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Excitation of Molecular Rotation-Vibration by Electron Impact
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The integral equation for the scattering of an electron from a symmetric diatomic molecule is solved
approximately to obtain the effective interaction integral between the electron and the molecular vibration-
rotation, neglecting polarization and exchange. This interaction depends on the difference of phase of the
incident wave function between the two nuclear centers and thus on the momentary direction and magnitude
of the internuclear radius vector. From this interaction function the effective cross sections for rotation-
vibration excitation are computed and, by various sum rules, a closed formula for mean loss of energy of the
electron to molecular rotation-vibration is obtained. This is compared with the corresponding loss of energy
of the rebounding electron to the motion of the center of gravity of the molecule. These two quantities are
shown to be the same order of magnitude, their ratio changing from 3, for very small equilibrium internuclear
distance, to 1, for very large internuclear distance.

I. INTRODUCTION where

HE scattering of an electron from a potential field f (, &k. a,F

V(r) is described by a solution of the integral
equation, '

2m &ik[ r—r')

y(r) =e'""—
, -V(r')0(r')~" (I)

h' ~ 4srir —r'i

where h= (ntv/lt), e being the incident electronic speed,
where k;=ha;, a; being a unit vector in the incident
direction, and where r is the radius vector giving the
position of the electron. To obtain -the scattered wave
we obtain the asymptotic form' for,

P(r)~e'ik~ r+ (ecsr/r) f(Q)

m
f(e) = — e '" "V(r')y-(r')Ze',

2srtts ~ '

where f(tt) is the angle-distribution factor for the scat-
tered wave, from which we obtain the cross section for
scattering; k, =ha„where a, is a unit vector in the
direction of the scattered electron. If f is known exactly
Eq, (2) is an exact expression and

~
f~' will produce

exact expressions for the differential and total cross
sections for elastic scattering from the potential V.

If now the potential field of a symmetric diatomic
molecule may be broken into two equal parts, each
centered about a nucleus,

V(r) U(r ——,'R)+ U(r+-', R), (3)

where R is the internuclear radius vector. then, to the
approximation for which this separation is valid, Eq.
(2) may be further simplified. For example, we may
show that, to a fairly good approximation, the two
integrals about the two nuclei di6er only by a phase
factor, and that

It may be shown' that Eq. (4) is a good approxima-
tion even when the Born approximation (f e'"'') is
not valid, and that, when an appropriate f,(t't) is used,
it appears to correspond fairly satisfactorily with ex-
perimental results. It is, of course, completely analogous
to the formulas for x-ray scattering.

II. INTERACTION WITH EXCITATION-ROTATION

.. The foregoing is, of course, well-known and is in-
cluded here only for reference and comparison with the
following. Its chief defect is the fact that the molecule
is not simply a potential field but is a system which may
absorb energy from the incident electron. To take this
into account we express the wave function for the cV

molecular electrons plus the two nuclei as

y„,„=N„(ri, , tv) y„(R),

where N„ is the electronic factor, referred to the nuclei
as momentarily fixed and p is the nuclear part. , referred
to the molecular center of mass; v is the electronic
quantum numbers, and st=(st, l, sit) are the quantum
numbers for nuclear motion. This function is a solution
of H P=E,, „P,where H is the energy operator for the
target molecule.

The equation for the molecule plus incident electron is
ila h2
H — Vs+ V (r, ri, , r~, R)

2m

f(8)~2f.(8) cosP(k;—k,) Rj, (4)

' N. F. Mott and H. S.W. Massey, Theory of Atomic Collesiorss
(Clarendon Press, Oxford, 1949), second edition, p. 116.' See reference 1, Chap. II.
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'H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Oxford University Press, London, 1952),
Chap. IV.
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where Ep, p is the energy for the initial state, kp ls k
times the initial momentum of the incident electron, r
is the incident electronic position and where V is the
interaction potential between the incident electron and
each electron and nucleus of the molecule. This is
equivalent to the integral equation,

4'(r, ry, ' ', r~, R)

2m—f eikp ..r

p, 1z aJ

X!t„,.v (r', , R')

.e(r', r, ', , rg', R')dv'dv, ' de'd V', (7)

where d V is the volume element R'dR sinadadP for the
internuclear coordinates with respect to the center of
mass of the molecule.

