The Half-Life of I¹³¹

H. H. SELIGER, L. CAVALLO, AND S. V. CULPEPPER National Bureau of Standards, Washington, D. C. (Received January 2, 1953)

An accurate determination of the half-life of I¹³¹ gives the value 8.07₅±0.02₂ days.

Values have been reported for the I¹³¹ half-life, ranging from 8.0 days^{1,2} to 8.14 days.³ The low values can be explained in part as being due to the instability of I¹³¹ sources prepared by evaporation.⁴ The high values can be explained on the basis of the 12-day metastable state of Xe¹³¹ to which I¹³¹ decays in approximately 1 percent of its disintegrations. If the source is such that the 12-day Xe¹³¹ isomeric state accumulates, and if the geometry is such that it is possible for the x- and γ -rays or conversion electrons of Xe¹³¹ to be detected, the measured half-life of the mixture will be greater than that of I¹³¹ alone.

Sreb³ used a sandwiched, powdered I¹³¹ source directly below a 1.4-mg/cm² G-M counter window, and Kurie, to whom Sreb refers as having obtained 8.16 days in 1946, prior to the knowledge of the isomeric

TABLE I.

	Determination	Absorber cylinder thickness	Half-life (days)
1	March-April 1952	5-mm Al	8.089±0.014
2	June-July 1952	5-mm Al, 2.5-mm Pb	8.063±0.010
3	AugSept. 1952	5-mm Al, 5.9-mm Pb	8.083±0.026

¹ J. J. Livingood and G. T. Seaborg, Phys. Rev. 54, 775 (1938).
² S. Katcoff et al., Radiochemical Studies: The Fission Products (McGraw-Hill Book Company, Inc., New York, 1951), Paper No. 143, National Nuclear Energy Series, Plutonium Project Record, Vol. 9, Div. IV.

³ J. H. Sreb, Phys. Rev. 81, 643 (1951).

⁴ W. K. Sinclair and E. W. Emery, Brit. J. Radiol. 23, 576 (1950).

state of xenon, also used a sandwiched source; in this case directly below a 0.0002-in. aluminum ionization chamber window. In both cases, therefore, it is logical to assume that the decay of Xe¹³¹ was observed in addition to I¹³¹.

With these factors in mind, the half-life of I¹⁸¹ has been redetermined with a Lauritsen electroscope by γ -ray comparison with radium and has been found to be $8.07_5\pm0.02_2$ days. The I¹⁸¹ was glass-sealed and the Xe¹⁸¹ radiation was completely attenuated by absorbing cylinders.

Independent determinations were made on three different samples of I¹³¹ received from the Oak Ridge National Laboratory from which the National Bureau of Standards I¹³¹ solution standards were also prepared and calibrated for semi-annual distribution.

The half-lives and standard deviations calculated by least squares are given in Table I.

The I¹³¹ sources were in the form of a solution of NaI in a wax-sealed, ground glass stoppered, 5-ml Pyrex volumetric flask and the Ra source was a 50-microgram solution standard in a 5-ml glass flame-sealed ampoule. The three determinations consisted of more than 1200 individual measurements which were made over periods of from 4 to 5 half-lives. The time-dependent variable was the ratio of the I¹³¹ drift rate to the Ra drift rate. It was found that the electroscope must remain fully charged at all times when not in use, to prevent insulator charging difficulties.

The authors thank Dr. Sreb and Dr. Kurie for discussions concerning their experimental arrangements.