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The intermediate coupling approximation succeeds in explaining the different spins of Lif and B%, where

the LS coupling and the jj coupling fail.

 INTRODUCTION
HE calculations of the energy levels of Li® and

B! in the p" shell model have shown that in LS

coupling the ground states of these nuclei belong to
J=1, and in jj coupling to J=3.! The experimental
spins are 1 for Li® and 3 for B!%. It seemed probable,
therefore, that an intermediate coupling approximation
would succeed,? where the extreme couplings failed.

In order to see this, the matrices of the binding en-
ergy of these two nuclei for J=1 and for J=3 had to
be calculated in this approximation, and the levels
with highest binding energy compared.

In the present model and approximation the energy,
apart from the central field energy which is common to
all the configuration and which can be overlooked,
therefore, when comparing the levels, consists of two
parts considered together as a perturbation on the
central field energy: the energy of the nuclear forces
proper, which is taken as the sum of the interaction
energies between all pairs of the nucleons, and the
spin-orbit interaction which is written analogously to
the atomic case. The elements of the energy matrix
will therefore be linear combinations of three param-
eters, Fo, Fs, and {,, where the F’s are Slater’s general-
ized parameters and {, is the spin-orbit parameter.
Therefore, the energy values will be, in appropriate
units, functions of two ratios only.

If the binding energies are described by surfaces in
3-dimensional space, the experimental spins will show
that for ¢, very large as compared with the F’s the
surface for J=3 will be higher than that for J=1, or
E;> E,, while for {, small the contrary happens. There
is, therefore, a line in the finite part of the plane, where
E;=E;. And in order that both spins will be accounted
for by the theory, the line for Li® should be on the side
of the higher ¢ with respect to that for B!, at least
for some values of Fy/F,.

In the case of Li® the matrix is of order three for
J=1 and reduces to one element for J=3; therefore,
one can find the equation of the curve in terms of the
above ratios of the parameters explicitly. In B0 the
matrices are of the tenth order, and so an explicit
equation cannot be found; but from the equation for
Li8, the value of the critical ¢y, for which Ey=E; (in
terms of Fy and F3), has to be substituted for ¢ in the
matrices of B! the eigenvalues of which may be ex-

1E. Feenberg, Phys. Rev. 76, 1275 (1949).
2 G. Racah and N. Zeldes, Phys. Rev. 79, 1012 (1950).

pressed, in arbitrary units, as functions of the ratio
Fy/F. Varying this ratio one obtains each time two
numerical matrices the eigenvalues of which are to
be compared.

Between which values is the ratio to be varied?
Owing to the rarity of experimental material, very
little is known of Slater’s nuclear parameters. They are
known to be positive by definition, and the ratio Fy/F,
is known to depend upon the range of the nuclear
forces, being small for long-range forces, and reaching
the value 0.2 for é-interaction. As the range of the
nuclear forces is only little known, we explored all the
interval between 0 and 0.2.

THE INTERMEDIATE COUPLING APPROXIMATION

1. The Energy Matrices

Rosenfeld shows® that, if the interaction between
two nucleons is given by a linear combination of the
interactions of Wigner, Majorana, Bartlett, and Heisen-
berg, with the same distance dependence in each, the
coefficients of the combination are approximately de-
termined by the saturation requirements of the nuclear
forces. The combination which results is

2 14 7 4
V= —-—Vyp+—Vyt+—Vp——Vn, 1)
15 15 15 15

~ and we shall suppose this form for the nuclear potential.

The part of the energy due to the nuclear forces is then
found from the tables of Racah.

The spin-orbit interaction has the form

¢oZi(lies), 2

and the calculation reduces to that of Z,(I;-s;). A gen-
eral formula for the matrices of such operators has been
given by Racah.’ In the practical utilization of it we
used further the property of the coefficients of frac-
tional parentage to decompose into factors, each of
which depends only on part of the quantum numbers
specifying the states.® These factors had already been
calculated by Racah,” and were used by us for the

8 L. Rosenfeld, Nuclear Forces (Interscience Publishers, New
York, 1948), p. 234.

4 G. Racah, Helv. Phys. Acta 23, 229 (1950).

% G. Racah, Phys. Rev. 63, 367 (1943), Eq. (23).

