle pi into coincidence with the
plane of scatter (see Fig. 1), apply the Klein-Nishina scattering matrix (3), and finally rotate the plane of the
scattered photons back to the new reference plane through an angle (p&+m). This sequence of operations is ex-
pressed in the following manner:

'1 0 0 ' 'kpp(X', ) ) kpi(X', X)
3X'

Ip' ————pTh 0 cos2(gp+m) —sin2(gp+m') kio(&, &) kii(&, &)
8X

,0 sin2(gp+m) cos2(gp+m), , 0 0

0

0

kp2(X', X),

il pl

If we define
pgp&

0 cos2$i —sin2$i Ii' . (4)

,0 sin2$i cos2$i, ,IiP,

I=—P

and if we perform the multiplications, we may write this relation in the form I&= S Ii, where

kpi cos2$i —kpi sin2@ikpp3)'
S=——Prh kip cos2&& k» cos2&& cos2$&—k» sin2&& sin2&& —k» cos2@& sin2&& —k» sin2$& cos2$&

8)
,k&p sin2$& k» sin2&& cos2&&+kp& cos2&& sin2$& —k» sin2gp sln2$i+kpp cos2$p cos2$i,

With these de6nitions, the equation governing the propagation of radiation is the following:

~X

p~ gradI(r, pi, X) = —p('A) I(r, pp, X)+ dX' dpp'(1/2~)8(pi pp' —cos )S l(r, pi', X')+source,
p 4m~

where
'Ip(r, pp, X)'

I(r, pp, X) = P(r, pp, X) .

,P(r, pp, X),

In these relations, Ip(r, pp, X) is the spectral energy density of the x-rays, p r is the position vector, p(X) is the total
narrow beam attenuation coeKcient, ~, ao' are unit direction vectors, 8 is the Dirac delta-function, and cos
= (1-X+X').

' The plane of scatter is the plane which includes the photon directions before and after the scattering.
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H we restrict ourselves to a point isotropic source, the only position parameter necessary is the distance of the
photon from the source. If, further, we specify a monoenergetic source and choose as a reference direction R the
line from the source to the position of the photon, Eq. (7) becomes'

aI(r, ce„, X) (1—oi„') cjI(r, ee„, X)
+ = —p(X) I(r, oi„, X)

where

X o(r)
d)I,

' doi'(1/2m) i1(cosO' —cos ) S I(r, ee„', X')+)%eh()I.—)%s) I (8)
&p ~4~ 4mr'

0

,0,

r= ~r~, oi, =ss R=cos8, ee,'=oi' R=cos8', cos()=oi oi', and X is the wavelength of the source radiation.

IIL REDUCTION OF THE DIFFUSION EQUATION

We want to expand Eqs. (8) into spherical har-
monics. In making this expansion, we And that each
of the elements of S leads to integrals which are special
cases of the quantity

D(mi, m, )

= (1/27r) hei(mac&+mses) ti(cos Q& cos ~ ) (9)
a) p

The evaluation of D(mi, ms) can be accomplished by
means of the symmetrical top wave functions p(l, mi,

ms). s These functions are especially adapted to this

problem because they relate to the most general

possible rotation of axes, involving all three Euler
angles.

If we make use of the orthogonality property of these

wave functions we may write

D(m, , ms)=(1/2s. ) dge'&~'»+~'4"4s'P P(l, mi& m, 0 P 0)1t(l, mi, ms 0 O~ 0)
"o

=e '~'~(1/27r) dy4m'P $(l, mi) ms, 0, , 0)P(l, mi, ms, gi, 0', s+gs).
p l

(10)

%e now want to make use of an addition formula for
the P's which relates to the fact (see Fig. 1) that a
general rotation of axes involving:

(a) A rotation around one axis by an angle p&,

(b) A tipping of this axis by an angle 0,
(c) Another rotation around the tipped axis by an

angle ~+ps, which is the transformation to which

P(l, mi, ms', Pi, 0, or+Ps) corresponds, is identical to the

following transformation:

(a) A tipping of the axis by an angle 0',
(b) A rotation around the tipped axis by an angle

( -~),
(c) A further tipping of the axis by an angle 8.
(d) A rotation about this final axis by tile angle s..

The addition formula relating to this identity is the
following:

(8m' )*
P(l, m„m„pi, 0, s.+Ps) =Q ~ ~

P(l, mi, s; 0, 0', s —g)P(l, s, ms, 0, 8, s).
' E2l+1

These (normalized) functions are given by the following formula (l, m1, m2 integers):

4(l, m~, m2) 4~) 0, 6)=de' ' '+ ' ' [,'(1 cosO)]"-"['—(1+cosO)]"-F[ p, (1+d+s+p); (1+d); s—(1—cosO)]

where

2~+1 (d+s+P) l(d+P) ~

8~& Pl(d l)~(syP) I

e=
I m, ymsI, p=I ,'(saudi)——

We obtained this formula for the normalized functions from Ruark and Urey, Atoms, 3Eolecules, an& Quanta, p. 67( (McGraw-Hill
Book Company, Inc. , New York j.930). The f's are also called the representations Q&') of the group of space rotations. We are
very grateful to U. Pano for this method of evaluating D(m&, es2).
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If we substitute this into (10) and carry out the integration, we have the result:

(8'y**
D(mi, mp)=4lr'P{ } P(l, mi, mQ 0 0)lP(l Bzi 0 0 6 0)ll(l 0 81$ 0 0' 0)

L.2l+1j
2l+1 (l—nzi)!(l—mp)!

