Half-Life of Pd¹⁰⁹ and Neutron Activation Cross Section of Pd¹⁰²

W. WAYNE MEINKE

Department of Chemistry, University of Michigan, Ann Arbor, Michigan

(Received January 23, 1953)

The half-life of Pd¹⁰⁹ has been determined to be 13.6±0.1 hours by careful decay measurement on a chemically purified fraction of metallic palladium irradiated in a nuclear reactor. From the same irradiation the activation cross section of Pd¹⁰² was found to be 4.8 barns for pile neutrons. This cross section value is based on the literature value (corrected for the new half-life determination) of 11.7 barns reported for the thermal neutron activation cross section of Pd¹⁰⁸.

I. INTRODUCTION

ETALLIC palladium is in many ways an ideal beta-ray source.¹ Pd¹⁰⁹ is formed with high cross section in the nuclear reactor; it decays with a half-life of slightly more than half a day, thereby reducing the problems of contamination and decontamination; and its metabolic inertness reduces the general personnel hazard of its use. Furthermore, the palladium serves as a pure beta-ray source except for some low energy gamma-rays associated with the decay of the isotopes of palladium formed in neutron irradiation.

Despite this use of palladium as a beta-ray source and its availability from various reactor groups, a survey of the literature reveals discrepancies in nuclear characteristics of some of the radioactive isotopes obtained in a neutron irradiation of pure palladium metal. Since this laboratory has had access to the multi-curie Pd¹⁰⁹ sources obtained by the Fission Products Laboratory of the University of Michigan Engineering Research Institute,² a study has been made of the characteristics of some of the palladium isotopes occurring in these sources.

The stable isotopes of palladium and the isotopes formed in the neutron irradiation of palladium are shown with their decay products in Fig. 1. The abundances of these palladium isotopes were reported by Sampson and Bleakney³ with an accuracy of one part in one hundred. The half-life values indicated for Pd¹⁰³ and Ag¹¹¹ are considered to be the best literature values. The half-life indicated for Pd¹⁰⁹ is the value reported in this paper. The thermal neutron activation cross

FIG. 1. Isotope chart.

¹ Meinke, Emmons, and Nehemias, Nucleonics 10, No. 12, 54 (1952).

³ M. B. Sampson and W. Bleakney, Phys. Rev. 50, 732 (1936).

sections for Pd¹⁰⁸ and Pd¹¹⁰ were reported by Seren, Friedlander, and Turkel⁴ in their general survey of activation cross sections. The Pd¹⁰⁸ cross section reported has been changed to incorporate the new halflife value for Pd¹⁰⁹. Other pertinent data found on the chart were obtained from the Bureau of Standards Compilation of Nuclear Data.⁵

A complete literature search was made for data on the half-lives of Pd¹⁰³, Pd¹⁰⁹, and Ag¹¹¹. A 17.0-day half-life for Pd¹⁰³ was reported by Mathews and Pool⁶ who followed the activity of samples from both proton and deuteron bombardments of rhodium for 10 halflives. They report that the activity of the isotope was due solely to x-ray emission following orbital-electron capture and they assigned the activity to Pd¹⁰³. Brosi,⁷ Gunlock and Pool,⁸ and Lindner and Perlman⁹ observed the 17-day Pd¹⁰³ but give no further information on the half-life. An evaluation of these values establishes the half-life of Pd¹⁰³ at 17.0 days with a maximum error of 0.1 or 0.2 of a day.

Literature values for the half-life of Pd¹⁰⁹ vary from 12.7 to 14.1 hours. Early work by Kraus and Cork¹⁰ established a value of 13 hours, but the decay was followed for little more than three half-lives. Seiler¹¹ made chemical separations of Pd¹⁰⁹ from fission product mixtures and followed the decay for about eight halflives. He reports a half-life of 13 hours, but some of his points scatter considerably, and it appears that a somewhat longer half-life line would better represent his data. Perlman and Friedlander,¹² Mock et al.,¹³ and Wäffler and Hirzel¹⁴ report values of 12.7 hours, 14.1

⁶D. E. Mathews and M. L. Pool, Phys. Rev. **72**, 163 (1947). ⁷A. R. Brosi, reported in Oak Ridge National Laboratory Classified Reports Mon N-150 (August, 1946); Mon N-229 (January, 1947).

⁸ H. F. Gunlock and M. L. Pool, Phys. Rev. 74, 1264 (1948).

 ⁹ M. Lindner and I. Perlman, Phys. Rev. 73, 1204 (1948).
 ¹⁰ J. D. Kraus and J. M. Cork, Phys. Rev. 52, 763 (1937).
 ¹¹ J. A. Seiler, *Radiochemical Studies: The Fission Products* (McGraw-Hill Book Company, Inc., New York, 1950), Paper 119, National Nuclear Energy Series, Plutonium Project Record, Val O. Dir, IV. Vol. 9, Div. IV. ¹² M. L. Perlman and G. Friedlander, Phys. Rev. 74, 442

(1948).

¹³ Mock, Waddel, Fagg, and Tobin, Phys. Rev. 74, 1536 (1948).
 ¹⁴ H. Wäffler and O. Hirzel, Helv. Phys. Acta 21, 200 (1948).