¢ G. Racah, Phys. Rev. 76, 1352 (1949); Princeton Notes,
1951, p. 66 (unpublished).

7 G. Racah (private communication). Mean while extensive

tables of these coefficients were published by H. A. Jahn in Proc.
Roy. Soc. (London) 205, 192 (1951).
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TaBLE I. The matrix of Z;(l;-s;) of p® in the LS scheme.

(a) 60 =;(1;-s;) for J=1

(222) (321) (321) (321) (321) 4s Bs (420) (420) (420)
2 TSL 13S lSP 15D 13P 13D IIP llP 13S 13D 13D’
(222) 1BS 0 30(3)t 0 50(3)% 0 0 0 0 0 0
(321) wp 30(3)% 0 - 15(3)% 0 —3(15)% 0 0 —50 2(35)% 0
(321) 8D 0 15(3)% 0 45(3)% 0 0 0 0 0 -30
(321) vp 50(3)% 0 45(3)% 0 —(15)% —60(2)% 0 —30 —6(35)% 0
(321) #¥D 0 —3(15)% 0 —(15)% 0 0 12(30)% 0 0 18(5)%
A up "0 0 0 —60(2)% 0 0 0 ’ 0 0 30(6)%
B up 0 0 0 0 12(30)} 0 0 4002¢  2(70) 0
(420) BS 0 —50 0 —30 0 0 40(2)% 0 0 0
(420) BD 0 2(35)% 0 —6(35)% 0 0 2(70)% 0 0 6(105)%
(420) 8D’ 0 0 —30 0 18(5) 30(6)* 0 0 6(105) 0
(b) 210 Z;(L;-s;) for J=3
@2 (321 (321) (321) 4 B (420) (420) (420) (420)
STSL s 5P 15D BD ng up 1BD B BF 1BG
(222) 1S 0 210(2) 0 0 0 0 0 0 0 0
(321) 5P 210(2)% 0 105(2)r  —63(15)* 0 0 42(35)% 0 0 0
(321) D 0 105(2)% 0 0 0 0 0 —70(6)* 70(3)% 0
(321) ©¥p 0 —63(15)% 0 0 0 —42(30)* 0 —42(5)% —42(10)% 0
A Uf 0 0 0 0 0 0 0 70(6)% —70(3)% 0
B up 0 0 0 —42(30)¢ 0 0 18(70)} 0 0 —90(7)
(420) #D 0 42(35)% 0 0 0 18(70)% 0 —14(105)%  16(210)% 0
(420) 8D’ 0 0 —70(6)F —42(5)} 70(6)* 0 —14(105)% 0 0 0
(420) ©F 0 0 70@)t  —42(10)  —70(3)} 0 16(210)* 0 0 —45(21)
(420) BG 0 0 0 0 0 —90(7)t 0 0 —45(21)% 0

s y(4) = [Y(411) +¥(330)] /(2)}, w(B) = [¥(411) —¢(330)] /()1

calculation of the spin-orbit matrices for the charge
singlets of p® with /=1 and J=3, which are given in
Tables I(a) and I(b). The states are labeled by Z, the
partition specifying Wigner’s supermultiplet to which
the state belongs, and by 2741, 2541 and L, T and
S being the isotopic and ordinary spin numbers and L
the orbital quantum number. a=%{, is the positive
spin-orbit parameter. For p? the matrices are well
known.?

