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An accurate numerical evaluation of the Z and energy dependent parts of the correction factors for
allowed and forbidden beta-transitions has been carried out. The range of parameters considered is: 88
values of Z (from 10 to 96 inclusive in steps of 2 and for positrons (Z<0) as well as electrons (£>0));
33 values of p, the electron momentum, in mc¢ units (0.1 p<25) for |Z| through 24 and 31 values of p
(0.1 p< 15)for | Z| >24; four values of § (the electron momentum (3 <7< 7/2). For each value of Z, p, and §
the six wave-function combinations (Z,, M,, N,, P,, Q, R,) needed for the general mixed beta-interaction
are obtained. For the given range of 7, analysis of beta-spectra can be carried out through third forbidden
transitions. The results given here show that the theoretically allowed spectra should be modified by an
energy-dependent factor. For not-too-low maximum energies, this modification in the shape of the allowed
beta-spectrum may be observable with presently attainable precision.

NUMBER of recent developments in the investi-

gation of beta-spectra has made it advisable to
make provision for accurate analyses of the experi-
mental results. First, the development of experimental
techniques whereby very precise measurements of
shapes of beta-spectra become available and, at the
same time, the fact that certain forbidden spectra
deviate only slightly from the allowed shape, makes it
almost imperative that the calculated spectra be highly
accurate. For allowed spectra the requisite numerical
information has been provided by Feister! and others.2
The second fact which emerges from recent work is
simply that the determination of the nature of the
beta-interaction will very likely depend, in part, on the

analysis of forbidden unfavorable parity change transi-

tions.® The analysis of such spectra is, of course, greatly
facilitated by the availability of the numerical results
described below. Finally, there is now strong evidence
that the beta-interaction is mixed (linear combination
of invariants). Hence, analyses of beta-spectra should,
in general, take into account the cross terms which
arise. In the numerical results discussed here these are
included.

As is well-known, the beta-spectrum is represented in
terms of a correction factor. Following the customary
definition,® the correction factor C,x is defined so that
C.x/Cox is the ratio of nth forbidden to allowed energy
distributions. For pure interactions (X=S,V,T, 4, or P)
the correction factors have been given by Greuling}?
while for the cross terms arising from mixed inter-
actions the corresponding factors have been given by

* This paper is based on work performed for the U. S. Atomic
Energy Commission at the Oak Ridge National Laboratory.

11, Feister, Phys. Rev. 78, 375 (1950). See also Tables for the
Amnalysis of Beta Spectra, National Bureau of Standards, Applied
Mathematics Series, No. 13 (1952).

2 Dismuke, Rose, Perry, and Bell, Oak Ridge National Labora-
tory Report No. 1222 (unpublished).

3C. S. Wu, Amsterdam Conference on Beta- and Gamma-
Radioactivity (1952), to appear in Physica.

4D. L. Pursey, Phil. Mag. 42, 1193 (1951); A. M. Smith,
Phys. Rev. 82, 955 (1951).

5E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941); E. Greuling, Phys. Rev. 61, 568 (1942).

Pursey* and independently by Smith.* In each case these
correction factors depend bilinearly on nuclear matrix
elements and each matrix element product is multiplied
by a sum of functions of the form

Su(pt2)=q" X awg " E(p, Z). ¢Y)

Here € and a,, are constants, ¢g=W,— W is the neutrino
energy, and p the electron momentum. The E,(p, Z) are
essentially bilinear combinations of electron wave func-
tions evaluated at the nuclear radius. Finally v=5—1%,
where j is the electron angular momentum. For pure
interactions there are, for each », three different com-
binations which are denoted by L,, M,, and N,, to use
the customary notation.’ For mixed interactions three
additional combinations occur: P,, Q,, and R, in
Pursey’s notation.* All these quantities are defined
explicitly in the references given above.

It is clear that by far the most convenient pro-
cedure is to obtain numerical values for the various E,
(L,,M,,N,, P,,Q,, R,) since these depend only on three
parameters. From these it is a comparatively simple
matter to obtain the requisite .S,. Analytical expressions,
obtained from the first term or two in the power series
expansion of the radial wave functions have been given
for the E,.*® The validity of this procedure rests on the
fact that the electron (or positron) deBroglie wave-
length is large compared to the nuclear radius.® Exami-

6 The precise statement for the validity of the expansions re-
ferred to is pp<K1 (where p is the nuclear radius, in units %/mc)
but aZW/p is not large compared to unity. Here W= (p2+1)% is
the electron energy. Even for p—0 one cannot replace the con-
fluent hypergeometric functions which occur in the radial wave
functions [see M. E. Rose, Phys. Rev. 51, 484 (1937)], by unity—
that is, by the first term in their series representation. In this
limit the radial wave functions can be expressed in terms of Bessel
functions (of irrational index) and argument 2(2aZp)} For
p~iaAt and aZ<1 this argument is small enough so that the
Bessel functions can be replaced by the first term in their series
expansion. This procedure corresponds to the expansions given by
Greuling (reference 5) and Pursey (reference 4) for p—0. In view
of these remarks it is understandable that an accurate calculation
will deviate considerably from the approximate ones not only for
large p but if aZ is not small, for small p as well. This is borne out
by the results for L, for example, see Fig. 1 below, where the ap-
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F16. 1. Ly, on a linear scale, versus the momentum p. The
numbers attached to the curves designate the values of Z (>0 for
electrons, <0 for positrons). When L, is plotted versus energy W,
the curves are very nearly, but not exactly, linear.

