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where k is the center-of-mass wave number of the
deuteron, s is the spin of the deuteron, i is the spin of
the He' nucleus, and J is the angular momentum of the
compound. state. The expression

r„r,/(r„+ r.)'
has the usual meaning and is less than or equal to ~~

for all possible choices of F„and Fd. In the present
case, this reduces to

6k'o/ s~r2J+1.
The measured maximum value of the expression 6k'o/ sr

was 2.74&0.49, where the quoted error includes the
estimated uncertainties in both energy and cross section.
The inequality cannot be satisfied for J= ~ and can be
satis6ed for J= ~3. Thus, it appears that the compound
state of I.i' has total angular momentum ~. Conser-
vation of angular momentum and parity show that
this must be a Dg state. This is in agreement with the

assignment of Dg to the state of He' formed in the
mirror reaction H'(d, l)He'. "

An analysis of the data at energies above the reso-
nance has not yet been attempted. It may be noted
that at the highest energy reached in this experiment,
there is no evidence of the double minimum observed
in the angular distribution at 10.2 Mev by Allred. 4
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A variational technique is developed to investigate the low-lying energy levels of a conduction electron
in a polar crystal. Because of the strong interaction between the electron and the longitudinal optical mode
of the lattice vibrations, perturbation-theoretic methods are inapplicable. Our variational technique, which
is closely related to the "intermediate coupling" method introduced by Toinonaga, is equivalent to a simple
canonical transformation. The use of this transformation enables us to obtain the wave functions and
energy levels quite simply. Because the recoil of the electron introduces a correlation between the emission
of successive virtual phonons by the electron, our approximation, in which this correlation is neglected,
breaks down for very strong electron-phonon coupling. The validity of our approximation is investigated
and corrections are found to be small for coupling strengths occurring in typical polar crystals,

I. INTRODUCTION

HEN an electron in a polar crystal is excited to
a low-lying energy level in the conduction band,

it interacts strongly with the longitudinal optical mode
of the lattice vibrations. More precisely, as the electron
moves through the crystal, its Coulomb 6eld displaces
the positive and negative ions with respect to one
another; the resultant ionic polarization will, in turn,
considerably modify the motion of the electron. We
may picture the electron as moving through the crystal
accompanied by a cloud of phonons (i.e., the associated
waves of ionic polarization); the electron plus its
associated phonon cloud is known as a polaron.

The theory of the polaron is of more than usual
interest because of the mathematical diKculties in-
herent in any "strong coupling" problem. The dimen-
sionless parameter 0., which describes the strength of
the electron-phonon coupling, is of the order of magni-

e Now at Institute for Advanced Study, Princeton, New Jersey.

tude of 3-6 for typical polar crystals. This may be
contrasted to the electron-photon coupling constant
which is e'/lee= I/137.

The reduction in the electron energy as g, consequence
of its interac'tion with the lattice was first computed by
Pekar, ' and by Markham and Seitz, ' using the adiabatic
approximation. Frohlich, Pelzer, and Zienau' calculated
this energy and the effective mass of the polaron using
a one-phonon approximation, which is appropriate
provided the electron-lattice coupling is sufficiently
weak. However, in most cases of interest, the interaction
is so strong that the method of FPZ breaks down; on
the other hand, the signi6cant electronic frequencies are
comparable to the vibrational frequency of the ionic
waves, so that the adiabatic approximation is not
applicable.

' S. Pekar, J. Phys. (U.S.S.R.) 10; 341 (1946).
s J. Markham and F. Seitz, Phys. Rev. .74, 1014 (1948).
e Frohlich, Pelzer, and Zienau, Phil. Mag. 41, 221 (1950),

hereinafter referred to as FPZ.
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Our approach to this problem is based on a variational
technique which does not suGer from either of the
above defects. 4 Our essential assumption, following a
method Grst introduced by Tomonaga' in treating
meson-theoretic problems, is that there is no correlation
in the emission of successive virtual phonons by the
electron. This assumption appears to have considerable
validity for intermediate values of the coupling constant
(n 4) and for low lyin-g energy states of the system
(P'/2m((k&o, where P is the total momentum of the
system, es is the mass of the electron, and ~ is the
frequency of lattice oscillations). However, it seems
that our method breaks down in the limit of inter-
mediate momenta (P'/2m L&) and very strong
coupling. The domain of physical applicability of our
method is therefore somewhat restricted.