If we neglect polarization and exchange sects, the
larger part of 0', which corresponds to no excitation of
the inolecule, will have the form P(r)upxp, where P is
a solution of an equation like (1) and upxp is the ground-
state wave function for the molecule as Refined in Eq.
(5). Neglecting cross terms in the sum above, we obtain
for the asymptotic form for the part of 0' corresponding
to no electronic excitation,

/pe'~p'+p„upx„f„(0) exp(ik„r)/r

m
f (8) dV'x„xp luol'

2zrh' "

X V„e—'".'f(r')dv' dv~' . (8)

The integral in square brackets in the expression for f„
is quite analogous to that in Eq. (2). The integration
over the molecular electronic coordinates produces the
average potential of the incident electron with respect
to the molecule in the ground state electronically, when
the internuclear radius vector is R'.

This average potential can be approximately split
into two parts, each centered around one nucleus, as in
Eq. (3):

'

J
V-lupi'd»'" d»'—-V(r—lR)+II(r+ lR)

where the form of V(r) is more or less independent of R.
Consequently the whole integral in the brackets in the
expression for f„(8) is, approximately [see discussion of
Eq. (4)j,

2f,(8) cos[-,'(kp —k„) R'j,
where f, is an angle-distribution factor approximately
equal to that for one of the constituent atoms of the
molecule, kp is a vector of magnitude (mv/5) directed
along the s axis (incident beam), and k„ is a vector
representing the scattered beam, at polar angles 8, q

with respect to the s axis, of magnitude k„such that

k„'=kp' —(2m/h, ') (Ep, p
—Ep, „).

The internuclear vector R' has magnitude R' and polar
angles a and P.

%e may consequently write the angle-distribution
factor f„(6),giving the amplitude of the beam scattered
after exciting the vibration-rotation states of the
molecule from the lowest state (zz=0) to that repre-
sented by quantum. number e with no corresponding
electronic excitation, as

f.(8) 2f,(8)J
cos(-,' tz„R')X„(R')xp(R') d V', (10)

where the vector p„=kp —k„has a magnitude approxi-
mately equal to (2mv/lz) sin(-', 6), as long as (Ep, p

—Ep, )
«(2mv') sinz(zz8) . To this approximation, therefore,
the interaction between the incoming electron and the
vibration-rotation states of the molecule is produced
by the phase difference of the incident electronic wave
function at the two nuclei, as indicated by the cosine
term. If the discussion of Massey and Surhop' is valid,
then it should be expected that this interaction term
would be predominant, and would be larger than any
interaction term depending on the polarization of the
molecule by the incoming electron.

III. EXCITATION PROBABILITIES

If the classical vibration frequency of the diatomic
molecule is ~ and if the equilibrium separation between
the tvro nuclei is Ep, the allowed vibration-rotation
energies and corresponding internuclear wave functions
are, approximately,

Ep, „p„,i=Ep, p+kcvn+(k'/MRp')l(i+1),
(11)

x„(R)~C„e'~eI'( (cosa) exp( z'b'x') II„(bx—)/(R p+ x),

where R=Rp+x, 'M is the mass of each nucleus,
bz=3fu/25, zz stands for the trio of integers zz, i, m
wherever it is not necessary to write out all three, where
H„ is the nth Hermite polynomial, and where the
normalizing factor C„ is given by

21+1 (l m)! b/Qzr—
2

4zr (1+m)! zz!2"

In general, the spacing of the rotational levels, dependent
on /, is smaller than the spacing of the vibrational
levels, dependent on I (i.e., usually 3ERp'pj))k). When
this is true bRp»1, so that lim(Rx)(R —+0) is a negli-
gibly small quantity.

For ease in computation we can take the polar axis
for x to point along p„, thus eliminating the unim-
portant quantum number m. The probability that the
incident electron is scattered into the solid angle dQ at
an angle 8 to the incident direction, leaving the mole-
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where

~-i(+)dfi—(& z/&o) I f„z(+) I'dfl,

t 2l+1i
If-il'= I, I I f.l' «p( b—'I')H-(»)~(bN)

E ~!2-)

X exp( —b'v')H (bv)d(bv)

X~ &~(r) «sip~-(Ro+N)yjdr
—1

X Z, (z) cos[pw„(Rp+v)zjdz, (12)

where we have extended the integration over n and v

to —~, which is allowable as long as bEp)&1 a,s men-
tioned above.