nation of these approximate expressions has shown that
they are fairly good (at least for »< 3) in most practical
cases. Usually an error of, at most, 2 percent is incurred,
the error being determined simply by comparison with
the accurate numerical results discussed below. How-
ever, there are exceptional cases. For example, for
positrons and small Z (Z~10) the M,, for all » con-
sidered, as given by the approximate expressions were
totally unreliable for momenta in the range $29. In
fact, for 210 the M, as calculated in this way turn
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F16. 2. My, on a logarithmic scale, versus p. The energy dependence
of M, even for large Z, is evident.

proximate expressions would give Lo=3[1+(1—a?Z?)}] independ-
ent of energy and independent of the sign of Z. A more appropri-
ate designation of the effect considered here is to describe it as an
effect of the nonvanishing nuclear radius. We have adopted the
designation “finite wavelength effect” in order to avoid confusion
with an entirely separate effect arising from the nonvanishing
nuclear radius [see M. E. Rose and D. K. Holmes, Phys. Rev. 83,
190 (1951)1.
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out to be negative, over a range of p, whereas these
quantities are positive definite by definition. Another
exception, in which the error is not so great but is
nevertheless of special importance, is discussed below.

This fact led us to the conclusion that the only safe
way to obtain the required numerical results was to
calculate the radial functions with an essentially exact
procedure. The procedure involved the use of the series
representation of the wave functions, which converges
for all finite values of the argument. Representing the
series by

2. (Ret,+iImt,)

n=0
the terms of this series were computed up to a value
n=N for which |Re ty|+ |Im ty| <2X10~7. We esti-
mate the error in the confluent hypergeometric series
to be of order 10~8. The work was carried out on the
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F16. 3. Ny, on a logarithmic scale, versus p. For Z<0, N, is given
and for Z>0, the ordinate is — N,.

Whirlwind I, the general purpose digital computer at
the Digital Computer Laboratory of Massachusetts
Institute of Technology.

The range of parameters for which the six E, func-
tions were computed was |Z| =10 to 96 in steps of 2;
33 values of p from 0.1 to 25 for | Z| <24 and 31 values
from 0.1 to 15 for | Z|>24, and finally »=0, 1, 2, and 3.
The nuclear radius is taken to be 2a4?, and the mass
number A4 is chosen for each Z so that it represents an
average of known electron or positron emitters. Space
limitations prevent anything but a fragmentary presen-
tation of the results here.” Figures 1-6, wherein the six
functions are given for »=0 and four values of Z, show
some of the results. We have here given results for
$<9, but the tables extend beyond this point.

It will be noted that in the beta-decay theory as it

7 Tables of complete numerical results will be found in Rose,

Perry, and Dismuke, Oak Ridge National Laboratory Report
ORNL 1459 (unpublished).



FINITE DEBROGLIE WAVELENGTH

has hitherto been used the correction factor for allowed
transitions, which is L, for any interaction or mixture,
is given by Lo=%[14 (1—a2Z?)}¥] which is, of course,
energy independent. (This also applies for first for-
bidden transitions which have the allowed shape due to
predominance of matrix elements [, S vs.) However,
as Fig. 1 shows L, is not quite constant. Therefore
some deviation from the usual theoretical allowed shape
should be expected, the size of this deviation depending,
of course, on the endpoint energy.

To take an extreme case, for Z=70 and a maximum
momentum of 9 the factor by which the spectrum
should be multiplied changes by 15.5 percent of its
zero momentum value over the range 0<p<9. For
electron emission, the effect of the present correction is
to increase the relative number of slow electrons, and
for positron emission the effect goes in the opposite
direction. This, as Fig. 1 shows, is valid for all allowed-
shape transitions. The effect is somewhat reduced by the
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F16. 4. Py, on a linear scale, as function of .

fact that one cannot measure the spectrum at low
energies because of finite source thickness and backing.
However, this is a trivial influence for thin sources for
which one can measure down to about 150 kev or less
and does not appreciably modify the above result for
thicker sources. A more important limitation arises
when the spectrum is complex and only the upper end
of the spectrum can be seen. Thus, for the example
cited above between p=35 and p=9 say, the over-all
change is 8.4 percent of the low energy counting rate.
Considering now the effect on the Kurie-Fermi plot,
what one plots with the customary procedure is pro-
portional to Lo}(W,—W) rather than to Wo—W. Let
us write Ly=1—¢ by normalizing Lo to unity at the
lowest energy for which one can expect a straight
Kurie-Fermi plot. That is, §=0 at p= puin. Also write
G=L*(Wy—W) and Go=W,—W. Then we find that
the maximum relative deviation (G—Gy)/Go, between
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F16. 5. —Qo, on a logarithmic scale, as function of .

the ordinary Kurie-Fermi plot (that is, the one based
on the assumption Lo=constant) and the true one,
with the Lo given here, is of order {0max. Hence in the
above examples, the effect discussed here is of order
4 percent when most of the spectrum can be measured
and of order 2 percent when about half of the spectrum
can be measured. Of course, for lower maximum energies
and/or lower values of Z the effect decreases.