II. METHOD OF CALCULATION

We adopt the Hamiltonian and notation of Frohlich,
Pelzer, and Zienau, in which

1 (3f(v) & ( 1

I X~+il
V2 ( k & &kM(ul

(3a)

As pointed out by FPZ, the interaction between the
electron and the polarization owing to the bound elec-
trons of the lattice is independent of the electron
velocity, and hence would lead only to a constant term
in the Hamiltonian, which we may neglect here.

(3) Finally, it is clear that the polarization associated
with the acoustic mode of the lattice oscillations, in
which neighboring ions vibrate in phase, will be small,
so that we need only consider the long wavelength
longitudinal optical mode, 6 in which alternate ions
vibrate out of phase. The frequency of this mode is
essentially independent of wavelength in the range of
interest, and is given by ce=&ui(e/n )&, where a&i is the
experimentally known "reststrahl" frequency for long
transverse waves. '

We Gnd it convenient to express the Hamiltonian in
terms of a new set of variables, c~ and a~*, such that

H=pi —
(

M(o'Xi, '+
2E 3IJ

1 (cV~y '* ) 1
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where cv is the frequency of the longitudinal optical
vibrational mode of the lattice oscillation, XI, and I"~
are canonical variables, i.e., LXI„VI,]= ki8i, q, m is the
effective mass of the electron (as determined by its
interaction with the periodic lattice field), r and p are
the position and momentum operators of the electron,
V is the volume of the crystal, and M is given by

H=pi ai,*aikido

+Pi{Vs,ai,e'"'+Vi*ai, *e ""')+'p'/2m, (4)

where we have neglected a zero-point energy P& -', k~,
and where

kcoz ( k ) ' (4irnp '

k E2mcol E V )

1]1 li
M~'= —

(
———

f

4m ke' e3
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Here, n and e are the optical index of refraction and the
static dielectric constant, respectively. The three terms
in this Hamiltonian correspond to the kinetic energy of
the electron, the Geld energy of the phonons, and a
term describing the electron-phonon interaction. In
using this Hamiltonian we make the following assump-
tions:

(1) The dielectric may be treated as a continuum.
This is a legitimate approximation since the phonons
which interact strongly with the electron have a wave-
length long compared to the lattice distance, and, as we
shall see, the polaron extends over many lattice dis-
tances.

(2) The choice of M in Eq. (2) reflects the fact that
we consider here only the interaction between the
electron and the polarization due to the ionic motion.

' We have been informed by Professor Frohlich that M. Gurari
has developed a method of approach to this problem which is
substantially equivalent to ours.

~ S. Tomonaga, Prog. Theoret. Phys. 2, 6 (1947).

The dimensionless number o. plays the role of a coupling
constant for the lattice-electron interaction. uj, and aI,*
may be interpreted as phonon destruction and creation
operators, since La&, a&*j=8». The wave equation
corresponding to (4) is then HC =BC.

We shall furthermore find it convenient to take
advantage of the fact that the total momentum of our
system is a constant of the motion. The total momentum
operator is

P.„=P kka a+p,
and, of course, commutes with the Hamiltonian, (4).
It is, therefore, possible to transform to a representation
in which P,~ becomes, a "c"number, and in which the
Hamiltonian no longer contains the electron coordi-
nates. The unitary transformation required is 4 =Sf,

~As is well known, any transverse polarization wave has zero
divergence and therefore gives rise to no "bound charge. "

For the derivation of this relation, see H. Frohlich, Theory of
Dielectrics (Clarendon Press, Oxford, 1949).
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where
S=exp/i/h(P —Ps as*ask) r].