The differential cross section opp for no excitation
(purely elastic) is then

~4 2

0'op—
I f, I

P exp( —pp'y /16b ) cos(p yoRoy) dy . (13)
14

The maximum value of pp is 2ko ——(2mv/k). Therefore
the maximum value of the ratio (pp/16b') is (m/M)
X (pavo/App) and unless the initial kinetic energy of the
incident electron is smaller than the spacing between
vibratianal levels, the exponential factor is practically
unity and

pop 4
I f.I'(2/ppRp)' sin'(,'-ppRp), (14)

where pp
——(2'/k) sin(-', 0). This is the result we would

have obtained if we had averaged the f given in Eq. (4)
over all orientations of R and then squared the result.

If the incident electronic kinetic energy is suSciently
larger than the vibrational spacing, the eGect of the
rotational energies on the magnitude of p, is negligible
and we can sum o.„~ over I to obtain the total cross
section for molecular transition from vibrational state
0 to state e for any possible 6nal rotational state. %e
use the formula

cule with no electronic excitation but in the final
rotation-vibration state Characterized by the numbers
I and n (initially m= i=0), is then

taining

~ =(&-/&o)Z~lf-~l'

I.If I' !'
[1+cos(p„Rpz)j

kp2"nI ~

Xexp( —p„'z'/8b')(p„z/2b)'"dz (17)

where the plus sign is used if n is even, the minus sign
if n is an odd integer. If (p„/4b)'((1 these integrals may
be easily computed; the one for e=o is much larger
than the rest in that case.

Finally, if the kinetic energy of the incoming electron
is large enough compared to the vibrational spacing so
that k„~kp for the 6rst ten or twenty vibrational levels,
we can sum e„over n to obtain the total probability of
scattering at an angle 8 with any amount of vijwation-
rotation excited,

Orv— n &n— n n

Here we can use the formula for Hermite polynomials,

Q (1/v&2"e!) exp[ ——',(e'+v')]H (N)H„(v) = b(u v), —
n=p (18)
and sum Eq. (12) over both / and n, obtaining

e',—2I f I j 1+[sin(poRo)/goRogj, (19)
which is to be compared with Eq. (14). This result is

obtained by averaging the square of the f of Eq. (4)
over all orientations of R. This does not fall o6 as
rapidly as pR increases (0 increases), indicating that
the large-deflection scattering is more likely to produce
vibration-rotation, which is not surprising.

IV. MEAN LOSS OF ENERGY

Finally, when the incoming electron's kinetic energy
is large compared with the rotational level spacing we
can compute the mean loss of energy, from the electron
which has been deRected by an angle 0, to rotation-
vibration energy of the molecule. This is, of course,
the weighted sum of the various allowed energies,

g(p g ppp) divide—d by the sum of the probabilities
0 nl= 0rv

The term (p i—poo) [see Eq. (11)j has two terms, one
dependent on e, the other on l. For the terms involving
e in the series we use the sum rule for spherical har-
monics, Eq. (15), together with Eqs. (12) and (16),

2 i tzconlf &I'

= &op
I f.I

' exp[ —po'z'/8b'j

Z i p(2l+ 1)&i(y)~i(z) = b(y —z) (15)

e'"=exp( xi' ) g (ix—)"H„(z)/2"Nt
n~o

(16)

to enable us to expand the cosine factors in Eq. (12)
and thence to integrate over I and e, eventually ob-

to enable us to integrate over z in Eq. (12). Moreover
we can use the formula

1 (y z'oi "
~ P —

I I [1+(—1)"cos(ppRpz)]dz
-i(e—1)!( Sb' j

t'~p' i t' f'
=»~If. l'I I

" I+expl-
(Sb'j & p ( 4b' j

I

Xcos(ppRpz) dz. (20)
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"2.0—

w 3.6

rotational motion represents two degrees of freedom,
vibrational motion only one.

