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The collective model of the nucleus, as expressed in A. Bohr’s strong coupling approximation, is applied
to the low levels of even-even nuclei. It yields the correct level order of the first few states, and predicts
the qualitative regularities of the first excited energy surface which are observed experimentally. The
approximation is shown to be much better for two or more extra nucleons than for one, but the first excited
energy spacing is sensitive to second-order corrections even for many extra nucleons. Predicted nuclear
distortions are larger than is reasonable (a) in the rare earth group, and (b) near doubly magic Pb28, An
empirical way to correct for this discrepancy is to diminish the particle-to-surface coupling coefficient.

A simple formula is given for computing an upper limit to the nuclear distortion from the first excited
energy of even nuclei. After correction by a single adjustable parameter, this formula yields a fair correlation
with quadrupole moments and a better correlation with isotope shifts in the region 50 <N <126. The energy
level behavior beyond Pb gives a prediction of quadrupole moment and isotope shift behavior for N >126.
Certain regularities in the levels of odd-even nuclei are also predicted.

I. INTRODUCTION

HE first excited levels of even-even nuclei (here-
after called simply even nuclei) are known to
exhibit regularities in spin and parity,»? and also in
energy.? A large majority of these levels where spin and
parity are known have spin 2, even parity. (There is
also a tendency, less marked, for the second excited
states of even nuclei to have spin 4, even parity."?) As
a function of mass number A, the energy of the first
excited states of even nuclei shows a generally decreas-
ing trend with A, but with large variations around the
mean. These variations are strongly correlated with the
magic numbers, and show a remarkable regularity as
a function of NV and Z.2 Closing a shell in either V or
Z brings about a sharp increase in the energy of the
first excited state, and closing shells in both V and Z
(Ca®®, Pb2%®%) a still sharper increase. Those nuclei
farthest from any magic number, the rare earths,
exhibit anomalously low energies of the first excited
state, as do the heaviest elements, around uranium. If
the data available for the energy of first excited states
of even nuclei are plotted as a function of both N and
Z, an energy surface is suggested with sharp spikes at
the doubly magic nuclei, sharp ridges along the magic
numbers, and broad valleys between the magic numbers.
The predominance of spin-two, even parity first
excited levels of even nuclei has received theoretical
explanation in terms of the shell model (independent
nucleons in spherical well with particle interaction
added).>~® It is assumed that the first excited level is
due to the excitation of a single pair of nucleons. Taking
a central attractive force of reasonable range between
the nucleons, it is found that the ground state is 04,
as observed; the first excited state is 24, as usually
observed; and the second excited state is 4+, as
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sometimes observed. The 0-2 energy spacing for the
configuration (j)? is proportional to (2j+1) and equal
to about 1.5 Mev for j=4%, a value large compared to
most experimental values. The 2—4 spacing for the (7)?
configuration is found to be much smaller than the 0-2
spacing. Experimentally the 0-2 and 2-4 spacings are
comparable. De Shalit and Goldhaber® argue that the
observed regularities in the first excited energies can
be explained qualitatively in terms of mixtures of states
of excitation of different neutron and proton pairs.
The farther one is from a magic number, the more
states will be mixed in the first excited level, and the
more will that level be lowered due to their interaction,
other factors being equal. ,

The preponderance of spin-two, even parity excited
levels receives a simple explanation also in terms of the
pure liquid droplet model. On this model, the lowest
excited state of collective oscillation is the Pj ellipsoidal
mode, with spin two, even parity. Because of the .
collective description, however, no explanation of shell
structure effects can be given by this model. It gives
for the lowest excitation of vibrational energy,

E=h(C/B)}, (1)

where
C= Csurface+ Ccoulomb = 47'02/1%@_‘ (3/1077) (Z262/7'0A %) (2)

and
B=1pe54%3=mass coefficient.

3)

Here 0 is the nuclear surface tension, given empirically
by 47?0215 Mev. p, is the density of nuclear matter,
and the nuclear radius is assumed to be equal to 74
For medium and heavy nuclei, where the liquid droplet
model is expected to have validity, C=260 Mev and
does not vary much with 4. In this range, therefore,

E==2(100/A45/¢) Mev. (4)
No such simple law is obeyed. Sharp variations in the

empirical E; due to shell structure are observed, and
the average E;, as nearly as it can be approximated,
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seems to decrease more rapidly with 4 than the negative
5/6 power in Eq. (4).

Both the independent particle model of the nucleus
and the liquid droplet model are inadequate to explain
the observed regularities of the first excited states of
even nuclei. Because of the marked shell structure
effects, the pure liquid droplet model is especially
inappropriate.

The purpose of the present article is to apply the
theory of the combined liquid droplet-free particle
model, hereafter called the collective model, to the prob-
lem of the low states of even nuclei. This model has
been developed principally by Bohr® and by Hill and
Wheeler.” According to the collective model, the rapid
variation of potential near the edge of the nucleus
creates a membrane-like surface capable of undergoing
oscillation (conventional liquid droplet model) and in
addition capable of being distorted by the action of the
“free” nucleons within the nucleus into a permanently
nonspherical shape. The nonsphericity is important for
quadrupole moments. In addition, the nuclear distortion
acts back on the particles and strongly affects the
interparticle coupling. The nonspherical shape of the
nucleus, therefore, will affect a large number of nuclear
properties. In particular, magnetic moments® and the
order of nuclear levels will require an understanding of
the nuclear surface effect for their explanation.

In the following sections, Bohr’s theory of the
collective model is generalized to several extra nucleons
and applied in a straightforward way to even nuclei.
It is found that the model explains the qualitative
regularities of the first excited states but requires
modification to give reasonable quantitative values for
the energies in the calculable cases near closed shells.
The model suggests a relation between the energy of the
first excited state of even nuclei and the quadrupole
moments of neighboring odd-even nuclei. The regu-
larities in these two quantities are in good qualitative
agreement for the heavy nuclei, but the nuclear distor-
tion calculated from excitation energy of even nuclei is
considerably larger than the distortion calculated from
quadrupole moments.

II. SPIN, PARITY, AND ENERGY OF FIRST
EXCITED STATES

A. Bohr Theory for Single Extra Nucleon

Our starting point is the theory of the interaction of
extra nucleons with the nuclear surface, as developed
by Bohr, especially his strong coupling (of particle to
surface) approximation. The direct interaction among
the nucleons is neglected. In his treatment of a single
extra nucleon outside closed shells, this effect did not
enter. We neglect the direct interparticle interaction
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because it is the aim here to show that the coupling of
particles to the nuclear surface—and thereby indirectly
to each other—is alone sufficient to account for the
general pattern of the low states of even nuclei. Since
the interparticle interaction tends to produce the same
order of levels as is derived here, its inclusion would
serve to reinforce the conclusions on level order derived
from the collective model alone. The inclusion of the
direct particle interaction in a calculation of the energy
of first excited states would greatly complicate the
problem and prevent the remarkable result of the
collective model—the sensitive dependence of excitation
energy on the permanent distortion of the nucleus—

‘from emerging with full clarity.

For ease in treating the case of strong coupling of
particle to surface, Bohr develops a Hamiltonian for
the nucleus in terms of particle coordinates relative to
nuclear axes (', o), coordinates of distortion relative
to nuclear axes (8, v), and coordinates of the nuclear
axes relative to space axes (Euler angles 6:0:0;5). A
principal underlying assumption is-that the particle
motion is so rapid compared to the motion of the
nucleus as a whole, that it is a good approximation to
treat the particle motion as if the nuclear axes are fixed
in space. It is also assumed for convenience that very
strong spin-orbit interaction exists, and that j for each
particle remains a good quantum number. In fact, the
strong surface interaction will break down j-j coupling,
and it will be important to consider a finite spin-orbit
interaction in problems involving an odd number of
particles (e.g., ground-state magnetic moments). For
even nuclei, however, the surface-induced pairing effect
is so strong that the magnitude of the spin-orbit
coupling is probably less important for the behavior of
the ground and first excited state than in odd-even
nuclei. This point is being investigated in greater
detail, but the assumption that j is a good quantum
number is retained in the present paper.

The nuclear Hamiltonian is written as the sum of
three terms: H,, particle Hamiltonian; H,, surface
Hamiltonian; and Hins, interaction energy averaged
over the particle motion. The particle term is

H,=T,'+ V'square wen (prime denotes variable 7’
relative to nuclear axes).

(5)

Taking the nuclear surface relative to the nuclear axes

to be given by
R=Ry[1+3, o,/ You(t, )], (6)

where

o' =a_y'=(1/V2)B siny,

we obtain the surface energy in terms of the distortion
coordinates B, v, and the Euler angles defining the
nuclear orientation in space:

Hs = Tvib+ Trot+ Vs-

a1' = a_1' = 0, Oto/ = ﬁ CosYy,

™
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Surface vibration energy:

Tvib=

mpr o o 1 1 9 9
[ 4 — sinS'y———]. (8)
2BLB* 3B 9B [ sin3y Iy dy

Surface rotational energy:

7‘rot= Z (h2QK2/2gK)' (9)

k=1
Surface potential energy:

=3CP (10)

B and C are the quantities defined by Egs. (3) and (2).
dy is the effective moment of inertia of the nuclear
surface about the « axis and is given by

9,=4Bg sin?[y— (27/3)«]. (11)

The component‘of the rotational angular momentum of
the nuclear surface, Qy, is given simply by

QK=IK_jK,

where I, and j, are components of the total angular
momentum and of the angular momentum of the
particle along the nuclear axes. The interaction energy,
taken to first order in R— Ry, is given by

(12)

Hiny=—VoRod(r'— Ro) 2, o/ Vau(0', ¢°), (13)
where V, is the depth of the nuclear potential well.
Consistent with the assumption of rapid particle motion
relative to nuclear vibration and rotation, this expres-
sion is averaged over particle coordinates #'6’¢’ before
insertion into the Hamiltonian. It yields

HW o= (nlgm | Hins| ndjm)

_j(j+1)—3m?
=—8 e 14
cosy(5/m) LGTD (14)

where T is an energy of the order of magnitude of the
particle kinetic energy, which depends on # and / but
is here assumed to be a constant. (In the limit of
infinite nuclear potential well depth, T is exactly the
particle kinetic energy.) The matrix elements of Eq.
(13) which are diagonal in 7lj but off-diagonal in m,

H®y o= (nljmy | Hing | nljms)
=B siny(15/m) T (j£my) (j=mi—1)

X (Fm+1)(GFmi+2) ] 8(ma, me=2), (15)

must also be added to the Hamiltonian to account for
the mixing of different m’s.