We find

P.,—+S—'P.,S= P+ p,

p~S pS= P —Ps Itkas as+ p,

ak~S—'akS =ake-'"'

so that

4=UA, (10)

H~Se=S 'HS=+-s hoias*as+Ps(Vsas+ Vs*as*)

+(P —Ps as'aA&)'/2~, (9)

provided we set p=0. The wave equation is now
Kg= EP.

Our problem is to calculate for a given momentum I'
the lowest eigenvalue E(P) of this Hamiltonian. We
shall here confine our attention to the low-lying energy
levels of the electron, for which E(P) may be well

represented by the 6rst two terms of a power series
expansion in P. Thus E(P)=Eo+PPo/2+. 0(P4)
+.. . The effective mass of the polaron is then P '.

We use a variational method of calculation, which we
will show is equivalent to a simple canonical transfor-
mation. We choose for our trial wave function

wave function for that part of the state containing e
phonons is a simple product wave function; further-
more, the form of this wave function f(k) is independent
of s.

I et us consider a representation in which the
Schrodinger function P of our system is described by a
set of Schrodinger functions corresponding respectively
to states of no phonons, one phonon, two phonons, etc.
Let (kiks .k /P). be the probability amplitude of
finding n phonons of momenta ki, ks k„respectively
in the phonon field, under the assumption that these
phonons are distinguishable. ' The total probability for
finding e phonons in the 6eld around the electron is
then given by

P(~)=ZZ . Z(ki "k-/0)'.
kI k2 ' kn

(13)

The Tomonaga approximation consists in assuming
that (ki k„/P) has the following form:

(ki k„/P) = f(k,) f(k„)c„.

If the f(k,) are normalized, then P(N) =
~
c ~'. The form

of f(k) and the constants c„are determined by means
of a variational calculation in which the total energy of
the system is minimized.

It is easily verified that the use of the state vector
(10) is equivalent to setting

where fo is the eigenstate of the unperturbed Hamil-
tonian with no phonons present, i.e., the "free" vacuum
state. Specifically, fo is defined by

1''' n

exp ——', s (k) '
(») (ks) f(k-), (15)

astro =0, (4o, 4o) =1,

U= exp{Ps(as*f(k) —akf*(k))},

(11a)

(11b)
whence

where f(k) will subsequently be chosen to minimize the
energy. It is clear that U is a unitary operator, so that
P is normalized. Furthermore, viewed as a unitary
transformation, U is a displacement operator on ak and
ak*, since

U 'ak*U=ak*+ f*(k), U 'aI, U=as+ f(k) (12.)

Our variational calculation, which is based on the
use of the state vector P )Eq. (10)$ is closely related to
the approximation introduced by Tomonaga in his
treatment of the coupling between mesons and nucleons,
which was subsequently named the "intermediate
coupling" approximation.

The Tomonaga approximation consists in a varia-
tional technique based on the physical assumptioa. that
successive virtual phonons (mesons) in the field around
the electron (nucleon) are emitted independently, and
hence that there is no correlation (i.e., interaction)
between diRerent phonons. The mathematical expres-
sion of this assumption is that all phonons associated
with the ground state of the electron are emitted into
the same single phonon state f(k), so that the Fock

P(rt) =—expL —Ps) f(k) ('j(go[ f(k) ('}" (16)
nf

Thus we see that our form (15) for (ki k„/it) is not
the most general Tomonaga form, since it represents L

particular choice of the c„ in Eq. (14). However, it may
be shown that up to and including terms of order I" in
our power series expansion of the energy, no error over
and above that of the Tomonaga approximation itself
is introduced by our more special assumption, (15).
For this reason our calculation of the eRective mass of
the polaron will be equivalent to that of Lee and Pines
who used the Tomonaga approximation. '

We seek to miriimize the expression for the energy,

E= (P, Hf) = (Po, U 'H Ufo). (17)

In virtue of (12),

U 'HU=Ho+Hi,

'The correct probability for 6nding n phonons of momenta
k1, k2. - k is Z„(k» . k /p)' where Z„denotes a sum over all
permutations of di6erent k's.

