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The Spins of Li' and B"in the Shell Model
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The intermediate coupling approximation succeeds in explaining the diRerent spins of Lie and SM, where
the LS coupling and the jj coupling fail.

INTRODUCTION

'HE calculations of the energy levels of Li' and
8' in the p" shell model have shown that in LS

coupling the ground states of these nuclei belong to
J=i, and in jj coupling to J=3.' The experimental
spins are i for Li' and 3 for B' . lt seemed probable,
therefore, that an intermediate coupling approximation
would succeed, ' where the extreme couplings failed.

In order to see this, the matrices of the binding en-

ergy of these two nuclei for J= i and for J=3 had to
be calculated in this approximation, and the levels
with highest binding energy compared.

In the present model and approximation the energy,
apart from the central 6eld energy which is common to
all the configuration and which can be overlooked,
therefore, when comparing the levels, consists of two
parts considered together as a perturbation on the
central field energy'. the energy of the nuclear forces
proper, which is taken as the sum of the interaction
energies between all pairs of the nucleons, and the
spin-orbit interaction which is written analogously to
the atomic case. The elements of the energy matrix
will therefore be linear combinations of three param-
eters, Fp, Fs, and 1'„, where the F's are Slater's general-
ized parameters and 1„ is the spin-orbit parameter.
Therefore, the energy values will be, in appropriate
units, functions of two ratios only.

If the binding energies are described by surfaces in
3-dimensional space, the experimental spins will show
that for 1'„very large as compared with the F's the
surface for J=3 will be higher than that for J= i, or
Es)Er, while for 1 „small the contrary happens. There
is, therefore, a line in the finite part of the plane, where
E~=E3. And in order that both spins will be accounted
for by the theory, the line for Li' should be on the side
of the higher f' with respect to that for Bts, at least
for some values of Fs/Fp.

In the case of Li the matrix is of order three for
J=i and reduces to one element for J=3; therefore,
one can 6nd the equation of the curve in terms of the
above ratios of the parameters explicitly. In B" the
matrices are of the tenth order, and so an explicit
equation cannot be found; but from the equation for
Li', the value of the critical is, for which E&=Es (in
terms of Fp and Fs), has to be substituted for 1 in the
matrices of B", the eigenvalues of which may be ex-

' E. Feenberg, Phys. Rev. 76, 1275 (1949).
~ G. Racah and ¹ Zeldes, Phys. Rev. 79, 1012 (1950).
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pressed, in arbitrary units, as functions of the ratio
Fs/Fp. Varying this ratio one obtains each time two
numerical matrices the eigenvalues of which are to
be compared.

Between which values is the ratio to be varied?
Owing to the rarity of experimental material, very
little is known of Slater's nuclear parameters. They are
known to be positive by definition, and the ratio Fs/Fp
is known to depend upon the range of the nuclear
forces, being small for long-range forces, and reaching
the value 0.2 for 8-interaction. As the range of the
nuclear forces is only little known, we explored all the
interval between 0 and 0.2.

THE INTERMEDIATE COUPLING APPROXIMATI'ON

1. The Energy Matrices

Rosenfeld shows' that, if the interaction between
two nucleons is given by a linear combination of the
interactions of signer, Majorana, Bartlett, and Heisen-
berg, with the same distance dependence in each, the
coefficients of the combination are approximately de-
termined by the saturation requirements of the nuclear
forces. The combination which results is

2 i4 7 4
V = ——&w+—1'sr+—Va —&a,

i5 i5 i5 i5

and we shall suppose this form for the nuclear potential.
The part of the energy due to the nuclear forces is then
found from the tables of Racah. 4

The spin-orbit interaction has the form

f„Z;(I; s;), (2)
and the calculation reduces to that of Z, (1; s;). A gen-
eral formula for the matrices of such operators has been
given by Racah. ' In the practical utilization of it we
used further the property of the coefficients of frac-
tional parentage to decompose into factors, each of
which depends only on part of the quantum numbers
specifying the states. ' These factors had already been
calculated by Racah, ' and were used by us for the

'L. Rosenfeld, Nuclear Forces (Interscience Publishers, New
York, 1948), p. 234.' G. Racah, Helv. Phys. Acta 23, 229 (1950).' G. Racah, Phys. Rev. 63, 367 (1943), Eq. (23).