2. The Curve for Li®
The energy matrix for the charge singlet with J=1is

B Ep—3a  —(10/3)% 0
up|(l—(10/3)k Ep 202/3)all, ()
8BS 0 2(2/3)ke Eg

where the Ey, stands for the nuclear binding energy of
the corresponding L term without spin-orbit inter-
action. For J=3 the matrix has only one element:

8D = Ep+2a. 3)

Subtracting this element from the diagonal elements of
the matrix for J=1 one obtains a matrix

—Sa —(10/3)k 0
—(10/3)}a Ep—Ep—2«a 22/3)%a ||, @)
0 2(2/3)a Es—Ep—2a

all the eigenvalues of which are negative when « is
vary large, while for a small a there is also a positive

8 E. U. Condon and G. H. Shortley, Theory of Atomic Specira
(Cambridge University Press, Cambridge, 1935), p. 268.

one. The transition occurs at the critical value «q for
which there is a zero eigenvalue, and therefore the
determinant (4) vanishes. Developing this determinant
we obtain for «q the value

_3(ED—EP)(ES—ED)

= ) (5)
10Ep—6Ep—4Eg

and inserting the values of the terms in Rosenfeld’s
mixture (1),

Ep=F}+Fs Ep=—(9/5)(Fo—~5F3), Es=Fy+10F,, (6)
one obtains finally
9 TFy—20F,

Q=" Llg*—,
Fy—3F,

M
14

3. Limiting Cases

The value of @y from Eq. (7) was now substituted
for « in the energy matrices of B!, and the highest
binding energies of J=1 and J=23 were compared.

The end points of the interval of variation of the
ratio Fy/F, could be dealt with easier than the inner
part of the interval, and so will be considered first:

A. Long-Range Limit: Fy<KF,
Neglecting higher powers of Fa/F, we get, from (7),
o= (9/2)Fy, (®)

and we shall regard F, as a perturbation. In this ap-
proximation it is sufficient to diagonalize that part of
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TaBrLE II. The nonvanishing elements of the nuclear forces
binding energy matrix of p¢ in the LS scheme.

Row and column The element

(a) J =1
Diagonal elements

#F g on
(321) 1D 3 Fot-(168/5)F,
(321) up (17/15)Fort-(644/15) Fy
(321) 1D (17/13) Fod- (2068/75) Fy
3 up R eReriRi
(420) 1S (29/5) Fyrt(487/10) Fs
(420) 1D (20/3)Fat-(979)25) Fs
(420) BD/ (29/5) Fot- (203/5) Fs

Nondiagonal elements

(222) 35— (420)138 (3/2)(3)} Fy
(321)8D— (420)3D (12/25)(21)} F,
(b) J =3
Diagonal elements
(222) 7S 3 Fo+30.F,
(321) 1P 3 Fy+-36 Fy
(321) 8D 3 Fot(168/5)Fs
(321) =D (17/15)Fo+(2968/75) F
A MF 3 Fo4-(186/5)F,
B up 3 Fo+(168/5)F
(420) 8D (29/5)Fo+-(979/25)F
(420) 1D’ (29/5)Fot(203/5) F»
(420) BF (29/5)Fo+ (158/5) F
(420) =G (29/5) Fo+ (116/5)

Nondiagonal elements

ZELDES

it follows that this unperturbed value is that of the
super-multiplet (420), both for /=1 and for J=3.

The secular equations for this supermultiplet are of
order 3 and 4 for J=1 and J=3, respectively. When
the value (8) for ap is inserted in them and the calcula-
tion performed, one obtains

Ey=(29/5)Fy+49.13F,, .
E3=(29/5)Fy+49.77F,, ©)

and we see that the binding energy for J=3 is higher
than for J=1.

B. Short-Range Limit: Fo—5F,<KF,

Here «y becomes infinite of the first order, and we
need to go over to the j7 scheme. The matrix of a be-
comes diagonal, and the matrices of the coefficients of
Foand F, are given in Tables ITI(a), (b) and IV(a), (b),
where the states are labeled by the numbers of nu-
cleons having j=% and j=3$, though this specification
is not complete.