Finally, when the incident electron kinetic energy is
large compared to Ace, the average loss of energy to
rotation-vibration is the sums of Eqs. (21) and (22)
divided by the sum of I f„i~' given in Eq. (19):

(~piE)„,~—(oime') (1—cos8)
M

a p i a ~ a a
'
~ a I

6 )P. l5
0 P

X
1—k jo(~QRo) —(4/3) jo(wRQ)

'

1+jo(woRQ)
(23)

FIG. 1. Ratio between total energy lost to rotation-vibration-
translation and energy lost to translation of molecule, as function
of ippRp ——(2moRp/Ii) QUi(p 0).

For the terms involving l in the series we use Eq.
(18) and a modification of Eq. (15) based on the equa-
tion for the Legendre polynomials. '

Q i -,'(2l+ 1)l(l+ 1)Pi(s) P g(s') F(s')ds'

d
=—(1—s')—F(s)

dZ dZ

for any continuous, integrable F(s). The result is

lo'

/1(t+1) ff„,[o
~i EMRQQ)

fh Po
[ ( f.~' ' sin'(-,'poRos)(1 —s')ds

E 23II )
(21)

4 m
=—

~ f, ~o (-', mv'—)(1 cos8)—I 1 jo(poR—Q) jo(poRQ)5,
3 3E

where. j (po) is the spherical Bessel function (pr/2po)&

)&J„+i(Q&) and where po ——2(me/iro) sin(oi8).
When the incident electronic kinetic energy (omv') is

not small compared with the spacing of the vibrational
levels )see discussion of Eq. (13)5 the exponential in
Eq. (20) may be set equal to unity and the sum for the
vibrational levels becomes

Classical mechanics indicates that, when m«M, the
energy lost to motion of the center of gravity of a mole-
cule of total mass 2', by an electron which is deflected
by an angle 8 by the impact, is

(AE) (m/M) (-'mo') (1 cos—8) . (24)

We therefore see that the total energy lost by the
electron to the molecule, when its initial energy is small
compared to the molecular electronic excitation energy
but large compared to the vibration-rotation energies
varies from (4/3) (hE)„to 2(AE) „as poRQ

——(2mvRQ/0)
Xsin(io8) goes from zero to values much larger than
unity. The limiting factor 2 corresponds to the energy
the electron would lose if the two nuclei were not bound
together and the electron struck one nucleus, inde-
pendent of the other. The limiting factor 4/3 indicates
that, for small Ro, of the six degrees of freedom the
three corresponding. to the motion of the center of
gravity and the one corresponding to vibration are
excited, but not the two corresponding to rotation; for
large Ro the factor is 2, all six degrees of freedom are
excited. The behavior of this ratio of total energy lost
to the molecule, hE=(hE)„+(AE)„ to the energy
lost to motion of the center of gravity, (hE)„, for
intermediate values of (poRQ), is given in Fig. 1.

When the incident. electronic kinetic energy is small
compared to Ace only the rotational energies may be
excited and the mean energy lost, in addition to (~piE) „,
is

2 tpt

(hE) ~ —(iomi')(1 —cos8)-3'
Q hcoe~ f i~' o (f, ['—(omv')(1 —cos8) jo(poRQ) j o(poRQ)

'

X---
1+jo(voRQ)

(25)

L1+jo(~&o)—2jo(~&o)5 (22)

We note that when the equilibrium spacing between
molecular nuclei, Ro, is small enough so that yoRQ«1
then the amount of energy given up by the electron to
rotational energy becomes small compared to that
donated to vibrational energy, but that when poRO)&1
twice as much energy is given up to the rotational motion
as to the vibrational, This is to be expected because

For intermediate values of electronic energy the sum of
bcopoo„ in the expression for AE must use Eq. (17) and
be computed term by term.