6 G. Racah, Phys. Rev. 76, 1352 (1949); Princeton Notes,
1951, p. 66 (unpublished).

r G. Racah {private communication). Mean while extensive
tables of these coeKcients vrere published by H. A. Jahn in Proc.
Roy. Soc. (London) 205, 192 (1951).
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TABLE L The matrix of Z;(1; s;) of p' in the I,S scheme.

zTSL
(222)
13S

(321)
15P

(321)
15D

(a) 60 Z;(1; s;) for j=1
(321) (321) A~

13jP 13D 11jP
B.
11jP

(420)
13S

(420)
13D

(420)
13Dt'

(222) ~0S

(321) "P
(321) "D
(321) 138
(321) "D

A
llP

(420) "S
(420) "D
(420) "D'

(222) '7S
(321) "P
(321) '5D
(321) "D

A "F
llP

(420) "D
(420) "D'
{420) 13J

(420) "G

0
30(3)&

0
50(3)&

0
'

0
0
0
0
0

(222)
lvS

0
210{2)»

0
0

0
0
0
0
0

30(3)&

0
15(3)»

0—3(15)&

0
0—50

2(35)&

0

(321)
15+

210(2)»
0

105(2}»—63(15)&
0
0

42(35)»
0
0
0

0
15(3)&

0
45{3}»

0
0
0
0
0—30

(321)
15D

0
105{2)&

0
0
0
0
0—70(6)&

70(3)&
0

50{3)&
0

45(3)&

0—(15)'—60(2)&
0—30—6(35)&

0

(b) 210
(321)

13D

0
0
0

12(30)&

0
0

40(2) &

2(70)&

(420)
]3D

0—63(15)2

0
0
0—42(30)&
0—42(5) &

—42(10)&
0

0
0
0
0
0
0
0

70(6)»—70(3)&

0

0
0
0—42(30) ~

0
0

18(70)&
0
0—90(7)»

0
42(35) t

0
0
0

18(70)&
0—14(105)&

16(210)»
0

0 0—3(15)& 0
0 0—{15)& —60(2)&
0 0
0 0

12(30)& 00, 0
0 0

18(5)& 30(6)&

Z, (1,"s;) for J=3
A B
11P llP

0—50
0—30
0
0

40(2) &

0
0
0

(420}
13DI

0
0—70(6)»—42(5) &

70(6) ~

0—14(105)»
0
0
0

0
2{35)&

0
-6(35)&

0
0

2(70)&

0
6(105)&

(420)
13'

0
0

70(3)&

—42(10)&—70(3)2
0

16(210)&
0
0—45(21)»

0
0—30
0

18(5)&
30(6)&

0
0

6(105)&
0

(420)
13Q

0
0
0
0
0—90(7)&

0
0—45{21)»
0

a f(A. ) = g (411)+f(330)] /(2)», $(B) = [P(411)—P(330)] /(2)».

calculation of the spin-orbit matrices for the charge
singlets of p' with J= 1 and 1=3, which are given in
Tables I(a) and I(b). The states are labeled by Z, the
partition specifying signer's supermultiplet to which
the state belongs, and by 2T+1, 2S+1 and I., T and
5 being the isotopic and ordinary spin numbers and L
the orbital quantum number. a= 21„ is -the positive
spin-orbit parameter. For p2 the matrices are well
known. 8

2. The Curve for Li'

one. The transition occurs at the critical value 0.0 for
which there is a zero eigenvalue, and therefore the
determinant (4) vanishes. Developing this determinant
we obtain for no the value

3(ED —Ep) (ES ED)—
Ao =

10ED—6Ep —4E8

and inserting the values of the terms in Rosenfeld's
mixture (1),

ED F0+F2' Ep (9/5)(FO SF2) y
ES F0+ 10F2y (6)

The energy matrix for the charge singlet with J= I is

"D ED—3a —(10/3)'*a 0
"F —(10/3)fa Ep 2(2/3)&a
rsS 0 2(2/3) fa Es

(3)

one obtains anally

9
no= —P2.

14

7FO —20F2

Fo —~F2
(7)

where the EI, stands for the nuclear binding energy of
the corresponding L term without spin-orbit inter-
action. For J=3 the matrix has only one element:

3. Limiting Cases

The value of as from Eq. (7) was now substituted
for e in the energy matrices of 8", and the highest
binding energies of J= 1 and J=3 were compared.