Bohr then splits the Hamiltonian into a zero-order
part H,, which commutes with I3 and 43, and a per-
turbing part U, with no diagonal matrix elements in an
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I3j5 representation. These are®
R
Ho=H,+Tvirt+ [ Vet (-—‘—+—-) LI(I+1)
49, 49,

~I#+j(+1)~ j#
—(HHIHH (D8, 1K, 1]

+ (72/293) (13— ja)*
32— (441
+8 cosv(S/w)*T—f?(’—)}, (16)-
45(+1)
and
U=U+U,+Us,

hz h?
U1=(1-D)(—;—Ilj1——12j2), (17a)

1 2

where D is the projection operator onto the j3I3(Q, K)
representation,

h? h?

Upm (2 15/ )* )(yl i), (17b)
49, 49,
——— I 2—12). (17¢)
451 gz

The part of H, enclosed in curly brackets, since it
contains no derivatives in 8, v, may be regarded as an
effective surface potential. It is denoted by W(B, v),
and the values of B8, v for which W is minimum, by
B1, v1. W contains three parts in the following historical
order: (1) V,=3CB=classical liquid droplet surface
potential, minimum at 8=0, appropriate for spherically
symmetric nuclei; (2) the interaction term Hip, linear
in B, which displaces the minimum of W to B, different
from zero, as considered, e.g., by Rainwater!® and by
Feenberg and Hammack;! (3) the rotational terms,
proportional to 1/8?% introduced by Bohr to take proper
account of the total nuclear dynamics. For extremely
strong particle to surface coupling, the rotational terms
become negligible and one may revert to the simpler
theory which treats the nucleus as stationary in space.
Such a limit is not attained in actual nuclei. For rather
strong coupling, the rotational terms are smaller than
the surface potential V', or the interaction term Hins,
but are not negligible. This appears to be the situation
for the low levels.of most heavy nuclei (42150). The
strong coupling approximation is then valid (particle
motion rapid relative to nuclear rotation) and the
perturbation terms U are found to be small. For
larger rotation terms, the strong coupling approxima-
tion begins to fail, the amplitude of nuclear oscillation

9 These expressions are not exactly as given by Bohr, because
of the diagonal contribution of Bohr’s U, pointed out by Davidson
and Feenberg (see reference 14).

10 J, Rainwater, Phys. Rev. 79, 432 (1950).

1 E. Feenberg and K. C. Hammack Phys. Rev. 81, 285 (1951).



32 KENNETH
becomes comparable to the mean distortion, and the
perturbation terms in U become large. This appears to
be the situation for 4<75. In the range 75<4 <150,
the validity of the strong coupling approximation
depends on the number of extra nucleons participating
in the distortion. Adding extra nucleons increases the
values of Hi,, and V,, increasing (81, and thereby
decreasing the magnitude of the rotational kinetic
energy and of most of the terms in U.

B. Extension to Several Extra Nucleons

The extension of the theory to several extra nucleons
is straightforward. The interaction term becomes a sum
over the extra particles, and the components of rota-
tional angular momentum are given by

Qx=lx~jax'—jbx-' Tt _j""'

Insisting on I3, j;3, all 4, as good quantum numbers of
the zero-order Hamiltonian, we obtain

Hy=3%; H, "+ T+ { 3CBH(12/283)(I3—2 i i3)?

WY .

+‘(—*+.‘”‘ LI+ —I2432: j(jet 1) — jid
2\24d; 24,

= 2 Gn= ) Gt Ut 108Gy Jim) (R, Qi—1)
iEm

—(I+3)(— 1)t =D§(K, 3)
X2 :(Jit+5)8(Q;, D[], [— %) ]
30— ji(jt1)

+(5/mPTB cosyX—————— 1, (18)
4]1'(]6"}‘1)

where # is the number of extra nucleons, (i, jm)=0
unless the quantum numbers (nlj);=(nlj)n, and
o([], [—Q«]) vanishes unless for every particle with
quantum numbers (#ljQ), except the ith particle, there
is another particle with quantum numbers (nlj, —Q).
Note that for a closed subshell all of the sums over
particle quantum numbers vanish. The perturbing
Hamiltonian is

U=Ust+ U1t UstUstU..
Us=(1=D)(#*/48:1+17/492)( X jurjmt jijms), (19a)

i#Em

where D is the projection operator onto the I37:;
representation ;

Uy=(1—D)[— B/ 9) 12— B/ 92) I3 :5:2]; (19b)

hﬂ hZ
U2=Zi -
44, 449, .
~ TBsiny
+ (1s/r)f~—_—_—~)< jil—jid); (190
47:(j+1)
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Us=3(1*/ 91— 1/ 95) (I~ I3%); (19d)
Us=1(1*/ 91— 1/ 9)( X jafm— Jizjma). (19¢)

iFEm
As before U has no diagonal elements in the I3, 7
representation. The terms U, - - - U, are arranged more
or less in order of decreasing importance. Matrix ele-
ments of angular momenta appearing in Uy, U,, and U,
have been given by Bohr.® Matrix elements needed for
evaluating the effect of U, and U, are

(8| JitJmit Fizjme |Q1, Q,,F1)
=3[+ 1) (GF L) (fnF Lt 1) (Gt Q) T4,

(Qzﬂm ’ j'iljml" ji2jm2 I 91:!: ly Qm:': 1)
=3[+ 1) (7:F L) (fnt Lt 1) (GuF ) I

U, connects states for which two particles have €,
changed by one, and 3_; ;= is unchanged. U, con-
nects states for which one particle has Q; changed by
one, and K is changed by one. U, connects states for
which one particle has ©; changed by two. U; connects
states for which K is changed by two. U; connects
states for which two particles have Q; changed by one,
and Y_; ;=9 is changed by two.

In order to get numbers for the energy levels of
nuclei on this theory, one further approximation is
necessary. The energies will be given by

E= W(6171)+Eparticle+Eﬂ+E7~

Eg and E, are the energies of the 8 and v vibration
oscillations about the equilibrium value Bi, v1. These
can ‘be found approximately by expanding W about
B1, v1 to order (38— B1)? and (y—v1)?, giving a harmonic
potential for the vibration levels. Introducing a corre-
sponding approximation in 7'vip, Bohr obtains

Eg= (2h*/ BBy®)+h(ns+35) [ (8*W /3B 6171/ B,
Ey=h(n,41)[(8*W/8v*)81v1/ BB,

for the case v1=0 or w. For other values of v, to the
same approximation, Eg is the same and

E,={(9/8)(#*/BBy) cot?3v:
+h(ny+3)[(*W/v*)81v1/ BB 1H}.

Here ng and n, are integers equal to the number of
excitation quanta in the 8 and v vibrations. The level
spacing of the 3 and v vibrations is, in general, large
compared to the level spacing of different rotational-
states. This gives the important result that the rota-
tional energy of the nuclear surface contributes signifi-
cantly to the ground and low excited states of nuclei,
while the vibration levels do not. The previous conclu-
sion that the liquid droplet model cannot take account
of shell structure properties is thereby altered com-
pletely. According to the collective model, the im-
portant contribution of the nuclear surface to low-lying
levels comes via rotational energy, but the rotational

(20)

3y)
(22)
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energy depends sensitively on the nuclear distortion
(~B~2), which in turn is determined by the orbits of
the extra nucleons. The collective distortions of the
nucleus in this respect, therefore, enhance and multiply
shell structure effects, rather than smooth over them.
It is found also that the vibrational energies Eg® and
E,© are insensitive to changes in Bi, ¥1, so that the
level order and level spacing are given to fair approxi-
mation by the potential minimum W(B8.y:) alone. In
the calculations described in the next part, W alone
was first minimized ; then Eg and E, were calculated. A
more consistent procedure would probably be to find
81, v1 by minimizing the entire energy expression (20).
This would yield slightly larger values of the nuclear
distortion than minimization of W alone.

