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Slater's result is obtained from Eq. (4) by making the further
approximation that all the E;—Eo, are equal.

Equation (4) is being applied to the quadrivalent state of the
carbon atom.

1 J. C. Slater, Phys. Rev. Sl, 385 (1951).
2 Actually the potentials averaged differ from the Hartree-Fock potentials

in that they are evaluated using Slater wave functions.
~ Hartree, Proc. Roy. Soc. (London) 141, 282 (1933}.
4 After replacing Ea by Bo'. the summations over a are allowed to

include a =i. This implies adding to both sides of the equation terms which
would be equal if the Fock exchange potential did not differ from Eq. (4).
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""N a letter under the above title Herman' has made several.. references to a paper of mine' in a way likely to cause misun-
derstanding. He classed the method used as a "tight binding
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LATER' has pointed out the advantage of an approximate
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solution of the many-electron proMem in which all the elec-
trons move in the same potential field. He gave an ed hoc formula
for constructing such a potential by averaging the Hartree-Fock
potentials' of the various electrons in a certain way. For the
exchange part of the potential, he gave
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Slater's work suggests the following variational problem. Find

that potential, the same for all the electrons, such that when it,
and consequently the wave functions, are given a small variation,
the energy of the system remains stationary. A Slater determinant
constructed from the one-electron wave functions is used as the
wave function of the system.

The potential which fulfills this prescription turns out to be
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where the exchange potential W(r) is the solution of the integral
equation
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Here V„(r) represents the external field acting on the electrons.
The P's are the solutions of the Schrodinger equation:

-k '4p( )+ ( )4p( ) = p4p( ). (3)

Greek subscripts refer to all bound solutions of Eq. (3). Roman
subscripts refer to occupied levels only. Hartree units' are used
throughout.

The integral equation (2) can be solved approximately if E
is replaced by a suitable average value Eo, . The approximate
solution' is

approximation" and suggested that it was inappropriate for
valence bands. I should like to make clear that the method of
that paper is an equivalent orbital one, first applied to the elec-
tronic structure of a solid in that paper, and has no connection,
other than an unfortunate superficial resemblance, with any
tight binding method.

The equivalent orbital method assumes that the wave function
for the crystal is a determinant of orbitals. These orbitals are
taken as the best possible ones. The energy contours are then
derived using only the transformation properties of such a wave
function and the symmetry of the diamond lattice. The second
assumption, that only first neighbor equivalent orbitals interact,
is not essential to the argument. It can be justified theoretically
and empirically but could be relaxed if necessary. The generality
of the argument means that the results apply equally to diamond,
silicon, or germanium. The difference between these lies in the
values of the parameters u and b and in the presence of extra in-
ner shells.

This equivalent orbital method applies only to the valence
bands of diamond, because it is concerned only with the orbitals
occupied in the ground state. It says nothing about the conduction
bands and, indeed, without some further assumption, these bands
cannot even be defined.

In practice all other methods of treating the electronic structure
of solids make assumptions like those above and several others in
addition. Other methods are analytical, but this is algebraic and
so involves no approximate expansions of the orbitals, whether as
atomic orbitals or plane waves, no approximate core or exchange
potentials, and no difficulties with overlap integrals or boundary
conditions.

1F. Herman, Phys. Rev. 88, 1210 (1952).
2 G. G. Hall, Phil. Mag. 43, 338 (1952).
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PARADOX appears in Evjen's method of evaluating the
Madelung constant for the cesium chloride lattice. ' Krishnan

and Roy discuss it, amending the choice of unit cell, and giving
a general condition for the cell to satisfy. The implication is that
the method otherwise fails. Evjen's own argument is no doubt
wrong, but it is easily corrected, and the method is actually
valid without restriction.

hen only finite arrays of charges are considered at each stage,
all quantities evaluated are defined by finite sums over the
charges, in which we are free to rearrange the terms. In principle,
a, definite bounding surface exists before such rearrangement, but
the principle need not always be explicit. Planes, unit cells, and
subcells have all been used to group the charges during summation
(Sherman3 and Frank4 give detailed references). However, any
convenient grouping will in general leave a remainder, of incom-
plete groups, at the surface. This residual layer may change if
the grouping alters, but will prove negligible in determining the
energy of a complete group, provided the groups have no dipole
moment, and we do not choose one near the surface. The internal
potential is, however, sensitive to surface structure, so that the
separate contributions of each ion may be changed, although their
sum will not. This resolves the paradox in Evjen's paper. '

He groups the charges by unit cells (one pair of unlike charges
in each), choosing a cube with one charge at the center and the
other shared by the eight corners. The array is also a cube,
consisting of n' complete cells, and having a charge of given sign
at the center, where Evjen determines the potential. As n is odd
or even, this charge lies at the center or the corner of a cell: the
outermost charges alternate correspondingly in sign, and the
potential is found to oscillate between two separately convergent