' T. B.Lee and D. Pines, Phys. Rev. 88, 960 (1952).
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with

k2

+
2m

kPh h'

++&If(k) I' ho) —— +—h'
m 2m

+—gg ap*apk [Pg I
f(k') I'k']

hk P
+Qa~s* Va*+f(k) h" ——

m

k2
+h'—

2m

(P —Pi ag*apkh)'
+Z "(V"f(k)+V'*f(k'))

2

qP=PpI f(k) I'hk.

Equation (23) then becomes

(24)

f(k). On comparing (23) and (19) we see that the
linear terms (in aq and aq*) of (19) are identically zero
provided (23) is satisfied, and hence that H, is diagonal
in a representation in which a~ aA: is diagonal. Thus,
our variational calculation is completely equivalent to
the use of (19) as our total Hamiltonian, provided f(k)
satisfies (23). Since Ho+Hi differs from H by a unitary
transformation, we can obtain an estimate of the
accuracy of our variational procedure by a simple
perturbation-theoretic estimate of the eRect of Hy.

%e now seek to evaluate the energy of the lowest
state of our system, which is given by Eq. (21), with

f(k) satisfying Eq. (23). If we note that the only
preferred direction in this problem is that of P, we may
conveniently introduce the parameter q de6ned by

k2

A.
"

f(k) = —Vp*
k P h'k'

(1-~)+ —, (»)
m 2m

k. P h'
+Qs&a V"+ f*(k) her h-+h—'

2m
and we obtain the following ™plicitequation for g.

52

+ — (2" If(k')I'k') +Ha's*'6", (19)

gP=gpI f(k) I'hk

=g,
I
V, I2hk

kP hh-
h(u —h— (1—q)+ . (26)

m 2m

kk'
Hi ——Q "y h' {aflak f*(k)f*(k')

2m

+2up*ag f(k) f*(k')+u"*up *f(k)f(k'))

Using Eq. (5), and transforming the summation in (26)
to an integration, "we find

n (2m"h) *
q

(q —1)'g= —
I I

sin 'q ——,(27)
2( P2)

+Pai h' {~i*~a~if(k')* where

Using Eq. (11), we see that

q=(g —1)(P'/2m(uh) l. (28)

We can also obtain the energy in closed form. It turns
out to be

E=(P2/2m)(1 —rP) (mph/q) sin 'q—. (29)P2
+Z "{V"f(k)+ V"*f*(k))+ {2"If(k) I'k)'

2m 2m

+P&If(k) I' h"

We minimize (21) by setting

8E/~ f(k) = RE/~ f*(k)=0. (22)

As long as P'/2m is sufficiently small so that no
spontaneous emission of phonons can occur (roughly

kP h' P'/2m&h&u), Eq. (27) can be solved numerically for a
h+ h2 (21) given value of P'/2m, and hence we may obtain E(P').

m 2m As mentioned earlier, we shall here be content to
calculate E(P') to first order in an expansion in powers
of P'/2mh&u. On doing this, one readily obtains:

%e And

kP h'
Vp+ f*(k) hem ———h+ h'

m 2m

+—[Pg I
f(k')I'k'] k =0, (23)

and

+O(P'/2m(oh)+
1+n/6

(30)

+( '/ )L /(+6 )]
+O(P'/2m&eh)'ha)+ . (31)

m "In carrying out the k integrations we can extend our limits
to ~~, since the contribution to these integrals falls o6 quite

and the appropriate complex conjugate equation for sharply with increasing k.
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III. DISCUSSION OF RESULTS

For the slow electrons we have considered, the inter-
action therefore introduces two effects: (1) All electronic
energy levels are reduced by nkco. (2) The motion of
the polaron is that of a free particle with an eGective
mass m, ii= rN(1+n/6). For higher momenta it is clear
that the eGective mass becomes P-dependent; we have
here given only the P=O contribution.