Assuming for a moment that the perturbing terms U
have a small effect on the solution of the zero-order
Hamiltonian H,, as appears to be the case for heavy
nuclei containing several extra nucleons outside closed
shells, it is worth while to examine some of the basic
qualitative differences between the free particle model
alone and the collective model of the nucleus. (1)
According to the collective model, a given nuclear state
is characterized by more quantum numbers: I,- the
total angular momentum, and its component M along
an axis in space; K, the componentof I along the 3-axis
of the distorted nucleus; Q- - -Q,, the components of
the particle angular momenta j7; along the 3-axis of the
nucleus, and ng, #,, the degrees of excitation of the
surface vibration. J, the total angular momentum of
the particles, is #ot a good quantum number; nor is Q,
the angular momentum of the nuclear surface. (The
term nuclear surface rather than nuclear core is used
because the rotation is not a rigid body rotation, but

rather the rotation of a surface wave, whose amplitude -

depends on the distortion of the nucleus, vanishing for
a spherical nucleus.) (2) The collective model predicts
a larger number of nuclear levels than does the free
particle model. (3) According to the collective model,
the mechanism of coupling of different nucleons is
entirely different from that predicted by the free
particle model. The interaction of particles with the
nuclear surface may dominate over the direct coupling
of particles to each other. Even if j remains a good
quantum number, j-j coupling is destroyed. For

example, on the independent particle model a state of

two particles each of spin 5/2, with net angular mo-
mentum zero, contains all #m’s from —5/2 to +5/2ina
prescribed combination. According to the collective
model, the same two particles can combine to zero net
angular momentum with 7’s (2’s) ==5/2 only. (Inclu-
sion of perturbation terms U mixes in Q's of 3§, =3,
but in a proportion unrelated to the unique specification
of j-j coupling.) A more detailed discussion of new
features of the collective model is given by Hill and
Wheeler.”
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F1c. 1. Predicted energy levels for one extra nucleon outside
closed shells. These comprise only those low levels in which the
particle- states are unchanged. Additional results of detailed
calculations with Bohr strong coupling approximation are given
in Table IIL

C. Numerical Results for Several Examples

Using the Bohr strong coupling approximation, the
low-lying levels have been computed for several hypo-
thetical nuclei: containing one, two, or four extra
particles (of the same nucleon type) outside of a closed
shell, with the other nucleon type considered to remain
in a closed shell. Only those levels have been treated
for which the extra nucleons are not excited to higher
single particle levels. This is expected to represent the
true situation for the low levels of most even nuclei;
but it is not expected to yield the lowest excited states
for odd-even nuclei, because of the close spacing of the
free particle levels relative to the nuclear rotational
levels. )

The results for the case of one extra nucleon are
given in Fig. 1. The ground state is seen to have spin
I=j, as already pointed out by Bohr.® [For the case
j=32, the ground-state degeneracy in first order will be
important for magnetic moments (see reference 14).]
The first excited states have spin j41, the second
excited excited states, spin ¥ or spin j42, and the
energy of the first excited state increases with j. This
“first excited state” is the lowest excited state with the
odd nucleon state unchanged. Lower excited states
could appear due to a transition of the odd nucleon to
another free particle state, which appears to be the
case in most odd-even nuclei.

The Bohr strong coupling picture should give better
results for two extra nucleons than for one: First, the
high excitation energies of the magic nuclei suggest
that pairs of like nucleons are strongly coupled to zero
net angular momentum. Therefore, for even nuclei,
states due to excitation of nuclear rotational degrees of
freedom could lie below levels due to transitions of the
extra nucleons among free particle states. Second, the
approximation itself is better because of the larger
nuclear distortions computed. The results of the compu-
tations for two and four extra nucleons are shown in
Fig. 2. The computed level order agrees very well with
available data. The computed spins for the ground,
first excited, and second excited states are 0, 2, 4, with
the third excited state being of spin 0, 2, or 6. In one
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A=100, TWO EXTRA NUGLEONS A=200, TWO EXTRA NUGCLEONS
3 MEV. NUCLEONS

2 1 % 1 % 1 = 1 =%
2 —_—

>

| MEV.

]

F16. 2. Predicted energy levels for nuclei with two or four
nucleons outside closed shells. Additional results of detailed
calculations with Bohr strong coupling approximation are given
in Table ITI.

of the computed cases the level order is 0, 2, 0, 4. The
empirical data, which give 0; 2; 4 or 2 as the usual
level order, is summarized in Table I, from the recent
compilation by Scharff-Goldhaber.?

The computed level spacing appears to be of the
right order of magnitude, but probably too small. The
effect of inclusion of the off-diagonal terms in the
Hamiltonian in the strong coupling approximation
decreases the computed spacing, as discussed in part D
of this section. Detailed comparison of theory and
experiment for level spacing is possible only in the
vicinity of doubly magic Pb?°8, where the strong coup-
ling approximation should be reasonably good, and
where there exist simple examples of even nuclei with
only two or four nucleons outside closed shells. Even
here, however, the orbital assignments of the extra
nucleons are not unambiguous. Table II gives a com-
parison of observed first excited energies with those
calculated “from first principles,” using the simplified
formula derived in part III, and a nuclear distortion
computed by minimizing the effective surface potential
W neglecting the rotational terms. For the simplest
example, Pb?*® (Z=82, N=124), the neutron orbital
assignment (p;)~% gives good agreement with experi-
ment. The assignment (7135)~2 gives considerably too
small an energy spacing; the assignment (p;) 2 gives a
spherically symmetric nucleus with no low lying rota-
tational state. For Pb2*“ the neutron assignment
(p3)2(413/2) 2 gives the best agreement with experiment.
For Po?2, no reasonable assignment gives agreement.

It can be concluded from Table IT that the computed
nuclear distortions are unreasonably large, and the
computed energies therefore too small, on the strong
coupling approximation. Halving the particle-to-surface
interaction, for example, would lower the values of 8 to
more reasonable magnitude, would bring the energies
of Pb%% and Pb?* into good agreement with the con-
figurations (13/2) 2 and (413/2) ¥, and would bring the
predicted energy for Po®? more nearly into agreement
with experiment.

Also for many extra nucleons, distortions calculated
from first principles are too large. Assuming half-filled

FORD

shells of 4132 neutrons and %12 protons, one finds the
maximum possible distortion in the rare earth group to
be 8=1.0, or three times larger than the largest dis-
tortion computed from quadrupole moments. Again a
reduction in the particle-to-surface coupling appears to
be required. For this case of strong interaction, however,
the effect of higher order terms in the interaction
energy should also be investigated.

Figure 3 shows the variation in energy of the first
excited state and in extra binding energy due to surface
coupling for even nuclei filling a hypothetical shell of
7=9/2 particles. The closed shell energy levels in Fig. 3
and in Table II are computed from Eq. (1). It should
be noted that the large energy at double magic Pb2%® is
an important defect of the theory. Two of the three
basic parameters of the collective model enter Eq. (1),
which should provide an upper limit for the excitation
energy of doubly magic nuclei. An increase by a factor
4 of the product (C)(%?/B) is required to secure agree-
ment with experiment for Pb2%, A recently determined

TasLE 1. Comparison of observed and predicted level
order for even nuclei.

Predicted spin, collective
model, assuming no
nucleonic excitation

State Observed spin®

Ground 0+ 0+, no known exceptions
First 24 2+, no known exceptions
excited above 4 =75 among 37
examples
Second 4+ (sometimes 04) 44, ~40 percent

excited 2+, ~40 percent

0, 1, 3, ~20 percent

Third
excited

04, 24-, or 6+ if second
excited is 44

(4+ if second excited
is 0+)

= See reference 2.

level of Cat® at 3.8 Mev does agree with the prediction
of Eq. (1), however.

The numerical results of the detailed computations
using the Bohr strong coupling approximation are given
in Table III, for those levels diagrammed in Figs. 1 and
2, and also for higher levels. The higher levels are not
included in the figure because they are incomplete,
leaving out some levels, especially for the quantum
numbers K and Q unequal, and also because the strong
coupling approximation breaks down at the higher
excitations. This is indicated by the fact that the
rotational energy term W; becomes comparable in
magnitude to Wy and |W,|.

The allowed combinations of quantum numbers can
be found from the symmetry requirements on the wave
function discussed by Bohr. In particular, the wave
function must be invariant under a rotation of = about
the 2-axis (his R; operator) and under a rotation of
w/2.about the 3-axis (his R, operator). These operators

2 J. A. Harvey, Phys. Rev. 88, 162 (1952).
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act on an » particle wave function in the (n.d;7.:m.)
representation as follows:
Rix(- - -nidijomi - +)

= (=1)ZiGemdy (e o opdiji—mg - +),  (23a)
Rox (-« +nidsjoms - -)

=eimZimiy (.ol i ). (23b)

As a result the wave function must be of the form
(replacing m; by ),

Vl=( 2 + X

2>0,K ©=0,K=0
XEx(-*+ oy Qiv ) DT ar(8)
+(_1)I—Eiiix(. .. ]‘i’ — Qe

)e'a, (B, 7)

(24)
Dy, k(6]
‘The values of |K—Q| are restricted to even integers.

TasLE II. First excited states of selected even nuclei
near doubly magic Ph28,

Theoretical Experimental
Distor- Energy of energy of
Assumed tion, first excited first excited
Nucleus configuration Bcosy state (Mev) state (Mev)
s2Pbyas C(par2) ™ ]w 00 13
L(par2) ~2(pu2) 2w 0.17 0.86
Pare) 2(t132) 2w 0.48 0.10 0.374
[(prr2) 2(G1ar2) 2 I 033 021
LGizo) ™ n 0.50 0.10
82Pb1gs L(pu2)~%1n 0.0 1.3
[(par2) 2 v 0.17  0.86 0.803
[@ar2) 2w 0.33 0.21
32Pb12g closed shell 0.0 1.3 2.62
s2Pbisg [(gor2)*In -0.30 0.25
[(@dsr)?Tw ~024 040  Unknown
s2Pbigo [(gor2)*In —-0.39 0.15
[(gor2)?(ds2)*In —0.52  0.085  unknown
[(@sr2)* v 0.23 044
84P0126 [(hor2)*1p —0.30 0.25 >1(?)
34P0128 [(hor2)*Ip[(gor2)*In —0.58 0.068 0.719
[(fro/2)21p[(dsr2)* In —0.52 0.085 :

If K and Q are separately good quantum numbers, as
in the first-order approximation used here, then there
is only one term in Eq. (24) and further restrictions
arise. For an even number of extra nucleons, all of the
same #, l, 7, and for Q=K =0, ¥ vanishes for all odd 1.
These two rules were used to determine the allowed
levels in Table III.