The end points of the interval of variation of the
ratio F2/F„could be dealt with easier than the inner
part of the interval, and so will be considered first:

(3')"D=ED+ 2a.

Subtracting this element from the diagonal elements of
the matrix for J= 1 one obtains a matrix

A. Long-Range Limit: F2((FO

Neglecting higher powers of F2/Fs we get, from (7),

—Sa —(10/3)&a 0
—(10/3)4 Ep ED 2a 2(2/3—)&a—, (4)

0 2(2/3)'a Es ED 2a——

all the eigenvalues of which are negative when n is
vary large, while for a small 0, there is also a positive

' E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1935), p. 268.

a0 ——(9/2)F2,

and we shall regard F2 as a perturbation. In this ap-
proximation it is su%.cient to diagonalize that part of



N I SSAN ZEL DES

TABLE II. The nonvanishing elements of the nuclear forces
binding energy matrix of p' in the I.S scheme.

Row and column

(a) J=i
Diagonal elements

The element

(222)»S
(321) '5P
(321) "D
(321) "P
(321) "D

A "P
llP

(420)»S
(420)»D
(420) "D'

—(5/3) Fp+ (275/6) Fp
3 F0+36 F2
3 Fp+(168/5)ti

(I7/15) Fo+ (644/15) tp
(17/15)Fo+ (2968/75) Fo

3 Fp+(231/5)tp
3 Fp+(243/5)Fo

(29/5) to+ (487/10) Fo
(29/5) tp+ (979/25) to
(29/5) Fp+ (203/5) Fp

Nondiagonal elements

(222)»S—(420)»S
(321)"D—(420)"D

(3/2)(3)' tp
(i2/25)(21)& to

(222) 'oS
(321) iot
(321) "D
(321) "D

A "F
llF

(420)»D
(420)»D'
(420)»F
(420) "G

(b) J=3
Diagonal elements

3 Fp+30 F2
3 Fp+36 F2
3 Fp+(168/5)F,

(I7/15) Fp+ (2968/75) Fo
3 to+ (186/5)tp
3 Fp+(168/5)tp

(29/5) Fo+ (979/25) Fo

(29/5)t p+ (203/5)tp
(29/5)Fp+(1 85/ )5Fp

(29/5) Fp+ (116/5) Fo

Nondiagonal elements

(321)"D—(420)"D (12//25) (21)» F

the energy matrix which belongs to the maximal
unperturbed eigenvalue, and from Tables II(a) and (b)

it follows that this unperturbed value is that of the
super-multiplet (420), both for J=1 and for J=3.

The secular equations for this supermultiplet are of
order 3 and 4 for J=1 and J=3, respectively. %hen
the value (8) for np is inserted in them and the calcula-
tion performed, one obtains

Ei——(29/5) Fp+49.13Fs,

Es= (29/5)Fp+49 IIFs,
(9)

and we see that the binding energy for J=3 is higher
than for J=1.

B. Short-Range Limit: Fo—5F2«FO

Here 0.0 becomes infinite of the first order, and we
need to go over to the jj scheme. The matrix of n be-
comes diagonal, and the matrices of the coeKcients of
Fp and Fs are given in Tables III(a), (b) and IV(a), (b),
where the states are labeled by the numbers of nu-
cleons having j=—,

' and j=~, though this specification
is not complete.

Here we consider Fo and F2 as a perturbation to o..
Neglecting Fo—SF2, we obtain for the eigenvalues in
the first approximation of the perturbation theory

E,=Eo=6np+54Fo, (10)
and we have to pass to the second approximation. The
usual formula gives

Ei= 6np+54Fo+ (107/45) (Fp —5Fs)
+ (146/5) (Fs'/np),

Ep 6np+54Fs+ (59——/15)(Fp —5Fs)
(11)

+ (79/5) (Fs'/np).

TABLE III. The matrix of the coefficients of Fp/45 of P in the jj scheme.

