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The correction to the Bethe-Bloch formula for the stopping power of fast heavy particles, due to virtual
photons and the emission of real photons, has been computed using the Born approximation for the extreme
relativistic case. The fractional correction increases with increasing energy of the incident particle. It is
approximately 1 percent when the kinetic energy of the particle is 100 times its rest energy.

ECENTLY Jauch! has given an estimate for the
correction, due to radiation, to the energy loss of
heavy particles passing through matter. This estimate
was based upon Schwinger’s? correction to the elastic
cross section due to the emission and re-absorption of
virtual photons and the emission of soft real photons.

The purpose of this paper is to present a more
complete calculation of the radiative correction which
includes also the emission of real photons without
restriction as to their energy. The results show that
this is a positive correction which increases as the
incident energy increases, in the relativistic region, and
is quite small even at very high energy. Because of this,
the more complicated low energy region is not treated
here, and the calculation .assumes from the start that
" we have heavy particles bombarding matter with a
velocity v= B¢ very close to that of light.

We shall find the collision loss per unit path length
by taking the energy loss per collision, multiplying it
by the probability of such a collision, and integrating
over all possible collisions. The probability per unit
path length of a collision is #o, where » is the number of
electrons per unit volume and ¢ is the differential
scattering cross section. Since the Bethe-Heitler
formula gives the differential bremsstrahlung cross
section under the assumption that the scattering center
is very massive compared to the particle that is scat-
tered, it is convenient to express the energy loss per
collision (in the laboratory system) in terms of quanti-
ties proper to the Lorentz frame in which the heavy
particle is at rest. A Lorentz transformation will then
give the energy loss in the laboratory frame:

AE'=—~[(§—Mc*)—Byg cosy]
~vq[ B cosy—3q/Mc”].

Here, &, ¢, and ¢ are the recoil energy, momentum, and
direction, respectively, in the rest frame of the incident
heavy particle of mass M, and v?=1/(1—f?).

Let Ey=E-+k, and
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where Eo, po are the energy and momentum (expressed

1 J. M. Jauch, Phys. Rev. 85, 951 (1952).
2 J. Schwinger, Phys. Rev. 75, 899 (1949).

in energy units) of the incident electron, E, p those of
the scattered electron, % the energy of the emitted
photon, 6, the angle between photon and incident
electron, @ the angle between photon and scattered
electron, and ¢ the angle between planes in which 6,
and 6 lie. Then we can write the energy loss,
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We can shorten our integration by splitting the energy
loss into two parts:
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For the first part we use Sommerfeld’s® integration,
which gives the differential cross section in terms of &
and ¢, and for the second part we use Bethe’s! inte-
gration.

Sommerfeld® gives the differential bremsstrahlung
cross section for Coulomb scattering in terms of £ and ;.
However, because of the symmetry of the Bethe-
Heitler formula, we can write the differential cross
section in terms of & and 6 merely by exchanging the
symbols with and without subscript zero. Doing this
and using our notation, we obtain
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If Eq. (3) is multiplied by (v/po)k(E—p cost), the
integral of the expression thus obtained converges.
After the somewhat tedious term-by-term integration,
we obtain as the highest term in the development in

3 A. Sommerfeld, Atombau und Spektrallinien (Friedr. Vieweg
and Son, Braunschweig, 1939), p. 551.
4H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 524 (1934).
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To evaluate the contribution of the first term of (2)
we can use Bethe’s* expression for the differential cross
section. For po— p— k<Kg<E, this is

162%* dk p dg i (Eo E) q sinh™(q/2u)
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Multiplying (5) by (v¢*)/(2pe) and integrating over k
from k= knin to k= E, and over ¢ from ¢=0 to ¢=Q>pu
(since values of ¢ of the order po—p—% do not con-
tribute in this approximation), we get
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However, Bethe’s formula is not valid for ¢ com-
parable in magnitude to E,. For those values of ¢ we
are going to use formulas derived by Schiff.® He shows
that for large recoil momenta we can divide the differ-
ential cross section into two parts: one due to the
emission of photons close to the direction of the incident
electron, another due to the emission of photons close
to the direction of the scattered electron. If we take
his formulas (2) and (3), make the correction substi-
tuting [log(2E, cosy/u)—31] for log(Ey/u), and then
substitute ¢/2E and ¢/2E, for cosy in (2) and (3),
respectlvely, we find that the dlﬁerentlal cross section
for large ¢ is the sum of
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where the first expression is to be taken only if ¢<2E,
and the second is valid up to ¢=2E,. Multiplying (7)
by v¢%/2p,, integrating over g and over k(kmin< k< Ey),
and neglecting terms that vanish as knin/E, or Q/E,

3 L. I. Schiff, Phys. Rev. 87, 750 (1952) ; in Eq. (4) and the two

preceding expressions of this paper, a factor E¢? is missing in the
denominator.