D. Validity of the Strong Coupling Approximation

The collective model of the nucleus has two appealing
features. First, it contains only a few physical param-

eters, and none of these are arbitrary. Second, the

application of the model through the strong coupling
approximation developed by Bohr is relatively easy in
first order. The question of the validity of the assump-
tions on which the whole model is based are therefore

EVEN-EVEN NUCELI 35

3l
5 ENERGY OF FIRST EXCITED STATE
= 2
' -
1 1 1 1
oO 2 4 6 8 10
No. of extra nucleons
2 4 6 8 10
T T T T
ENERGY CHANGE OF NUCLEUS
-1} DUE TO PARTICLE-TO-SURFACE
COUPLING
_2 -
-3
>
u
=
-4 -
-5

F1c. 3. Energy of first excited state and energy change of
nucleus due to surface interaction for highly idealized nuclei. A
shell of 7=9/2 nucleons is assumed to fill while the other group
of nucleons remains closed shell. The mass number is taken to be
100. The results at 2 and 4 (same as at 8 and 6) extra nucleons
are taken from the strong coupling calculations of Table III and
Fig. 2. The results at zero (and at 10) extra nucleons are the weak
coupling limit with excitation energy given by Eq. (1) in the
text and with no particle-to-surface interaction.

most easily approached by means of applications of the
model to various examples and comparison with experi-
ment. The more fundamental approach of analysis of
the initial assumptions of the model from first principles
has been begun by Hill and Wheeler.” It is intended
here mainly to discuss the question of the validity of
the first-order strong coupling approximation relative
to the complete Hamiltonian developed by Bohr. Some
of the limitations on the complete Hamiltonian are the
following: (a) Only the ellipsoidal mode of deformation
and vibration is considered. (b) The extra nucleons are
taken to have j as a good quantum number. (c) The
particle motion is taken to be rapid relative to the
motion of the core, and the interaction term is averaged
over the particle motion.

The three parameters which enter the theory are
coefficients in the three terms in the effective surface
potential W [Eq. (18) and caption of Table III]. The
parameter C [Eq. (2)] is the coefficient of the nuclear
distortion term, W,=3C@?. Using a surface tension
energy 4wr?0=15.4 Mev, values of C are obtained as
given in Table IV. In the calculations performed at
mass numbers 100 and 200, a value C=65 Mev was
used. It is not certain that the dynamic surface tension
is the same as the static surface tension,” but approxi-
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TasLE ITI. Summarized results of calculations using Bohr strong coupling approximation.

I=Total angular momentum of nucleus.

;= Component of nucleon angular momentum along 3-axis
of distorted nucleus.

Q=2

K=Component of total angular momentum along 3-axis of
distorted nucleus.

B1=Equilibrium value of distortion parameter.
v1=Equilibrium value of shape parameter.
W,=Potential energy of surface deformation=3Cg°.

W.=1Interaction energy of extra nucleons with nuclear surface
(“Rainwater interaction”)

=(5/m)TB cos-yziw'

W 3=Kinetic energy of surface rotation (diagonal part)

= (/8 () 91+ 1 INTU+1) = K+ Ziji(jerk-1) — 02
— (P (= DB e-Dy(K, })

Eg="Zero-point energy of § oscillation.

Ey=Zero-point energy of v oscillation.

XZi(§i+3)8(:, H)o([2], [— %)
- 2 5(]», Fm)8(Quny Qi—1) (fr = Q) (Gt 2m4-1) .

W= W1+W2+W3-—Net effective surface potential energy.

E—E,=W+ Eg+Ey= (net nuclear energy) — (unperturbed parti-
cle energy) =diagonal matrix element of Hamiltonian in
Bohr strong coupling approximation.
Ere1=Nuclear energy normalized to ground state energy =0.