These results indicate that the amount of energy lost
to rotation-vibration of a gas molecule by a free electron
is of the same order of magnitude as that lost to moving
its center of mass, the ratio going from unity, for very
slow electrons to two for faster ones and that appre-
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ciably larger amounts of energy are not lost until the
electronic energy is large enough to excite the molecular
electrons. This conclusion is probably a correct one,
though the results worked out here do not include the
effects of polarization. Inclusion of polarization is
unlikely to change the vibration-rotation cross sections '

by a very large factor; it is more likely to affect the
cross sections for electronic excitation, which appear for
incident energies larger than those considered here.
There is no indication of any sharp-peaked resonance
effect in the energy region considered, nor, indeed,
should one have been expected.
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Magnetic Structure Transitions*f

J. SAMUEL SMART

United States Papal Ordnance Laboratory, White Oak, 3faryland
(Received December 8, 1952)

The problem of magnetic phase transitions between ferromagnetism and antiferromagnetism, or between
two different kinds of antiferromagnetic arrangement, is treated by a molecular field approach. It is shown
that such transitions may occur if the molecular field coefficients vary with temperature; if they do occur,
they will be of first order. The theoretical results agree qualitatively with the experimental results of Guillaud
and Serres on MnAs,

HE gneiss molecular field treatment of ferro-
magnetism and antiferromagnetism has recently

modified to include both first and second nearest neigh-
bor interactions with all four combinations of signs. ' '
One of the results of these investigations is that there
are, in general, at least three possible types of magnetic
ordering for a given magnetic lattice. They are ferro-
magnetic ordering and two types of antiferromagnetic
ordering, one favoring antiferromagnetic arrangement
of nearest neighbors and the second favoring antiferro-
magnetic arrangement of second nearest neighbors. The
type of ordering which will actually occur is that with
the highest Curie temperature and is determined by the
signs and relative magnitudes of the interactions. In
some instances, there is a critical value for the ratio
ys/yi (the Weiss field coefficients for first and second
nearest neighbor interactions) such that the orderings
on either side of this critical value are of different kinds.
This result suggests that, in addition to the usual Curie
temperature transitions, there may sometimes occur
transitions in which the magnetic ordering changes
from one kind to another. Moreover, there is excellent
experimental evidence, owing to Guillaud' and Serres, '
that transitions from a ferromagnetic to an antiferro-
magnetic arrangement occur in MnAs and MnBi. The
purpose of this paper is to develop a simple theoretical

* Supported in part by the U. S. Ofrice of Naval Research.
t A preliminary account of this work was given at the Washing-

ton Conference on Magnetism, September, 1952, and is being
published in the Reviews of Modern Physics.' L. N6el, Ann. phys. 3, 137 (1948).' P. W. Anderson, Phys. Rev. ?9, 705 (1950).' J. S. Smart, Phys. Rev. 86, 968 (1952).

'C. Guillaud, J. phys. et radium 12, 223 (1951), and other
references given there.' A. Serres, J. phys. et radium 5, 146 (1947).

model for such transitions. Garrett' and Ziman' have
recently discussed the problem of phase transitions from
an antiferromagnetic to a "ferromagnetic" state pro-
duced by a strong magnetic field. We shall discuss here,
using a model similar to Garrett s, the possibility of
changes in the type of magnetic ordering in zero applied
field.

PROPERTIES OF A NORMAL FERROMAGNET OR
ANTIFERROMAG NET

For simplicity, we consider a system of X atoms whose
magnetic moments are due to a single unpaired spin on
each atom. I.et the atoms be arranged on a lattice which
may be divided into e sublattices in such a way that a
given atom has neither first nor second nearest neigh-
bors on its own sublattice and only one kind of neigh-
bors on any other sublattice. Let p& and p2 be the gneiss
field coefIicients for first and second nearest neighbor
interactions. If we assume, as is usual, that the mo-
lecular Geld is an approximation to the effects of ex-
change coupling, then the y; are given by

where Z; is the number of ith nearest neighbors and J;
is the exchange interaction between electrons'on ith
neighbors; P is the Bohr magneton and g the gyro-
magnetic ratio of the electron. Then the molecular
field H;& acting on an atom on the jth sublattice due to
its neighbors on the kth sublattice is

H,„=e,n, j.ss,

where e;s is +1 or —1 depending on whether the j—k
interaction is ferromagnetic or antiferromagnetic, y;I, is

6 C. G. B. Garrett, J. Chem. Phys. 19, 1154 (1951).
~ J. M. Zimap, Proc. Phys. Soc. E',I ondon) A64, 1108 (1951}.