Here we consider Fy and F as a perturbation to a.
Neglecting Fo—S5Fs, we obtain for the eigenvalues in
the first approximation of the perturbation theory

E1=E3= 6a0—i—54F2, (10)

and we have to pass to the second approximation. The
usual formula gives

(321)®D— (420)D (12/25)(21)} F, E,=60y+54F 4 (107/45)(Fo—5F3)
+(146/5) (F5*/ ), (1)
the energy matrix which belongs to the maximal E;=6a+S54Fs+(59/15)(Fo—SF2) ‘
unperturbed eigenvalue, and from Tables II(a) and (b) +(79/5)(F2*/ o).
TaBiE III. The matrix of the coefficients of Fo/45 of $¢ in the jj scheme.
(a) J=1
23 P e P s (b pD)a ()8 (B pde (P (8 pHa (8998 P 9y
b 107 14(6)* 56 282t  14(3)} 1414t 143)} 0 0 0
(pfpa  14(6)} 177 0 143 —28(2) —14(21)t  14(2)t 0 14(6)* 0
(b5 p3)B 56 0 107 7(2)% 14(3) —7(14)} 28(3)} 14(6)* 42 0
(bspDa 282  14(3) 7(2)} 149 0 0 0 14(3) 7(2)4 28(2)#
(bt pP)p 143  —28(2)F  14(3) 0 149 0 0 282  —14Q3)F —14(3)¢
(st p®e 1414  —14(21)F —7(14)% 0 0 65 0 14(21)% 7(14)% —14(14)*
(Pt pDp  14(3) 14(2) 28(3) 0 0 0 205 —142)t  —28(3) —14(3)}
(P8 p5®) 4 0 0 14(6)* 14(3)% 28(2)% 14(21)% —14(2)* 177 0 14(6)*
(08 P8 0 14(6)* 42 72 —14@3)  7(14)r  —28(3) 0 107 56
P byt 0 0 0 28(2)F —14(3) —14(14) —14(3)*  14(6)} 56 107
(b) J=3
b fpa (B pe (0 p)a (B2 (0 pd)c (B pPp (PP 2)a (0829 P 4t
P 177 —12(14) —41)F  143) 2t 8@t 143)} 0 0 0
B ppa  —12(14)F 177 0 —2(42)F  —6(2)F  —4(6)F  2(42) 12 16(6)* 0
e —42D1 0 177 12(7)% 12(3)t 2 —12(NF  16(6)} 30 0
(st pDa 14@3)} —242)  12(7) 219 0 0 0 —2042)t 1207} 14(3)
(ps* p4®B 12(7)t —6(2)* 12(3)% 0 135 0 0 6(2)% —12(3)% —12(7)%
(s p)e 821 —4(6) 24 0 0 135 0 4(6)% —24 —8(21)
(#5* 29 14(3)% 2(42)* —12(7)% 0 0 0 219 —2(42)% 12(7)t —14(3)t
(P p3¥) 4 0 12 16(6)* —2(42)% 6(2)% 4(6)* —2(42)% 177 0 —12(14)%
(08 p9)8 0 16(6)* 30 12t —123)F -2 12(7)% 0 177 —4(21)%
bi? pit 0 0 0 UE)} 120Nt —8Q1F  —143)F —12(14)} —41)} 177
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TABLE IV. The matrix of coefficients of F3 of 8 in the jj scheme.
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(a) Coefficients of Fy/45 for J=1