47:(7:4+1) All energies in Mev.
1 Q Q K B cosyt Wi W2 W w Eg Ey E—-Ep  Erel
A =100, one extra nucleon, j=5/2
5/2 5/2 5/2 0.2466 —1.0000 1977 —1.778 1.088 1.287 4.460 2.829 8.576 0.000
7/2 5/2 5/2 0.2971 —1.0000 2.870 —2.142 1.799 2.526 3.726 2.897 9.150 0.574
1/2 1/2 1/2 0.2483 1.0000 2.004 —1.432 1.288 1.860 4.519 2912 9.291 0.715
5/2 1/2 1/2 0.2646 1.0000 2.275 —1.526 1.512 2262 4.234 2931 9.427 0.851
9/2 5/2 5/2 03361 —1.0000 3.671 —2423 2.460 3.708 3.376 2936 10.021 1.445
3/2 1/2 1/2 0.3176 1.0000 3.278 —1.831 2.362 3.808 3.594 2980 10.382 1.806
9/2 1/2 1/2 0.3176 1.0000 3.278 —1.831 2.362 3.808 3.594 2.980 10.382 1.806
3/2 3/2 3/2 0.2446 1.0000 1945 —0.353 1.769 3.361 4.846 3.139 11.347 2.771
5/2 3/2 3/2 0.2755 1.0000 2.466 —0.397 2.267 4.336 4.295 3.147 11.779 3.203
7/2 1/2 1/2 03724 1.0000 4.508 —2.148 3.434 5.795 3.204 3.015 12.014 3.438
5/2 1/2 5/2 0.3607 0.8869 4.228 —1.845 3.305 5.688 3.298 3.078 12.065 3.489
7/2 3/2 3/2 0.3061 1.0000 3.045 —0.441 2.825 5429 3.904 3.154 12.487 3.911
9/2 3/2 3/2 0.3353 1.0000 3.655 —0.484 3.413 6.584 3.627 3.159 13.370 4.794
A =100, one extra nucleon, j=9/2
9/2 9/2 9/2 0.2905 —1.0000 2.744 —2.666 1.411 1489 3.692 2.795 7.976 0.000
11/2 9/2 9/2 0.3430 —1.0000 3.823 —3.147 2.250 2926 3.239 2.863 9.028 1.052
1/2 1/2 1/2 0.3270 1.0000 3.475 —2.000 2475 3.950 3.497 2973 10420 2444
A =200, one extra nucleon, j=3/2
3/2 3/2 3/2 0.1641 —1.0000 0.876 —0.828 0.462 0.509 2.869 1.572 4951 0.000
3/2 1/2 1/2 0.1642 1.0000 0876 —0.829 0462 . 0.509 2.869 1.572 4.951 0.000
1/2 1/2 1/2 0.1898 1.0000 1.170 —0.958 0.691 0904 2442 1.605 4.951 0.000
5/2 3/2 3/2 02019 -—1.0000 1324 —1.019 0.815 1.120 2.295 1.617 5.033 0.082
7/2 1/2 1/2 0.2163 1.0000 1.521 —1.092 0.975 1.405 2.152 1.630 5.186 0.235
7/2 3/2 3/2 0.2317 —1.0000 1.744 —1.169 1.160 1.735 2.029 1.641 5405 0454
5/2 1/2 1/2 0.2413 1.0000 1.8902 —1.218 1.283 1958 1.964 1.648 5.569 0.618
9/2 3/2 3/2 0.2574 -—1.0000 2.153 —1.299 1.503 2358 1.871 1.658 5.886 0.935
9/2 1/2 1/2 0.2857 1.0000 2.653 —1.442 1.932 3.143 1.745 1.672 6.561 1.610
4 =200, one extra nucleon, j=5/2
5/2 5/2 5/2 0.1959 —1.0000 1.247 —1.412 0.541 0.376 2.263 1.523  4.162 0.000
7/2 5/2 5/2 02326 —1.0000 1.759 —1.677 0.920 1.002 1940 1.570 4.512 0.350
1/2 1/2 1/2 0.1939 1.0000 1.222 —1.118 0.662 0.766 2.356 1.580 4.702 0.540
5/2 1/2 1/2 0.2058 1.0000 1377 —1.187 0.784 0973 2.222 1.593 4.789 0.627
9/2 5/2 5/2 0.2613 —1.0000 2.218 —1.883 1.276 1.612 1.780 1.597 4988 0.826
1/2 5/2 1/2 02432 —0.8453 1.922 —1.482 1.182 1.622 1915 1.558 5.095 0.933
3/2 1/2 1/2 0.2450 1.0000 1951 —1.413 1.244 1.782 1915 1.628 5326 1.164
9/2 1/2 1/2 0.2450 1.0000 1951 —1.413 1.244 1.782 1915 1.628 5326 1.164
7/2 1/2 1/2 0.2857 1.0000 2.654 —1.648 1.830 2.835 1.724 1.654 6.213 2.051
3/2 3/2 3/2 0.1846 1.0000 1.107 —0.266 0.974 1.816 2.675 1.744 6.235 2.073
5/2 1/2 5/2. 0.2762 0.8809 2480 —1.418 1.771 2.833 1.780 1.669 6.283 2.121
5/2 3/2 3/2 0.2076 1.0000 1.401 —0.299 1.251 2.353 2375 1.750 6.479 2317
7/2 3/2 3/2 0.2306 1.0000 1.728 —0.332 1.561 2957 2162 1.755 6.874 2.712
9/2 3/2 .3/2 0.2524 1.0000 2.071 —0.364 1.889 3.596 2.011 1.759 7.366 3.204
A =200, one extra nucleon, j=7/2
7/2 7/2 7/2 02169 -—1.0000 1.530 —1.825 0.617 0.322 2.004 1.507 3.833 0.000
9/2 7/2 7/2 0.2540 —1.0000 2.097 —2.136 1.029 0990 1.772 1.553 4315 0.482
11/2 7/2 7/2 02824 —1.0000 2592 —2.375 1.405 1.622 1.655 1.580 4.857 1.024
3/2 1/2 1/2 0.2216 1.0000 1.595 —1.331 0.930 1.194 2.069 1.601 4.864 1.031
3/2 7/2 3/2 02631 —0.8694 2.250 —1.924 1.288 1.614 1.768 1.524 4906 1.073
7/2 1/2 1/2 0.2368 1.0000 1.822 —1422 1.111 1.510 1.958 1.614 5.082 1.249
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TaBLE IIL.—(Continued).
1 [v5 Q K B cosy1 Wi W2 Ws w Eg Ey E-E, Erel
A =200, one extra nucleon, j=7/2—(Continued)
1/2 1/2 1/2 0.2520 1.0000 2.064 —1.514 1.307 1.857 1.867 1.626 5.350 1.517
11/2 1/2 1/2 0.2692 1.0000 2.355 —1.617 1.546 2.284 1.784 1.637 5.705 1.872
3/2 3/2 3/2 0.2246 1.0000 1.639 —0.809 1.234 2064 2.136 1.684 5.884 2.051
5/2 1/2 1/2 0.2870 1.0000 2.676 —1.724 1.814 2767 17113 1.648 6.127 2.294
5/2 3/2 3/2 - 0.2401 1.00000 1.873 —0.865 1.440 2448 2.021 1.692 6.161 2.328
5/2 5/2 5/2 0.2026 —1.0000 1.335 —0.243 1.213 2304 2441 1.758 6.502 2.669
7/2 3/2 3/2 0.2576 1.0000 2.154 —0.928 1.690 2917 1916 1.699 6.532 2.699
7/2 5/2 5/2 0.2267 —1.0000 1.670 —0.272 1.534 2932 2201 1.762 6.896 3.063
9/2 3/2 3/2 02754 1.0000 2466 —0.993 1.969 3442 1.829 1.706 6977 3.144
9/2 1/2 1/2 0.3220 1.0000 3.369 —1.934 2401 3.837 1.607 1.665 7.109 3.276
9/2 5/2 5/2 0.2493 —1.0000 2.020 —0.299 1.870 3.590 2.038 1.765 7.393 3.560
11/2 3/2 3/2 0.2933 1.0000 2.796 —1.057 2.267 4.006 1.757 1.712 7475 3.642
11/2 5/2 5/2 0.2704 —-1.0000 2376 —0.325 2.214 4.265 1920 1.768 7.953 4.120
A =200, one extra nucleon, j=9/2
9/2 9/2 9/2 0.2325 -=1.0000 1.757 —2.134 0.691 0.315 1.860 1.501 3.676 0.000
11/2 9/2 9/2 0.2704 —1.0000 2376 —2.481 1.135 1.031 1.674 1546 4.251 0.575
1/2 1/2 1/2 0.2526 1.0000 2.073 —1.545 1.301 1.829 1.861 1.623 5.313 1.637
A =100, two extra nucleons, j=5/2
0 5/2 —=5/2 0 0 0.2984 —1.0000 2894 —4.303 0.743 —0.665 3.294 2.547 5.176 0.000
2 5/2 —=5/2 0 0 03379 —1.0000 3.711 —4.872 1.275 0.114 3.009 2.633 5.757 0.581
0 1/2 —1/2 0 0 0.2992 1.0000 2908 —3.450 1.183 0.641 3.467 2.695 6.803 1.627
4 5/2 —=5/2 0 0 03915 -—1.0000 4981 —5.644 2.159 1.495 2.759 2720 6.974 1.798
2 1/2 -1/2 0 0 0.3325 1.0000 3.593 —3.835 1.676 1.434 3.196 2.751 7.381 2.205
2 5/2 —=5/2 0 2 03839 -—0.8893 4.789 —4922 2.328 2,196 2.859 2.619 7.673 2497
6 5/2 —5/2 0 0 04426 —1.0000 6.366 —6.381 3.175 3.160 2.605 2.781 8.547 3.371
4 1/2 —1/2 0 0 0.3820 1.0000 4.742 —4.406 2.539 2.876 2922 2.815 8.613 3.437
2 3/2 1/2 2 2 0.2792 1.0000 2.534 —2.013 1.528 2.049 3940 2.876 8.865 3.689
4 5/2 ~3/2 4 4 0.2646 —1.0000 2275 —1.526 1.512 2262 4234 2931 9.427  4.251
1 3/2 —-1/2 1 1 03165 1.0000 3.255 —2.281 2.114 3.088 3.536 2918 9.542 4.366
-1 5/2 =3/2 1 1 02781 -—1.0000 2513 —1.604 1.711 2,621 4.035 2.945 9.601 4.425
2 3/2 —1/2 1 1 0.3325 1.0000 3.593 —2.397 2.394 3.590 3.404 2933 9.926 4.750
2 5/2 =3/2 1 1 02999 -—1.0000 2924 —1.730 2.059 3.253 3.769 2966 9.988 4.812
6 1/2 —-1/2 0 0 04313 1.0000 6.045 —4.974 3.558 4.628 2.743 2.863 10.234 5.058
8 5/2 —=5/2 0 0 04893 -—1.0000 7.783 —7.055 4.255 4982 2.509 2.825 10.317 35.141
S 5/2 3/2 4 4 03176 —1.0000 3.278 —1.831 2.362 3.808 3.594 2,980 10.382 5.206
0 3/2 -3/2 0 0 0.2815 1.0000 2.576 —0.812 2.170 3935 4.137 3.084¢ 11.155 5.979
2 3/2 -=3/2 0 0 0.3083 1.0000 3.089 —0.889 2.645 4.845 3.816 3.095 11.757 6.581
2 5/2 —1/2 2 2 02755 —10000 2466 —0.397 2267 4.336 4.295 3.147 11.779 6.603
3 52 1/2 3 3 02805 —10000 2557 —0404 2355 4507 4222 3149 11.878 6.702
A =100, two extra nucleons, j=9/2
0 9/2 —-9/2 0 0 03605 —1.0000 4224 —6.615 0916 —1475 2681 2506 3.712 0.000
2 9/2 —9/2 0 0 03874 —1.0000 4.877 —7.108 1323 —0.909 2.588 2.561 4.241 0.529
4 9/2 —9/2 0 0 04304 -1.0000 6.021 —7.898 2.071 0.194 2477 2.634 5305 1.593
2 9/2 —9/2 0 2 04306 —09114 6.027 —7.202 2426 1.251 2.544 2565 6.360 2.648
6 9/2 —9/2 0 0 04755 —1.0000 7.348 —8.725 2.985 1.608 2.394 2.694 6.696 2.984
3 9/2 —9/2 0 2 04527 -09215 6.659 —7.655 2.832 1.837 2489 2645 6.970 3.258
8 9/2 7/2 8 8 03458 —1.0000 3.886 —4.230 1.771 1427 3.076 2.741 7.243 3.531
1 9/2 —=17/2 1 1 03538 —1.0000 4.067 —4.328 1.903 1.643 3.030 2.752 7.426 3.714
0 1/2 -1/2 0 0 03744 1.0000 4.556 —4.580 2.266 2.241 2926 2.780 7.947 4.235
2 1/2 —-1/2 0 0 03916 1.0000 4984 —4.791 2.589 2.782 2.852 2.800 8435 4.723
4 1/2 —1/2 0 0 04237 1.0000 5.835 —5.183 3.243 3.805 2.740 2.834 9.468 5.756
2 9/2 -—5/2 2 2° 03517 —1.00000 4.019 —2.689 2.675 4.006 3.250 2932 10.188 6.476
1 3/2 —1/2 1 1 04230 1.0000 5.814 —4.528 3.551 4.837 2.799 2.883 10.520 6.808
0 7/2 —=7/2 0 0 03441 -—1.0000 3.847 —2.104 2.795 4.538 3.367 2985 10.889 7.177
A =200, two extra nucleons, j=5/2
0 5/2 —5/2 0 0 02587 —1.0000 2.175 -—3.730 0310 —1.245 1504 1.360 1.619 0.000
2 5/2 —=5/2 0 0 02835 -—1.0000 2612 —4.087 0568 —0.907 1437 1404 1934 0.315
4 5/2 —=5/2 0 0 03196 -1.0000 3320 —4.608 1016 —0273 1368 1454 2550 0.931
0 1/2 —-1/2 0 0 0.2460 1.0000 1967 —2.838 0.548 —0.322 1.685 1439 2.801 1.182
2 5/2 —=5/2 0 2 03131 —-09035 3.187 —4.079 1.147 0.255 1.425 1377 3.057 1.438
2 1/2 —1/2 0 0 0.2691 10000 2354 —3.104 0.802 0.052 1.592 1473 3.117 1.498
6 5/2 —5/2 0 0 03554 —1.0000 4.106 —5.125 1.544 0.525 1.322 1492 3340 1.721
4 1/2 —-1/2 0 0 0.3043 1.0000 3.010 -—-3.510 1.255 0.754 1492 1.514 3.761 2.142
8 5/2 -5/2 0 0 03889 —1.0000 4916 —5.608 2.112 1421 1.292 1521 4234 2.615
2 3/2 1/2 2 2 0.2195 1.0000 1.566 —1.583 0.775 0.759 2.036 1.555 4.350 2.731
6 1/2 —-1/2 0 0 0.3400 1.0000 3.756 —3.921 1.795 1.630 1.423 1.547 4.600 2.981
3 3/2 1/2 2 2 02435 1.0000 1927 —1.756 1.050 1.222 1.872 1.581 4.675 3.056
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TaBLE III.—(Continued).