² L. E. Brownell *et al.*, Atomic Energy Commission Reports COO-90, COO-91, 1952 (unpublished).

 ⁴ Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 (1947).
 ⁵ Nuclear Data, National Bureau of Standards Circular No. 499 (1950).

 ± 0.3 hours, and 13.1 hours, respectively, for the halflife of Pd¹⁰⁹ obtained in (γ, n) bombardments using a betatron. Recently Bergström et al.15 have made an assignment of the "13-hour" palladium isotope to Pd¹⁰⁹ with a mass spectrograph. Hummel and Hamermesh¹⁶ used a 13-hour half-life value in calculating the activation cross section of Pd¹⁰⁸ with 0.03-Mev neutrons. Neither of the latter two papers, however, add further critical information to the value of the half-life.

There is good agreement among the values reported in the literature for the Ag¹¹¹ half-life. In early work Kraus and Cork¹⁷ and Pool¹⁸ reported a value of 7.5 days for this isotope. Steinberg and Glendenin¹⁹ in their fission product work followed the Ag¹¹¹ activity for 12 half-lives and report a half-life of 7.6 days. Duffield and Knight²⁰ obtained a 7.6-day decay for Ag¹¹¹ produced in betatron bombardments. Recently two other workers investigated the properties of Ag¹¹¹: Storruste²¹ reports a 7.5-day decay for a chemically separated silver fraction of a neutron irradiation of palladium; and Johansson²² reports a 7.5-day or 180 ± 3 hour half-life for Ag¹¹¹ after following a sample for 6 half-lives. An evaluation of these reports establishes the half-life of Ag¹¹¹ at 7.60 days with a maximum error of 0.10 day or less.

 Pd^{107} with a half-life of 7×10^6 years and Pd^{111} with a half-life of 26 minutes will also be formed in a neutron irradiation of palladium metal, but their half-lives are of such nature that they will have negligible effects a week or so following irradiations of one or two weeks duration.

II. EXPERIMENTAL METHODS

A small amount of high purity palladium metal which had been irradiated for a period of about two weeks in the high flux position $(5.4 \times 10^{13} \text{ n/cm}^2/\text{sec})$ of the NRX reactor at Chalk River, Ontario, Canada was partially dissolved in hot nitric acid and the solution subjected to a chemical separation to purify the palladium isotopes for characterization. Since the separation was performed one day after removal of the sample from the reactor, no Pd¹¹¹ remained in the palladium. Spectrographic analysis of this "high purity" palladium metal showed the presence of the following impurities: 0.002 percent Ag, 0.1 percent Au, 0.003 percent Ca, 0.005 percent Cu, 0.02 percent Fe, 0.002 percent Mg, 0.2 percent Pt, 0.2 percent Rh, and 0.01 percent Si.23

¹⁶ V. Hummel and B. Hamermesh, Phys. Rev. 82, 67 (1950).
¹⁷ J. D. Kraus and J. M. Cork, Phys. Rev. 52, 763 (1937).
¹⁸ M. L. Pool, Phys. Rev. 53, 116 (1938).
¹⁹ E. P. Steinberg and L. E. Glendenin, *Radiochemical Studies: The Fission Products* (McGraw-Hill Book Company, Inc., New York, 1952), Paper 123, National Nuclear Energy Series, Plu-tonium Project Record, Vol. 9, Div. IV.
²⁰ R. B. Duffield.and J. D. Knight, Phys. Rev. 75, 1613 (1949).
²¹ A. Storruste, Phys. Rev. 79, 193 (1950).
²² S. Johansson, Phys. Rev. 79, 896 (1950).
²³ Reference 1 gives a list of activities that these contaminants

²³ Reference 1 gives a list of activities that these contaminants would produce upon activation in the reactor.

Silver and palladium carriers were added to the solution of palladium. The silver was then removed by silver chloride precipitations while further decontamination was achieved by precipitating the palladium with dimethylglyoxime in a solution which was 0.5 N in HCl. After three complete cycles, portions of the palladium dimethylglyoxime precipitate were placed on a 1-inch diameter aluminum counting plate. The dried samples were finally sealed with Scotch tape.

The decay of the samples was followed on an endwindow chlorine-quenched argon-filled Geiger-Muller tube (Amperex 100C) with a window of 3.5-mg/cm² thickness used in conjunction with a scale of 128 counting circuit. The counts were automatically recorded with a Streeter-Amet Scientific Recorder modified to record regularly at any desired interval. Coincidence corrections were applied where the counting rates required them.

The decay of the samples is shown in Fig. 2. Two samples of different activity levels were required to follow the decay over the entire range. The decay of the first sample is shown in the first two cycles of the graph, while the second more active sample was used for the remainder of the data. Counts were recorded automatically for the first ten days, but subsequent data were taken manually.

After most of the Pd¹⁰⁹ had decayed out, it was discovered that the chemical separation had not been thorough enough to completely decontaminate from the Ag¹¹¹. (Later measurements showed that about 98 percent of the Ag111 had been eliminated.) Therefore a third sample was followed for about 45 days through one g/cm^2 of beryllium absorber to obtain the decay of the x-rays from the orbital electron capture decay of the Pd¹⁰³ activity.