s (P p)a () (B p)a (B pd)e (P pdc (B p)p (08094 (082898 P '
48 1895 2(6)* 26 —50(2)% 65(3)% —25(14)r  —25(3)% 0 0 0
(P8 P4 2(6)} 1905 —36(6)% 65(3)% —31(2)¢ —11(21)t —70(2)% —90 —25(6)% 0
(46 p1)B 26 —36(6) 1994  —35(2)}  20(3)t 3514  22(3)  —25(6)} 60 0
(p3t p®) a —50(2)% 65(3)* —35(2)% 1802 0 0 0 65(3)% —35(2)% —350(2)%
(p3* P8 65(3)% —31(2)% 20(3)* 0 1874 36(42)% —72 31(2)% —20(3)% —65(3)%
(bt pDec  —25(14)F —11(21)}  35(14)% 0 36(42)} 1898 0 1121 —35(14)F  25(14)
(st P9 —25(3)% —70(2)% 22(3)% 0 —72 0 1792 70(2)% —22(3)% 25(3)%
(b8 p)a 0 —00  —25(6)} 65(3)F 312} 1121t 70(2)} 1905 —36(6)F  2(6)*
(08 P8 0 —25(6)} 60 —35(2)t —20(3)F —35(14) —22(3)t —36(6)} 1994 26
1 it 0 0 0 —50(2) —65(3)% 25(14)% 25(3)% 2(6)* 26 379
(b) Coefficients of F»/315 for J=3
1 PP pa P (PtpDa (s (B p)c (0 p)p (BfpHa (B8 %8 P o'
P 10.815 96(14)r  —94(21)t —175(3)r —150(7)} —100(21)% 455(3)* 0 0 0
(b p)a  96(14)F 10383  432(6)} 7042} —168(2)% 140(6) —70(42)} 795  —200(6) O
(pp)r  —94(21)F  432(6)* 11310  210(7)* —4203)t  —588  42(7)%  —200(6)t 570 0
(¢ pHa  —175(3)F  70(42)¢  210(7)F  10.794 0 0 0 70(42)F 21007 —175(3)
(¢ ps  —150(7)F —168(2)% —420(3)F 0 10.584 0 21621)F 1682} 4203 150(7)}
(st pc —100Q21)F  140(6)t  —588 0 0 11466  432(7)% —140(6)} 588  100(21)
(b p)p  4553)F  —70(42)F  42(7) 0 216(21)  432(7)} 10668  70(42)} —42(7)t —455(3)}
(b4 p30) 4 0 705 —200(6) 70(42)}  168(2)f —140(6)* 70(42)} 10383  432(6)}  96(14)t
(68 $3)5 0 —200(6) 570 21007} 420(3) 588 —42(7)%  432(6)F 11310  —94(21)}
2 byt 0 0 0 —175(3)  150(7)}  100(21)% —455(3)* 96(14)} —94(21)}  10.815
After inserting for a in the last terms its value in this TasLE V. Values of E;/E; for 0<F2/F<0.2.
approximation, which is seen from (7) to be
Fa/Fo E1/Fo Es/Fo Es/Ex
135 F? 1/35 7.2585 7.2959 1.0052
= (12) 0.05 8.4645 8.5380 1.0087
14 F,—5F, 0.08 10.412 10.520 1.0104
0.10 11.994 12.104 1.0092
the final values obtained are 85 gg%g }igg; 188%
s vs s 0.14 16.741 16.819 1.0047
E, =6 4F 3649/6 Fo—SF 0.16 21.438 21.488 1.0023
1= 6t 54F4-(3649/675) (Fo—S5F), (13) 0.17 25.738 25.764 100101
E,=6ay+54F ;4 (3761/675)(Fo—5F5), 0.18 33.869 33.887 1.00053
Olos 10599 105058 1000038
and we see that here too Eq> Fr. 0.198 242915 242,917 10000082

4. Numerical Calculations

To see what happens for intermediate ranges of the
nuclear forces, we had to diagonalize numerically the
matrices of order 10, after inserting for « the critical
value ag. We took a set of values of Fy/F, between 1/35
and 0.198. For F»/F(<0.16, the matrices in LS scheme
were used, and the diagonalization was made with the
electrical network of the Physical Department of the
University.? In the last five cases, Fy/F>0.17, the
matrices in the jj scheme were used, and the eigen-

9 A. Many, Rev. Sci. Instr. 21, 972 (1950); thesis, Jerusalem,
1950 (unpublished).

values were found by the perturbation formulas up to
and including the third order, which sufficed for our
purposes, as the rapid convergence of the first three
approximations had shown.

The results are given in Table V and are seen to
behave quite regularly. It is seen that the theory suc-
ceeds in explaining the facts for all the ranges of the
nuclear forces.

I thank Professor Racah both for suggesting the
problem and for his continual help throughout the
work, and Dr. Many for his help in operating the elec-
trical network diagonalizing the numerical matrices.