I Q Q K B1 cosy1 wh Wa W3 w Eg Ey E—~Ep Eryel
A =200, two extra nucleons, j=5/2—(Continued)
1 3/2 —1/2 1 1 0.2468 1.0000 1980 —1.779 1.090 1.291 1.853 1.584 4.728 3.109
4 5/2 3/2 4 4 0.2058 —1.0000 1377 —1.187 0.784 0973 2.222 1.593 4.789 3.170
1 5/2 —=3/2 1 1 0.2158 —1.0000 1.513 —1.245 0.891 1.160 2.127 1.604 "4.891 3.272
2 3/2 —1/2 1 1 0.2586 1.0000 2.173 —1.864 1.241 1.550 1.793 1.595 4.937 3.318
2 5/2 —=3/2 1 1 02320 -—1.0000 1.749 —1.338 1.080 1491 1999 1.618 5.109 3.490
3 3/2 —1/2 1 1 0.2734 1.0000 2429 —1971 1444 1902 1.727 1.606 5.236 3.617
5 5/2 3/2 4 4 0.2450 —1.0000 1.951 —1.413 1.244 1.782 1915 1.628 5.326 3.707
3 5/2 =3/2 1 1 02507 —1.0000 2.043 —1.446 1.320 1917 1.883 1.632 5432 3.813
0 3/2 —=3/2 0 0  0.2139 1.0000 1487 —0.617 1.179 2.049 2257 1.703 6.010 4.391
2 3/2 =3/2 0 0 - 0.2339 1.0000 1.778 —0.675 1.441 2.545 2.088 1.712 6.345 4.726
2 5/2 —1/2 2 2 02076 —1.0000 1401 —0.299 1.251 2.353 2375 1750 6.479 4.860
3 5/2 1/2 3 3 0.2114 —1.0000 1452 —0.305 1.300 2448 2335 1751 6.534 4915
3 5/2 —1/2 2 2 0.2277 —1.0000 1.685 —0.328 1.521 2.878 2.185 1.755 6.818 5.199
4 5/2 1/2 3 3 02360 —1.0000 1810 —0.340 1.640 3.109 2.121 1756 6.986 5.367
4 3/2 —-3/2 0 0  0.2666 1.0000 2311 —0.769 1.926 3.468 1.891 1.723 7.081 5.462
A4 =200, two extra nucleons, j=9/2
0 9/2 —9/2 0 0 03180 —1.0000 3.287 —5836 0.369 —2.179 1.228 1.342 0.390 0.000
2 9/2 —9/2 0 0 03338 —1.0000 3.621 —6.125 0.559 —1.945 1.216 1.367 0.638 0.248
4 9/2 —9/2 0 0 03610 —1.0000 4.236 —6.625 0.923 —1.465 1.200 1.404 1.139 0.749
6 9/2 —9/2 0 0 03911 —1.0000 4972 —7.177 1383 —0.822 1.187 1438 1.804 1.414
2 9/2 —9/2 0 2 03606 —0.9267 4.227 —6.133 1.160 —0.745 1.242 1.366 1.863 1.473
3 9/2 —9/2 0 2 03749 —0.9334 4568 —6.421 1.357 —0.497 1.229 1.407 2.139 1.749
8 9/2 —9/2 0 0 04210 —-1.0000 5.759 —7.725 1.897 —0.068 1.178 1.467 2.576 2.186
8 9/2 7/2 8 8 0.2806 —1.0000 2.560 —3.433 0.843 —0.030 1.529 1.467 ' 2966 2.576
1 9/2 —7/2 1 1 0.2862 —1.0000 2.663 —3.501 0.912 0.073 1.514 1474 3.060 2.670
0 1/2 —1/2 0 0 0.3008 1.0000 2.941 —3.680 1.101 0.362 1477 1491 3330 2.940
0 9/2 —9/2 0 0 04496 —1.0000 6.568 —8.249 2.444 0.763 1.172 1490 3.424 3.034
2 1/2 —1/2 0 0 0.3131 1.0000 3.185 —3.830 1.270 0.626 1.451 1.505 3.581 3.191
9 9/2 7/2 8 8 03203 -—1.0000 3.334 —3918 1375 0.791 1437 1.512 3.740 3.350
2 3/2 1/2 2 2 02924 1.0000 2.778 —3.130 1.214 0.862 1.549 1.525 3.937 3.547
4 1/2 —1/2 0 0 0.3361 1.0000 3.672 —4.112 1.616 1.176 1410 1.527 4.113 3.723
3 3/2 1/2 2 2 0.3047 1.0000 3.017 —3.261 1.386 1.142 1.518 1.537 4.196 3.806
6 1/2 —1/2 0 0 03636 - 1.0000 4.296 —4.448 2.072 1920 1.372 1.549 4.841 4.451
1 3/2 —1/2 1 103321 1.0000 3.584 —3.555 1.806 1.836 1460 1.560 4.856 4.466
2 9/2 —5/2 2 2 02736 —1.0000 2432 -—-2.092 1.386 1727 1.713 1.594 5.034 4.644
7 9/2 5/2 7 7 02843 —1.0000 2.627 —2.174 1.540 1.993 1.673 1.602 5.268 4.878
0 3/2 —-3/2 0 0 0.3187 1.0000 3.301 —2.924 1.839 2.216 1.530 1.587 5.333 4.943
0 7/2 =7/2 0 0 0.2652 —1.0000 2.286 —1.622 1475 2.139 1798 1.632 5.568 5.178
2 772 =17)2 0 0 0.2781 —1.0000 2514 —1.701 1.663 2476 1743 1.640 5.859 5.469
1 5/2 —=3/2 o1 1 0.2976 1.0000 2.878 —1.820 1.968 3.026 1.673 1.651 6.350 5.960
4 7/2 —=17/2 0 0 03022 —1.0000 2969 —1.849 2.044 3.165 1.659 1.653 6477 6.087
6 7/2 5/2 6 6 02337 —1.0000 1.775 —0.357 1.596 3.013 2.135 1.753 6.902 6.512
0 5/2 —5/2 0 0 0.2748 1.0000 2.454 —0.840 2.034 3.647 1.847 1.720  7.215 6.825
1 7/2 —5/2 1 1 0.2589 —1.0000 2.179 —0.396 1.981 3764 1971 1.758 7.493 7.103
A =100, four extra nucleons, j=9/2
0 9/2 7/2 -7/2 -9/2 0 0 0448 —1.0000 6.540 —10.975 1.052 —3.383 2.172 2.448 1.237 0.000
2 9/2 772 -=7/2 =9/2 0 0 04653 —1.0000 7.037 —11.385 1.345 —3.003 2.158 2479 1.634 0.397
4 9/2 7/2 —7/2 —9/2 0 0 04963 —1.0000 8006 —12.143 1.934 —2203 2.136 2.531 2464 1.227
0 3/2 1/2 —-1/2 -=3/2 0 0 04340 ~ 1.0000 6.121 —9.291 1476 —1.694 2334 2.531 3.171 1.934
2 3/2 1/2 —-1/2 =3/2 0 0 0.4500 1.0000 6.581 —9.634 1.764 —1.288 2310 2.558 3.580 2.343
6 9/2 7/2 -=7/2 -9/2 0 0 0.5327 —1.0000 9.221 —13.033 2.705 —1.106 2.117 2.584 3.595 2.358
2 9/2 772 =7/2 -9/2 0 2 05033 —09342 8232 —11.504 2480 —0.792 2.194 2.523 3.926 2.689
4 3/2 172 -—-1/2 =3/2 O 0 0.4802 1.0000 7.493 —10.279 2353 —0.433 2.272 2.604 4.443 3.206
1 9/2 7/2 =5/2 -9/2 1 1 04494 -—1.0000 6.564 —8.934 2097 —0.273 2376 2.610 4.712 3.475
8 9/2 7/2 -7/2 -9/2 0 0 0.5699 —1.0000 10.557 —13.945 3.585 0.198 2.103 2.629 4.930 3.693
"2 9/2 7/2 -=5/2 —-9/2 1 1 04583 —1.0000 6.823 —9.109 2.269 —0.016 2.362 2.622 4.968 3.731
8 9/2 7/2 5/2 —-5/2 8 8 03917 —1.0000 4988 —3.594 3.191 4.584 2975 2909 10.468 9.231
1 9/2 5/2 -—-5/2 -=7/2 1 1 03963 —1.0000 5.104 —3.636 3.286 4.754 2956 2913 10.623 9.386

mately the same value as used here has been used with
success in the theory of fission.!

The parameter B [Eq. (3)] entets the coefficient of
the rotational energy term W3 [Eq. (18) and caption of
Table IIT]. It is proportional to the moment of inertia
of the nucleus and determines through g, the mass in-

3 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

volved in the collective nuclear rotation. B is also
contained in nearly every off-diagonal term [Egs. (19)],
so that the validity of the approximation depends on the
size of B. Since B~A5%?, the strong coupling approxi-
mation improves rapidly with increasing A. The values
of #2/B used in the calculations at 4 =100 and 200 are
given in Table IV.
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The parameter 7' (same as Bohr’s k/2) appears in the
interaction term W, [Eq. (14)]. From the averaging
process of the first-order Rainwater interaction term,
T is defined by .

T=3VoR¢| pui(Ro) |7, (25)

where p,.i(Ro) is the value of the radial part of the
particle wave function at the edge of the nuclear well,
Ry is the radius of the well, and V, the depth of the
well. In the limit of a deep well, T approaches particle
kinetic energy. For a nuclear well, Feenberg and
Hammack! estimate that T is reduced by about 25
percent from its deep well value. It is at any rate a
rather uncertain quantity. In the calculations described
here, T was taken to be constant and equal to 20 Mev.

A simple method for a first check of the validity of
the strong coupling approximation has been suggested
by Davidson and Feenberg.* This is a comparison of
the calculated diagonal matrix element of the Hamil-
tonian in first order (the E— E, of Table III) with the
zero-order energy, (E—E,)o=(5/2)%hw, the zero-point
energy of the lowest mode: of surface vibration. The
energy fiw is given by Eq. (1). This comparison is shown
in Table V, where it is seen that for one extra particle
the ground-state energy (surface energy-interaction
energy) is increased in first order, while for two or
more extra particles the energy is lowered in first order.
It can be concluded, therefore, that the strong coupling
approximation is probably poor for only one extra
nucleon outside closed shells and that it is perhaps good
for two or more extra nucleons. The fact that the energy
is raised in first order does not prove that the approxi-
mation is useless. Level order might be given correctly,
for example, although level spacing would be greatly
in error.*

The off-diagonal terms [Egs. (19)] contain largely
terms from the surface rotational energy. A criterion of
validity of the approximation should therefore be that
the rotational terms which are included, W3, are small
compared to the surface distortion energy, W, and the
interaction energy, Ws; i.e., W;&KWj or |W,|. For the
most favorable one-particle case treated, 4=200,
7=9/2, W3 is about 1 of W; or |W,] in the ground

TasiLE IV. Energy parameters of liquid droplet model. 4 =mass
number; C and B defined by Egs. (2) and (3) in text.