It is of some interest to calculate the mean number of
phonons in the cloud around the electron. This is
given by

(37) to an integral,

p(r, r,) = —e(ka)/2 V) (1/e' —1/e) 2m/k' dk/(2s )'

eik ~ (r—re)+e—ik ~ (r—re)

X (3~)
k'+ (2m(u/k) —2(k P/k) (1—g)

Tbe integration in (39) is straightforward, and yields

p(r, r.)

(32)
A'(a ( 1 1 ) (2m) ( 1 ) ((1—g)= —e————, —cos
2 (I' e& E k') (2m) 0 k

where we have used Eqs. (10)-(12).Hence, by Eq. (25),

E= —,
' n{(1+[1/(1+ 6 n)'jP'/4mk~)

+O(P4/rN'k'(o'). (33)

Another physical quantity of interest is the ionic
polarization charge density induced by the electron.
In order to calculate this, we note that the interaction
term in our Hamiltonian [Eq. (1)j is just the potential
energy of the electron in the ionic polarization ield. ' .

The coe%cient of —e in this term is therefore the
operator which represents the electrostatic potential at
a point r. The mean value of this potential when the
electron is at some point r, is given by

w(r r )= —(1/e)(0'" [2
+ Vk*ak*e 'k'jf. .), (34)

where

f .= [exp{ (z/k) r, (P —P„a„*a„kk)j
X[exp{g,a *f(lr) —a,f'(ir)}]p,.

[See Eq. (8) and Eq. (10).j The ionic polarization
charge density at r induced by an electron at r, is thus

p(r, r,) = —(1/4n') V2ip(r, r,) = —(1/4m', ) (Pr„Pk k2

X (V&a&eik r+ V&oa&oe ik r)P„) —
(36)

Using (35) we find

p(r, r,) = —(1/4s', )Pz k'{V&f(k)e'""
+V Sf'(k)e—ik ~ (r—r, )}

[eh&a/2 —V5 (1/e' 1/e)—
X+~{1/[hid —k(k P/m) (1—g)+ (k'/2m) k'j

X {eik r—re+e —ik (r—r,)} (37)

We may immediately calculate the total induced charge,

exp[ —{2m&a/k —(1 —q)'P'/k'} '*

~

r —r.
~ ]

(40)
fr —r,

t

This induced charge distribution is Aattened in the
forward and backward directions (with respect to the
motion of the polaron). Its mean extension is just
(k/2m'&)*'. This may be considered a good measure of
the extension of the polaron. As pointed out by FPZ,
since (k/2m')& is large with respect to the lattice
distance, we are justi6ed in using the continuum
approximation in our Hamiltonian. '

Comparing our energy, Eq. (31) with that obtained
by FPZ, we see that in the limit of weak coupling 0.(&1,
our results reduce to those of FPZ, and that for larger
values of 0., our result always gives a lower energy. For
a typical polar crystal, NaC1, o.=5.2," co=4.8)&10"
sec ', so that we 6nd Eo———O.&or= —0.16 ev, and
m ff—1 .9m. In this case FPZ, and also Pekar, obtain
Eo= —0.09 ev.

Pekar, "and Landau and Pekar, "using the adiabatic
approximation, have found an effective mass for the
polaron (in NaCl) of 17m." However, as might be
suspected from Pekar's much higher value of Eo, this
high effective mass is due to the lack of applicability of
the adiabatic approximation. The condition of validity
of the adiabatic approximation is essentially that the
frequencies of interest in the problem shall be large
compared to the ionic frequency ~. This is, however,
not the case for the polarons we have been considering.
A convenient measure of the electronic frequencies of
interest is provided by the mean kinetic energy of the
electron. For P=O, one 6nds

( (ak*akkk)' k'k' o.IE(o
(7')"=I & Zk- & I=Zklf(&) I'

2m 2m 2

q= drp(r, r,) = e(1/n2 —1/e), —
aJ

(38)

which is the classically expected result for the induced
ionic charge on the inner surface of a dielectric medium
surrounding a point charge e.