P»

(P,*' P:)~
(Pr' P»)~
(P~' P»2) ~
(P-: P';)-
(Pk' P»') c
(P~' PP) o
(P.*' P»') ~
(P»' Pk') ~
Pk P»

Pk

(PP P;)~
(Pk' P»)~
(Ps' P»') ~
(Pe' P»'}~
(P~' P»') c
(P~' P»') D

(P P»')~
(P)' P»') ~
Pk Pk

pk'

107
14(6)

56
28(2)»
14(3)»
14(14)»
14(3)&

0
0
0

Pk

177
—12(14)»
—4(21)»
14(3)»
12(7)»
8(21)»
14(3)»

0
0
0

(P!'P:)~

14(6)»
177
0

14(3)»
—28(2)»
—14(21)-'

14(2)'
0

14(6)»
0

(P»' P») ~
—12(14)&

177
0

—2(42)&
—6(2)»
—4(6)»
2(42)&

12
16(6)»

0

(P P»)

56
0

107
7(2) '*

14(3)»
—7(14)»
28(3)»
14(6)»

42
0

(P»' P»)~

—4(21)»
0

177
12(7}»
12(3)»

24
—12(7)»
16(6)»

30
0

(P~' P»') ~

28(2)»
14(3)»
7(2)'
149
0
0
0

14(3)
'

7(2) f

28(2)'

(P~' P»') ~

i4(3)&
—2(42)»
12(7)&

219
0
0
0

—2(42)»
12(7)»
14(3)&

(a) J=1
(P- P»')~

14(3)»
—28(2) &

14(3)»
0

149
0
0

28(2) &

—14(3)»
—14(3)&

(b) J=3
(P.*' P»')~

12(7)»
—6(2)»
12(3)»

0
135
0
0

6(2)&
—12(3)»
—12(7)»

(P P-)c
14(14)»

—14(21)i
—7(14)»

0
0
65
0

14(21)'
7(14)»

—14(14)&

(P»' P»') c
8(21)»
—4(6)»

24
0
0

135
0

4(6)»
—24

—8(21)»

(P,*' P- ) D

14(3)»
14{2)»
28(3)&

0
0
0

205
-14(2)&

—28(3)&

—14(3)'

(P~' P»') D

14(3)&
2(42)»

—12(7)»
0
0
0

219
—2(42)»
12(7)»

—14(3)»

(P»' P»'}~

0
0

14(3)»
28(2)»
14(21)&

—14(2)'*

177
0

14(6)»

(P»' P»') ~

0
12

16(6)»
—2(42)»

6(2)&

4(6)»
—2(42)»

177
0

—12(14)»

(P- P»')~

0
14(6)&

42
7(2)i

—14(3)i
7(I4)&

—28(3)&
0

107
56

(P» P»)&

0
16(6)»

30
12{7)»

—12(3)»
—24

12(7)»
0

177
—4(21)»

P-,*' P»'

0
0
0

28(2)'
—14(3)»
—14(14)&
—14(3)&

14(6)&

56
107

P4 P»

0
0
0

14(3)»
—12(7)»
—8(21)»
—14(3)»
—12(14)»
—4(21)»

177
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TABLE IV. The matrix of coef5cients of F& of P in the jj scheme.

P'JA'

(Pt' Pt) A

(Pt'Pt)e
(Pt' Pt') A

(» Pe)

(Pt' Pt') n

(Pt'P )A
(Pt' Pt')e
P4 Pk

P)6

(PP Pt)A

(Pt Pi)B
(Pt P$ )A
(Pt' Pt')e
(Pt' Pl') o
(Pt'PP)n
(Pt' Pl'}A
(Pt' Pl') e
Pk Pk

P4'

1895
2(6)'

26
—50(2) t

65(3)t
—25(14)&

—25(3)&

0
0
0

Ps6

10.815
96(14)&

—94(21)&

—175(3)4
—150(7)&
—100(21)&

455(3)&
0
0
0

(Pt' Pt) A

2(6)'
1905

—36(6)&

65(3)&
—31(2)~

—11(21)&
—70(2)t

—90
-25(6)&

0

(Pl Pi)A

96(14)~
10.383

432(6)&
70(42) &

—168(2)&
140(6)&

—70(42) t

795
—200(6) &

0

(PP P&)~

26
—36(6)~

1994
—35(2)&

20(3)&

35(14)&
22(3)&

—25(6)i
60
0

(Pt' P:)e
—94(21}&
432(6)&
11.310
210(7)&

—420(3) &

—588
42(7)'