A C (Mev) #2/B (Mev)
10 21.2
30 41.5
50 54.0 0.251
75 62.5
100 65.6 0.0794
150 69.6
200 62.9 0.0249
240 56.3

14 J. Davidson and E. Feenberg, Phys. Rev. 89, 856 (1953).

* A. Bohr and B. Mottelson (private communication) find that
improved expressions for Eg and E, lead to a lowering of the
energy also for one extra nucleon.

TaBLE V. Ground state energies in zero order, and in first-
order strong coupling approximation. Zero-order energy, E©
=(5/2)hw=1zero-point vibrational energy about spherical equi-
librium position. First-order energy, E® =surface energy -+
interaction energy in strong coupling approximation. Energies
are given in Mev.

A =100, E® =5.73 Mev A =200, E® =3.14 Mev

No. of extra

nucleons i EW  EW—E®© i EW  EW—EGO
1 3/2 492 4178
: 5/2 858 +2.85 5/2. 416 +1.02
’ 7/2  3.83 +0.69
9/2 798 +2.25 9/2 3.68 +0.54
2 5/2 5.18 —0.55 5/2 162 —1.52
9/2 371 =202 9/2 039 =275
4 9/2 124 —449
6 9/2 124 —449
8 9/2 3711 -202

state. W3 becomes relatively larger for the excited states.
For two extra particles at the same 4 and 7, however,
W3 is about 1/9 of Wy and % of |W,|. The approxi-
mation for two extra particles appears definitely better
than for one by this criterion. A corollary to the rule
that W3 should be relatively small is the rule that the
equilibrium deformation @ should not be greatly
altered by the inclusion of the rotation terms in W.
Calling Byatic the equilibrium 8 calculated from Wi+W,
only, it is found that the inclusion of the rotation
greatly increases this value for one extra nucleon, but
increases it only slightly for two extra nucleons.

Some data indicative of the validity of the approxi-
mation are collected in Table VI. It is clear that the
approximation is considerably better for two extra
nucleons than for one. For the particular two-particle
case listed in Table VI, the effect of U, on the three
lowest I=0 states, at 0, 1.18, and 4.39 Mev, was
calculated in more detail. The ground state (5/2, —5/2)
was shifted downward by 0.02 Mev, the state [(3, —1)
etc. - - -] was shifted down by 0.08 Mev, and the state

3, —3%) was shifted up to 0.10 Mev. The perturbation
U, mixed into the ground state only 0.6 percent of the
state (3, —%) and less than 0.1 percent of the state
(3, —3%), a negligible effect. The result would not be
so favorable at A=100, where %#2/B is three times
greater than at 4=200, and the off-diagonal matrix
elements are greater by about the same factor.

The situation with the distance to the first excited
state is not so favorable, however. Since the level
spacing depends principally on the rotation term Wi,
it is also small compared to W, and |W.| and is likely
to be strongly affected by the off-diagonal terms. This
idea was tested by . first-order perturbation calcula-
tions on the lowest two states of each of the two and
four extra particle cases shown in Fig. 2. U, mixes the
lowest two states with a higher pair of levels with spin
0 and 2 and about the same separation. Therefore, it
has the effect to lower the ground and first excited
states by about the same amount and not alter their
spacing appreciably. U, and U, behave like Uy in this
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TasLE VI. Validity of the strong coupling approximation
(all energies in Mev).

A =100, one A =200, one A =200, two. ,
extra particle, extra particle, extra particles,
j=5/2 j=5/2 j=5/2
Wi 1.98 1.25 2.18
Ground state W —1.78 —1.41 -3.73
W3 1.09 0.54 0.31
Total zero-order energy 5.73 3.14 3.14
Total first-order energy 8.58 4.16 1.62
Approx. spacing of )
lowest levels connected
by off-diagonal terms 1.0 0.7 1.7
Rough average U, — - 0.5
values of off- U, 1.0 0.3 0.2
diagonal terms U 0.3 <0.3 <2.0
between lowest  Us «0.3 <0.08 <0.05
connected states Us — ~— <0.05
Bstati 0.111 0.111 0.222
e 0.247 0.196 0.259

respect, and are smaller. U; and Uj;, however, connect
the first excited level with a higher excited level of
spin 2, but have no nonvanishing matrix elements
with the ground state. U, and Us, therefore, act to
lower the first excited energy and decrease the spacing
of the lowest two states. The effect is very appreciable,
as shown in Table VII. The energy spacing is diminished
by 15 percent to 30 percent. The shift is small compared
to the spacing of the levels mixed (so that the wave
functions do not mix to a large extent), but it is an
appreciable fraction of the lowest level spacing. In
considering the validity of the approximation, therefore,
it is important to refer to the particular nuclear prop-
erties of interest.

The computed distortions in the first-order strong
coupling approximation are too large, because the
coefficient of 8 in the interaction term W is maximized
by the ground-state quantum numbers Q;. For any
admixture of other Q;, the coefficient will be decreased,
and the computed equilibrium distortion, therefore,
will be decreased.

It can be concluded that explicit calculation with the
strong coupling approximation skould be valid for
several extra nucleons and for 42 100. In addition, the
ideas of the strong coupling model, e.g., that nuclear
distortion plays an important role in even nuclei, should
be valid after the strong coupling approximation in first
order breaks down. A distortion 320.2 appears to be
necessary for the validity of the approximation in first
order. :

III. CORRELATION OF EXCITATION ENERGY WITH
QUADRUPOLE MOMENTS

Both the first excited energies of even nuclei and the
quadrupole moments (largely of odd-even nuclei) are
known to exhibit a regular behavior as a function of ¥V
and Z, each with marked shell structure effects. The
collective model discussed above predicts that the first
excited energy of even nuclei depends principally on the

equilibrium value of the nuclear distortion, provided
the distortion is large enough. Likewise quadrupole
moments, especially the large moments, are most easily
interpreted in terms of a distorted nucleus. Because of
the observed regularities in both .of these quantities,
it is natural to test the idea of the collective model and
the idea that the nuclear distortion is a reasonably
smooth function of N and Z for all nuclei by attempting
to correlate the known quadrupole moments with the
known first excited energies of even nuclei.

In order to carry out this correlation, we develop
highly simplified formulas for these two quantities in
terms of the nuclear distortion. On the basis of the
detailed calculations summarized in Table III, the
following assumptions and simplifications are made for
the even nuclei. The distortion parameters 8;, y; are
taken to be the same in the ground and first excited
state. In fact, 8; is somewhat larger for the first excited
level. The zero-point vibration energies Eg and E, are
taken to be the same in ground and first excited state.
The quantum numbers of the ground state are taken
to be K=Q=0, I=0, and of the first excited state,
K=Q=0, I=2. The extra nucleon states are assumed
the same for ground and first excited state. As a result
of these simplifications, only the rotation term W
differs between the ground and first excited states.
The first excited energy is, therefore,

I

1 » 1 1
16 Bﬂf(sin’(yl—— 20/3) sint(yr— 21r/3))
X{I+y-x>
+ f(particle quantum numbers) ],
—-[I{I+1)—K?
+ f(particle quantum numbers) Jo}.

(26)

Inserting the values y,=0 or w, I,=2, I,=0, K,=K,
=0, #*/B=171/4%% Mev, and f, (particle quantum

TasLE VII. First-order corrections to detailed calculations.

First excited

energy in Shift due Energy in
first order to U1+4-U3s second Percent
Example (Mev) (Mev) order decrease

A =100, two
extra nucleons, 0.581 —0.119 0.462 20
7=5/2
A =100, two
extra nucleons, 0.529 —0.161 0.368 30
7=9/2
A =200, two
extra nucleons, 0.315 —0.042 0.273 13
j=5/2
A =200, two
extra nucleons, 0.248 —0.039 0.209 16
7=9/2
A =100, four
extra nucleons, 0.397 —0.064 0.333 16
7=9/2




FIRST EXCITED STATES OF EVEN-EVEN NUCLEI 41
O-a T T T Al T ¥ T v T v T T Al
INTRINSIG NUCLEAR DISTORTION
VS .
orr NEUTRON NUMBER ]
o FROM EVEN NUCLE! FIRST EXCITED ENERGY 6% S8
. e DITTO, BUT UNCERTAIN o70
06 - O FROM POSITIVE QUADRUPOLE MOMENTS "‘E\ ~
® FROM NEGATIVE QUADRUPOLE MOMENTS Gb
(POINTS LABELED WITH Z VALUES) -
74
oSt |
24 2, 2
’0.4 ~ 22 %?:%0 e 71 473 76 -
B 4 480 70%
l 03 t o &\ ’;' \\ ‘Q@ )AG N
% fo N @
o2} 0 { hars - .
! \ 84
= % &9 5 %63 \ g2
a9 & 1 \
o | e«z} 5B SN ey \ -
+32 / .‘l‘ ;i 5‘? / é?o .
0 ] 1 1 ] naéaﬁ Yo % .{1515 ELLZ« i ! 1 N\ A83) )
o 0 20 {3 40 s'b 60 70 80 90 00 10 azotnao 140 150
N.—-——>