=4m' p f(l m nip. 0 ~ 0)P '(pp ')P'"'(pl )
g~' (l+m,)!(l+m, )!

(12)

Notice that according to (12), D(pni, mp) is real. The
part of D(mi, nip) which changes sign if the signs of
both pi and pp are reversed vanishes with the integra-
tion over P. Now, the elements of S are either even or
odd with respect to a reversal of the sign of both pi

and pp. Since all elements lead to the integrals D(rni, mp)

(plus or minus the complex conjugate), those elements
which are odd vanish when the integral over g is per-
formed. %e may as well omit these odd elements and
write

happ kpi cos2$i

S=——pTh kip cos2$p kii cos2$p cos2$i —kpp sin2gp sin2&i
8P —kii sin2@p sin2@i+kpp cos2$p cos2$i,

(13)

It is apparent from (13) that the lower right corner element of S is isolated. This has the consequence that, if
the source radiation is unpolarized, I (r, &o„, X) remains identically zero, since there is no means by which it can be
generated. (This result can be readily obtained directly from symmetry considerations. )

If we define quantities I&„', I&„' by the relations

dr(4~r')r" dip(2lr) 'P~(pp„)I'(r, lp„, X),

fO

Il„'(X)=(n!) ' dr(47rr')r" dip(2rr) 'PP(pl„)I'(r &o„X)
p J4

(14)

and if we expand (8) after the manner of reference 1, Eq. (23), we obtain the following interlinked system of
equations:

[(l+1)(n l)I&+&, —i'(X)+l(l+n+1)I&—i, ~—iP(X)3= F(X)I& '(X)
n(2l+ 1)

(l—2)!
dX' kppP&(cos )I&„p(X')+kpi Pp(cos )I&„'(X') +8(X—Xp)8 p8lp,

(l+2)!

[(l—1)(n l)I,+, „ i'(X)+—(l+2) (l+n+1)I, , n i'(X)j=—p(X)Il„'(X)
n(2l+1)

~X

+ dX'(kipPP(cosZ)Il~'(X')+p[kll{$(l, 2, 2) —f(l, 2) —2) }+kpp{f(l, 2, 2)+$(l, 2) —2) }jIi„'(X')})

where k,,= k;;(X', X) and P(l, 2, &2)=$(l, 2, &2; 0, , 0).

This double system of equations can best be inter-
preted with the aid of Fig. 2. If / is zero or one, I~„ is
identically zero. This is a consequence of (14) rather
than (15). If l is equal to n, the interlinkage terms
I&+&, ~ i', I~&, „&' in (15) are destroyed by the factor
(n l). This means tha—t the elements in Fig. 2 which
are left of the diagonal are not linked to the elements
which are to the right of the diagonal. The integral
equations for I~„p, Ig ' must in general be solved simul-
taneously, since both quantities appear in both integral

terms of (15). As in reference 1, by proceeding from
small to large n it is possible to unravel the system (15)
and solve for as many I&„', I&„' as desired, since the
inhomogeneous terms in the equations for I& „+&',
I& ~&' involve only quantities which have already been
determined at an earlier stage of calculation.

IV. CALCULATIONS

For purposes of comparison, two calculations were
performed by identical methods. In the first (polariza-
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involving an odd number of integration steps. No
integrations were performed for photon energies below
116 kev. The quantities determined correspond with
those listed explicitly in Fig. 2, i.e., the coeKcients of
the first four U„p(ppr) polynomials in the polynomial
expansion of the spectral energy density. A consider-
able simpliication in the integration results from the
fact that kpi(X, X) =hip(X, X) =0. Because of this the
simultaneous solution of the equations for I~ ', I~„'
does not involve awkward algebraic difficu}ties.

V. RESULTS

0
&06

0
I,5 The results of these calculations are summarized in

Fig. 3, in which is plotted the percentage increase in

3.0

Fxo. 2. A diagram showing the quantities determined in the
polarization calculation. Two quantities within the same square
must be solved for simultaneously. The solution starts in the
upper left corner and proceeds down and to the right.

tion included) calculation, a number of Eqs. (15) were
solved numerically. In the second (polarization neg-
lected), the corresponding equations of reference 1

were used. (These are the equations obtained by arbi-
trarily setting all I&„' equal to zero. )

The position variable was taken to be the dimension-
less quantity (ppr) jap being the total attenuation co-
efkcient of the source radiation, The source energy was
chosen to be 1.277 Mev and the scattering medium was
water. The solution was not carried out directly for the
space moments I~„' ', but rather for the coeScients of
the U„'(ppr) polynomials, ' ' which are small differences
between the I~„"moments.

The integration was performed in accordance with
Stirling's formula, with an adjustment for situations

' L. V. Spencer and F. Stinson, Phys. Rev. 85, 662 (1952).
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FIG. 3. The percentage increase in the spectral energy density
due to polarization. The source energy is E0=1.277 Mev. The
leveling o6 at low energies relates to the fact that photon direc-
tional distributions become isotropic at low energies.

0.2

the spectral energy density at a given depth resulting
from polarization. The effect is small ( 1 percent) and
positive, as expected. It disappears at high energies. At
low energies it is constant because the angular distribu-
tions are isotropic. One characteristic which does not
appear in I"ig. 3 is an approach to an equilibrium (maxi-
mum) effect as r increases. It is dificult to predict the
penetration at which this maximum e6ect will be
reached, and it is perhaps not surprising that Fig. 3
does not show it.