The charge density is, on changing the summation in

Clearly, there is no external mechanism, such as exists in
a molecule, which can provide the electron with an
appreciably higher frequency than or. The validity of
the adiabatic approach is therefore roughly determined

"Here we have taken m to be the mass of a free electron.
'~ S. Pekar, J. Exptl. Theor. Phys. 19, 796 (1949)."L.Landau and S. Pekar, J.Kxptl. Theor. Phys. 18, 419 (1948).
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by (n/2) &, which is never as large as 2 for polar crystals.
Whether the adiabatic approximation applies in princi-
ple to the case of extremely large coupling is not clear.

IV. VALIDITY OF OUR METHOD

As is well known, in the limit of infinite electron
mass, an exact solution is possible, and follows, in fact,
from our canonical transformation. In the case of 6nite
electron mass, the electron's recoil kinetic energy plays
an essential role, since it introduces a correlation be-
tween the emission of successive virtual phonons. This
correlation will tend to limit the validity of our, method.

Furthermore, since the Hamiltonian [Eq. (4)j is a
function of only four parameters a, P, &co, and m, of
which n is dimensionless, and P /m and h&u are energies,
the energy of the system when expanded in powers of
P' can only be of the form

hg fo(n)+P'/2m f,(n)+ (P2/2m)'(1/bra) f2(~)+ .

Therefore, in estimating corrections to our results for

fo(n) and f~(n), we have no dimensional arguments to
fall back upon. Our hope is that our variational method
has taken into account, to a higher extent, than might

be obvious, the e8ect of the correlations introduced by
electron recoil, although our wave function is chosen
under the assumption of no correlation. This situation
is quite analogous to that obtaining in the use of the
Hartree-Pock wave functions in the treatment of
atomic problems; i.e., although the wave function
appears to contain no correlation between diGerent
particles (phonons), an "average" effect of the correla-
tion energy is taken into account in the choice of that
wave function which minimizes the energy.

The validity of our calculation may best be estimated
by calculating the lowest order correction to the energy
resulting from-that part of the Hamiltonian which we
have neglected, vis. H~ [Eq. (20)7. The lowest non-
vanishing order in which II, a6'ects the energy is the
second. The energy shift, which we calculate using
conventional perturbation theory, is given by:

(41)

where P„' is a sum over all the excited states of IJO to
which II~ has nonvanishing matrix elements. These
correspond to two-phonon states. One readily 6nds:

1. 22 12 22
AEg ———

4m'»&2 {2k~—(h/m)[(kq. P)+h(k2 P)j(1—g)+h'(k~+k2)'/2m}
(42)

with f(k) given by Eq. (23). The indicated summations
in (42) have been carried out numerically up to order
P'/2mha&. The result is:

cF P'
0 Eg = —0.007m'&co —0.0j.

(1+n/6)' 2m
(43)

This is to be compared with our result [Eq. (31)j,
E= —aAco+(P'/2m)[1/(1+6n) j. If we set a=6, we
find a relative correction to the P-independent term of
approximately 4 percent; the correction to the P /2m
term is larger, and is approximately 18 percent. It is

perhaps not surprising that the P-dependent correction
is larger than the P-independent one, since we might
expect that correlation between the emission of succes-
sive quanta will play a more important role when a
preferred direction exists.

On the whole, therefore, our method provides a
reasonable approximation for intermediate values of the
coupling constant o., i.e., a&6. This point of view is

confirmed by a detailed one-dimensional calculation of
Gross. '4 Gross uses a variational method, with a state
vector which may contain zero, one, two, and three
phonon parts, to consider the case in which Vl, [Eq. (5)j
is now independent of k. He finds, for an equivalent
coupling constant of 3—4, that the energy of the lowest
state, when calculated with a maximum of one, two,
and three phonons, respectively, appears to approach a
limit which is in substantial agreement with the result
we obtain for the same one-dimensional problem using
our variational method.
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