At low energies there is the additional effect of
screening to consider and it is noteworthy that the
present correction is in the opposite direction to the
screening correction for both electrons and positrons.®
For low energies the screening correction varies more
rapidly with energy than does the present correction.
However, even after the screening correction is made,
the experimental Kurie-Fermi plots show too many
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F16. 6. Ro, on a logarithmic scale, as function of p. The ordinate
is —Ro for Z>0 and R, for Z<0.

8 See, for example, J. R. Reitz, Phys. Rev. 77, 10 (1950).
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slow electrons.? The present effect is in the right direc-
tion to explain part of this but the major part must
still be attributed to source and backing-distortion.
This is abundantly clear if we consider positrons where
the finite wavelength effect depresses the number of
slow positrons while the experiments show too many
slow positrons even after screening corrections are
made. Of course, for high energies the screening effects
are much less important than those due to finite wave-
length.

From this discussion it appears that the present re-
sults are not in disagreement with any known spectra
which have been classified as allowed transitions (or as
first forbidden with allowed shape). There are no
known well-investigated cases of allowed shape spectra
with large Z and reasonably high end point to provide a
comparison of experiment and these calculations. How-
ever, it is entirely reasonable to expect that the effects
discussed here can be detected with present experi-
mental technique and they would clearly be of decisive
importance for the classification of transitions involving
large Z and W,.

Turning now to the case of favorable parity change
transitions, that is, those with spin change equal to

9 For example, C. S. Wu and R. D. Albert, Phys. Rev. 75, 1107
(1949).
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n+1 (GT selection rules) the correction factor in these
cases involves L,. We have therefore examined the
modification of the Kurie-Fermi plot for ¥20(W,= 5.50)
which corresponds to about as high a Z and W, as is en-
countered in this type of transition. Moreover, reason-
able thin sources were used in the measurements of this
spectrum. In this case the correction involved here pro-
duces a linear plot over a somewhat greater energy
range and does not change the conclusion that the
transition is first forbidden. In the case of other known
transitions with a unique matrix element similar con-
clusions should result.

Finally, it is fairly evident that the approximation
which has hitherto been inherent in the beta-decay
theory could not have led to any appreciable falsifica-
tion of the endpoint energies as determined by extrapo-
lation of the “straight” Kurie-Fermi plots.

It is a pleasure to acknowledge the courtesy of
J. W. Forrester, J. W. Carr, III, and C. W. Adams
of the Digital Computer Laboratory, who author-
ized and expedited the computations. We are also
indebted to D. Combelic of the Digital Computer
Laboratory and to members of the Mathematics Panel
of the Oak Ridge National Laboratory for coding and
checking the computations.
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Modifications needed in order that low energy singlet scattering be described when a repulsive core is
introduced in a phenomenological nucleon-nucleon interaction are investigated. It is found that if a square
well is used to represent the attractive part of the interaction, a range of potential parameters allows a
description of the data and also satisfies the charge independence hypothesis. When the Yukawa potential
is investigated, the assumption of charge independence is more restrictive, and a single set of parameters

is found.

I. INTRODUCTION

ASTROW! introduced a short range repulsive core
into a phenomenological nucleon-nucleon interaction

in order to allow a charge independent description of
high energy scattering experiments. At low energies,
the theoretical interpretation of scattering experiments
had indicated charge independence of nuclear forces
at an early date? without a repulsive core in the assumed
interaction. The question arises as to what modification

* Assisted by the joint program of the U. S. Office of Naval
Research and the U. S. Atomic Energy Commission.

1R, Jastrow, Phys. Rev. 81, 165 (1951).

2 Breit, Condon, and Present, Phys. Rev. 50, 825 (1936)
(referred to as BCP); G. Breit and J. R. Stehn, Phys. Rev. 52,
396 (1937). For other early evidence not depending exclusively
on scattering, see G. Breit and E. Feenberg, Phys. Rev. 50, 850
(1936) and references cited by them.

of the phenomenological interaction used to describe
low energy scattering is necessary when a core is
introduced. It is the purpose of this note to report on
an investigation of this point.

The low energy singlet nucleon-nucleon scattering
has been described by the f function of Breit, Condon
and Present,? where

f= (C02/17) COtKo—' 2 lnn—i— qO/T]

in the notation of BCP. The quantity K, is the phase
shift due to the specifically nuclear interaction. For
the limit of the charge e going to zero, one has?

ling(f/a) =k cotK,,

3 G. Breit and M. H. Hull, Jr., Am. J. Phys. 21, 184 (1953).