TABLE 1. Fractional radiative correction to the
Bethe-Block formula.

¥ 10 20 50 100
A(%) 0.27 0.45 0.75 0.95 if Q=n
A%) 0.19 0.37 0.66 0.88 if Q=2E,

vanish, we get
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We have to account also for energy loss connected

with the emission of virtual photons and of soft real

photons. In this case the energy loss is essentially that

of the elastic collision

&'=2upy sin’39, ©)

where ¢ is the angle of the scattered electron (measured
in the meson rest system).

The cross section of such a collision is given by
Schwinger.? In the extremely relativistic case his
formula (1) becomes
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where A= (po/mc?) sinyd= v sind. ¢(¢) is given in the
form of a definite integral in reference 2. The additive
correction to the differential scattering cross section is
— 0 multiplied by the elastic cross section due to
Coulomb scattering,$

oo(d) = (wZ%/y2u?) cot?iddd. (1)

Multiplying —é with ¢¢ and A&’ and integrating over
¢, we obtain the energy loss due to nearly elastic
collisions,
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In performing this integration the most troublesome
term is that involving ¢; it is evaluated exactly by
changing the order of the integrations over ¢ and over
the variable x of reference 2.
Adding (4), (6), (8), and (12), the division &umin
between soft and hard photons cancels out, as it should,
8N. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions (Oxford University Press, London, 1949), second
edition, p. 80.
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and we get for the energy loss due to bremsstrahlung
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Since energy lost in elastic collisions is given by the
Bethe-Bloch formula,?

dw  4xZ%*

dx uB?

we get for the fractional radiative correction for an
infinitely heavy particle :

1
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—7.26 log2y—1.54 log(Q/1)+6.18]. (15)

"W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1944), second edition, p. 218.
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Unfortunately, the division Q between small and large
momenta does not quite cancel out of the final formula,
but A depends only logarithmically on Q so that it
seems to be reasonable to expect that a reliable result
would be obtained by choosing Q somewhere between
the extremes u<Q<2E, However, since the Bethe-
Heitler formula does not take into account the recoil
of the scattering center, formula (15) may be in error
when my is larger than or of the order of M.

Taking collisions of pi-mesons (M = 270m) with argon
atoms as an example, we obtain the values in Table I
for the percent radiative correction. The correction is
positive, as one would expect, since mesons are losing
some additional energy to radiation. Also, the correction
is small for mesons of available energy.

Radiation observed in the laboratory should not
show a marked anisotropy and the maximum energy of
the emitted photons should be of the order of 1 Mev,
except for a few hard photons close to the direction of
the incident heavy particle. '

The author is indebted to Professor L. I. Schiff for
suggesting this problem and for his continued interest
and advice throughout the solution.
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The radiations of Pu?*3 were studied with beta- and gamma-scintillation spectrometers alone and in coin-
cidence. An incomplete disintegration scheme is deduced which leads to a total beta-disintegration energy
of 560 kev. A half-life of 4.9840.02 hours was observed.

INTRODUCTION

HE radiations of Pu®® were first studied' by
absorption measurements which indicated a
maximum beta-energy of 0.5 Mev. O’Kelley and Orth?
reported a preliminary value of 0.39 Mev for the
maximum beta-energy and gammas of 0.095 and 0.12
Mev. The purpose of this research was to determine the
total decay energy of Pu??. Therefore, in addition to
examining the beta- and gamma-spectra, beta-gamma
and gamma-gamma coincidence measurements were
undertaken.

SAMPLE PREPARATION

Samples of a nitrate solution of plutonium enriched
in Pu*? were evaporated to dryness in a quartz tube

1 Sullivan, Pyle, Studier, Fields, and Mannmg, Phys. Rev. 83,
1267 (1951).

2 G. D. O’Kelley and D. A. Orth, quoted by Thompson, Street,
Ghiorso, and Reynolds, Phys. Rev. 84, 165 (1951).

and irradiated in the thimble of the Argonne Heavy
Water Reactor for approximately 15 hours.

Immediately after irradiation the plutonium was
purified from all extraneous activity with a resin column,
a series of precipitations, and solvent extractions.
Several irradiations were made to complete the experi-
ments reported.

APPARATUS

Scintillation spectrometers were employed for the
measurement of the beta- and gamma-ray spectra.
Thallium-activated sodium iodide crystals 1} inches in
diameter and % inch thick were used for gamma-detec-
tion, and an anthracene crystal of the same diameter
and } inch thick was used for the beta-counter. The
sodium iodide crystals were sealed in cylindrical 17 ST
aluminum cups turned to a thickness of 0.013 inch on
the end facing the sample and closed on the other end
with a Pyrex window. A similar assembly was used for