—200(6)&

570
0

(a) Coefficients of Fs/45 for X= I
(Pt'Pl')A (Pt'Pl')s (Pt'PP)c
—50(2)& 65(3)& —25(14)&

65(3)& —31(2)& —11(21)&

—35(2)1 20(3)& 35(14)&

1802 0 0
0 1874 36(42) &

0 36(42) & 1898
0 —72 0

65(3)& 31(2)& 11(21)&
—35(2)& —20(3)& —35(14)&

—50(2) & —65(3)& 25(14)&

(b) CoeKcients of Fs/315 for 7=3

(Pt'Pt')A (Pt'PP)e (Pt'PF)o
—175(3)& —150(7)& —100(21)&

70(42) & —168(2)& 140(6)&

210(7)t —420(3) & —588
1.0.794 0 0

0 10.584 0
0 0 11.466
0 216(21)& 432(7) &

70(42)& 168(2)& —140(6)&

210(7)& 420(3)& 588
—175(3)& 150(7)& 100(21)&

(Pl' Pt*)n

—25(3) &

—70(2) ~

22(3) &

0
—72

0
1792

70(2)~
—22(3) &

25(3)&

(P~ »)
455(3)&

—70(42)t
42(7)&

0
216(21)&

432(7)t
10.668
70(42) ~

—42(7)&

—455(3)&

(Pt' Pi') A

0
—90

—25(6) &

65(3)&
31(2)&
11(21)&

70(2)~
1905

—36(6)&

2(6)~

(P PP)~

0
795

—200(6)&
70(42)&

168(2)&

—140(6)&

70(42)&
10.383

432(6)&
96(14)&

(Pt'PP}e

0
—25(6)&

60
—35(2)&

—20(3}&
—35(14)&

—22(3) i
—36(6)~

1994
26

Pf Pk

0
0
0

—50(2)&

—65(3)&

25(14)&

25(3}&
2(6)i

26
379

Pp Pk'

0
0
0

—175(3)&
150(7)&

100(21)&

—455(3)&

96(14)&

—94(21)&
10.815

(Pt'P )e
0

—200(6) &

570
2 10(7)&

420(3) &

588
—42(7)&
432(6)&

11.310
—94(21)&

Et——6np+ 54Fs+ (3649/675) (Fp
—5Fs),

F.,=6np+54Fs+ (3761/675) (Fp —5Fs),

and we see that here too E3&E~.

(13)

4. Numerical Calculations

To see what happens for intermediate ranges of the
nuclear forces, we had to diagonalize numerically the
matrices of order 10, after inserting for 0. the critical
value o.p. We took a set of values of Fs/Fp between 1/35
and 0.198. For Fs/Fp &0.16, the matrices in LS scheme
were used, and the diagonalization was made with the
electrical network of the Physical Department of the
University. ' In the last five cases, Fs/Fp&0. 17, the
matrices in the jj scheme were used, and the eigen-

'A. Many, Rev. Sci. Instr. 21, 972 (1950); thesis, Jerusalem,
1950 (unpublished).

After inserting for np in the last terms its value in this
approximation, which is seen from P) to be

135 P,'
0!p=

14 Fp —SF

the final values obtained are

TanLE V. Values of E~/E& for p&F,/F, &p.2.

F2/F P

1/35
0.05
0.08
0.10
0.11
0.12
0.14
0.16
0.17
0.18
0.19
0.195
0.198

+1/F 0

7.2585
8.4645

10.412
11.994
12.920
13.977
16.741
21.438
25.738
33.869
57.433

103.931
242.915

Fs/FP

7.2959
8.5380

10.520
12.104
13.025
14.077
16.819
21.488
25.764
33.887
57.443

103.935
242.917

Qs /QI

1.0052
1.0087
1.0104
1.0092
1.0081
1.0072
1.0047
1.0023
1.00101
1.00053
1.00017
1.000038
1.0000082

values were found by the perturbation formulas up to
and including the third order, which sufficed for our
purposes, as the rapid convergence of the first three
approximations had shown.

The results are given in Table V and are seen to
behave quite regularly. It is seen that the theory suc-
ceeds in explaining the facts for all the ranges of the
nuclear forces.

I thank Professor Racah both for suggesting the
problem and for his continual help throughout the
work, and Dr. Many for his help in operating the elec-
trical network diagonalizing the numerical matrices.