III. RESULTS AND DISCUSSION

The value for the half-life of Pd¹⁰⁹ was found to be 13.6 ± 0.1 hours over a period of 15 half-lives as shown in Fig. 2. Sample counts were taken every hour for the first eight days, but only every fourth count is shown on

¹⁵ Bergström, Thulin, Svartholm, and Siegbahn, Ark. Fysik 1, 281 (1950). ¹⁶ V. Hummel and B. Hamermesh, Phys. Rev. 82, 67 (1950).

the graph. After ten days all data are presented on the graph. The decay of the samples was followed for more than 60 days with consistent agreement between the resolved lines and the points.

The activity of the samples shown in Fig. 2 was followed down to background to obtain the 17.0-day component. The decay of the third sample, measured through beryllium absorber to eliminate the Ag¹¹¹ betaparticles, gave a 17.0 ± 0.4 day half-life for Pd¹⁰³. As mentioned above, a literature search showed that the half-lives of the Pd¹⁰³ and Ag¹¹¹ were known accurately. Establishment of a 17.0-day line through the low activity points of Pd¹⁰³ to give exactly a 7.60-day line for the Ag¹¹¹ component gave the best resolution of the curve. This procedure is justified in light of the wellestablished literature values for the two half-lives and the chemical separation which eliminated contaminants.

The sum of the 7.60-day line and the 17.0-day line was then subtracted from the gross decay curve to obtain the half-life for Pd^{109} . Because of the internal consistency of all of the decay data the error presented for the half-life of Pd^{109} is the upper limit for the total error of the experimental determination.

The thermal neutron activation cross section for Pd¹⁰⁸ has been measured by Seren *et al.*⁴ and found to be 11.2 barns with a probable error of 20 percent. A linear change in this cross section value to 11.7 barns has been made in view of the change in the Pd¹⁰⁹ half-life value from 13.0 to 13.6 days. In the present work the neutron activation cross section for Pd¹⁰² with pile neutrons (neutrons from the high flux position of the Chalk River NRX reactor) was found to be 4.8 barns by resolution of Fig. 2 using the half-lives of 17.0 days, 7.60 days, and 13.6 hours, and knowing the total time and flux of the irradiation. This value is based on the above thermal neutron cross section of 11.7 barns for Pd¹⁰⁸.

Several assumptions were made in arriving at this cross-section value. First it was assumed that the contribution to the Pd¹⁰⁸ and Pd¹⁰² cross sections by resonance neutron activation is either negligible or equal for the two isotopes. Resonance absorption peaks which may be assigned to Pd¹⁰⁸ have been reported recently²⁴

for palladium and may invalidate this assumption to some extent. Since the Pd¹⁰³ decays by orbital electron capture the relative counting efficiencies of the *K* x-rays of rhodium and the beta-particles of Pd¹⁰⁹ must be evaluated. The ratio of the counting efficiencies of the Pd¹⁰⁹ beta-particles to the rhodium x-rays was found to be about 87:1 by calibrations involving counting of the Rh^{103m} conversion electron in an internal counter and counting the Pd¹⁰³ x-ray in the Amperex chlorinequenched tube.²⁵

The error of the cross-section value of Pd^{102} is dependent on the ± 20 percent probable error of the value of Seren *et al.*⁴ The decay data presented in this paper establish the ratio of the Pd^{108} : Pd^{102} cross sections within an error of about 5 percent, if the two assumptions listed above are completely valid. Note, however, that any change in the established value of the Pd^{108} activation cross section or any corrections involving resonance activation contributions to either the Pd^{102} or Pd^{108} cross sections or more accurate determinations of the relative counting efficiencies of the Pd^{109} beta-particles and the rhodium x-rays in chlorine-quenched GM tubes would mean a linear change in the cross-section value of Pd^{102} .

The establishment of the half-life of Pd^{109} as 13.6 ± 0.1 hours may require the re-evaluation of certain yield and cross-section data based on a 13.0-hour half-life. For example the Pd^{109} fission yield reported by Seiler¹¹ may be changed somewhat when the best 13.6-hour line is drawn through his experimental points. Indeed, as noted previously, even the 11.2-barn activation cross section for Pd^{108} is changed to 11.7 barns when the new half-life value is used.

It is a pleasure to acknowledge the assistance of Mr. C. H. Hetherington of Atomic Energy of Canada Limited in procuring the source irradiation and the kindness of Professor L. E. Brownell, Director of the Fission Products Laboratory of the University of Michigan in making available to the author a small portion of the palladium source. This work was made possible by a Summer Faculty Research Fellowship sponsored by the Michigan Memorial-Phoenix Project.

²⁴ D. J. Hughes *et al.*, Atomic Energy Commission Report AECU-2040, 1952 (unpublished).

²⁵ I am grateful to Mr. A. H. Emmons of the Radiological Safety Department of the University of Michigan for making available his counting data to help in determining these counting efficiencies.