F16. 4. Correlation of even nuclei first excited levels with quadrupole moments. The circled points are com-
puted from Eq. (30a) in the text and represent upper limits to the nuclear distortion as computed from energy
levels. The least accurate points are those near the maxima at N =100 and N = 145, because here the energies
are minimum and are least well known. The squared points are computed from quadrupole moments. Experi-
mental errors are indicated on those points where they are known (to this author). Vertical arrows indicate
unknown experimental errors. The distortions computed from quadrupole moments are seen to exhibit a
regular behavior vs N only for N>50. If (a) the interpretation of the nature of the first excited states of even
nuclei is correct, (b) quadrupole moments give a correct indication of the magnitude of the nuclear distortion,
and (c) neighboring even-even and odd-even nuclei have comparable distortions, then Eq. (30a) overestimates
the nuclear distortion by a factor of about 1.7 for large distortions and by very much more for small distortions.
The factor of 1.7 is reasonable within the framework of the strong coupling approximation; factors much

greater than 2 are not.

numbers) = f, (particle quantum numbers), one gets
E\=#/BB2=171/4%382 Mev. 27)

In order to get an equally simple formula for the
quadrupole moment, it is assumed that the nuclear
charge is uniformly distributed over a cylindrically
symmetric ellipsoid, i.e., that the contribution to Q
from the nonspherical distribution of extra nucleons is
small compared to the contribution from the distorted
core. For a stationary ellipsoid one obtains to first
order in B,

Qustar=(2/5)ZR(3/2)(5/7)*B cosy.  (28a)

A distortion B corresponds to a fractional extension of
the radius along the symmetry axis of the ellipsoid of
3(5/m)¥B cosy=0.6318 cosy and a fractional extension
perpendicular to the symmetry axis of

—(1/4)(5/7)*B cosy= —0.3158 cosy.

Positive cosy corresponds to the cigar shape (prolate)
and negative cosy to the pancake shape (oblate).
Putting the undistorted nuclear radius R,=1.40
X10~84% cm, we have o

Qstat=0.0148Z 4% cosvy. (28b)

Because of the quantum-mechanical fluctuations in the
direction of I, the expectation value of Q is reduced? by
the factor I(21—1)/[(I+1)(21+43)]. Therefore, one

obtains finally

1(2I—1)
Qobs= 001482/{ o
(I+1)(2I+

Formulas (27) and (29) are inverted to define nuclear
distortions: i

—f3 cosy. (29)
3)

- 13.1
1Al =A5/“[E1(Mev)]3" (309
STSIHN@IS) | bame.  Gob)
zZAY I(2I-1)

If it is assumed that the total quadrupole moment is the
sum of a moment due to the distorted core plus a
moment due to the nonspherical distribution of extra
protons outside closed shells, then 8¢ may be too large
or too small depending on whether these two moments
have the same or opposite sign. (Note that 8¢ has the
sign of Q, whereas the 8 in Bohr’s theory is intrinsically
positive.) ;

The distortion |8| computed from the energy levels
is always too large, and in general very much too large:
First, within the first-order approximation, Eq. (30a)
is an oversimplification, and it can be shown that
[B| >B (first excited state)>p (ground state). When
the strong coupling approximation is very good, and 8
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F16. 5. Energy surface of first excited states of even nuclei for
idealized nuclei. Shells for both neutrons-and protons are assumed
to consist of states of §=7/2 only. The nuclear distortion is
computed in the strong coupling limit ignoring the rotational
energy term in W. The excitation energy is computed in the same
limit by means of Eq. (30a) in the text. The lines separating the
shaded and unshaded regions are loci of equal energy of the
prolate and oblate forms of nuclear distortion. The strong coupling
limit used is not even approximately valid at the double magic
nuclei, where it yields infinite spikes. The opposite limit of weak
coupling yields a finite maximum at the double magic nuclei
given by Eq. (1). This maximum varies approximately as 475/¢,
while the energy surface plotted varies as 4753, The empirical
energy surface (Scharff-Goldhaber) shows a similar behavior,
with spikes at the double magic nuclei and ridges along the
magic numbers.

is large, then |B| is larger than B (ground state) by
only a few percent. When the strong coupling approxi-
-mation is barely valid, i.e., W3 is comparable to W, and
|W.|, |B| may be too large by up to a factor two.
Next, the second-order corrections, as indicated in
Table VII, will act to lower the numerator of Eq.
(30a). For a 30 percent decrease in energy spacing due
to second-order terms, Eq. (30a) will overestimate 3 by
20 percent. An approximate formula taking into account
the effect of U, only is

13.1

Bl = ———T1-(+ O =2+ /3T @1)
AL E,(Mev) J*
U, connects states with one Q; differing by one, other
quantum numbers unchanged. Q above is the larger of
the two different Q;; j is associated with that particle
whose Q is changed. T is the ratio of the energy spacing
of the connected states to the energy spacing of the
ground and first excited states. For example, for
j=0=5/2, =5, Eq. (31) gives a value smaller than
Eq. (30a) by 19 percent. Finally, the admixture of
states of K=1 or 2 to the first excited state (K=0)
will lower ||, since the numerator of Eq. (30a) contains
effectively [I(I+1)— K>

Unfortunately, no simple or calculable expressions
exist for applying these three corrections to Eq. (30a)
for nuclei in general. We are forced, therefore, to use
Eq. (30a) for the correlation, but with the anticipation
that it will yield values of |B| considerably too large by
roughly 10 to 50 percent if the strong coupling picture
is valid ; by more if it is not. For any detailed calculation

FORD

on specific nuclei, this rough formula would, of course,
have to be improved.

_Figure 4 gives the computed distortions |B8q| and
|B| vs neutron number N for known quadrupole mo-
ments and first excited states of even nuclei beyond
N=28. The first evident feature is that |B| is every-
where considerably greater than |Be|, as expected. It
is larger by nearly a factor two at the maximum. The
two sets of data represented in Fig. 4 show qualitative
similarities, however. Just beyond neutron number 82,
both curves rise precipitously, reaching a maximum at
the same place, as nearly as can be guessed, and falling
more slowly to minima at neutron number 126. The
neutron shell 50 to 82 is more confused because the
line of stable nuclei crosses proton number 50 in this
shell. Curves of |B]| »s N join smoothly points for
Z=250, for Z=50+2, and for Z=35044, with a sharp
decrease at proton number 50 as well as at neutron
magic numbers. This behavior fits the simple ideas of
the collective model (Fig. 5). In the same region |Be|
appears to have two maxima and to reach zero between.

-A possible explanation for this is offered schematically

in Fig. 6. The collective model predicts a change in the
sign of Q in the middle of a shell where the distortion is
large. At this point the prolate and oblate forms are of
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Fi1c. 6. Prolate-oblate crossover in nuclei. The diagrams show
schematically how a mixing of the prolate and oblate forms of
distortion in the region where these are of nearly equal energy
could yield small quadrupole moments despite a large intrinsic
distortion. Such a mixing requires an interaction between states
of different Q;. This interaction is afforded in the strong coupling
theory by the off-diagonal terms Uo, U, and Us, Eqgs. (19). Also
a breakdown of the approximation that the particle motion can
be treated relative to the ellipsoid axes would permit such mixing.
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F1c. 7. Correlation of even nuclei energy levels with isotope shifts. 82 is taken to be |8|? in order to bring
the maximum distortions calculated from energy levels and from quadrupole moments into agreement. The
solid lines connect computed distortions for isotopes of the same element. The dashed lines represent the slope
[d(8?/dN]z taken from isotope shifts. The positions vertically of the dashed lines on the graph are meaningless
—only the slopes are to be compared. A single adjustable parameter in the isotope shift data fitted at Pb208
brings all the slopes into agreement except in the region below N =65, where the isotope shift slopes are slightly
too small, i.e., too negative. (The fluctuations of the energy level points at Z=92 and 94 are probably not
significant. These correspond to energy levels around 40 kev which are not accurately known. The curves
(% s N appear to be reaching another maximum in this region.)

equal energy and the simple model predicts an abrupt
change from one shape to the other. If the nuclear
ground state in this region is a mixture of the nearly
equal energy prolate and oblate forms, a very small
measured quadrupole moment will result, while the
intrinsic distortion, as measured, for example, by the
energy levels, will remain large.

Wilets has suggested that nuclear distortion may
account for the regularities! in the isotope shift
anomalies. Isotope shifts could throw light on the
prolate-oblate crossover question discussed above and
on the question whether even nuclei distortions may be
larger than odd-even distortions. An analysis which
will be published elsewhere!® shows that the isotope
shift anomalies are best explained in terms of a distor-
tion with a shape vs N and Z derived from energy levels
of even nuclei but with a lower magnitude corresponding
to that found from quadrupole moments.

The energy level—isotope shift correlation is shown
in Fig. 7, in which the values of |3|%found from energy
levels are arbitrarily reduced by a factor of three
everywhere to bring them into agreement with the
quadrupole moments at their maximum. The isotope
shift data are also altered with a single adjustable
parameter chosen to make the anomaly positive at

15.P, Brix and H. Kopfermann, Phys. Rev. 85, 1050 (1952)
16 Wilets, Hill, and Ford (to be published).

Pb20-208 and negative at Pb208-206, The isotope shifts
yield only the slope [d(8?)/dN ]z, and the magnitude of
the line segments plotted are meaningless. The slopes,
however, show a generally reasonable agreement with
the trend of points calculated from energy levels.
Especially to be noted are the large positive slopes just
beyond N =82 and the smaller negative slopes below
N=126, as were observed also in the quadrupole
moment data.

On the basis of the results shown in Fig. 1, certain
regularities in the low levels of odd-even nuclei can
also be predicted. With each low-lying single particle
level of spin I=j should be associated a level of spin
I= j+1, same parity, higher by the order of magnitude
of neighboring even-even first excited energies. To the
same approximation as Eq. (27), the energy difference
of these level pairs is given by

32)

2j+2
AEjp, = ~—~)

BB2\ 6
IV. CONCLUSIONS

The successes of the collective model as applied to the
low states of even nuclei are (a) the order of levels for
the first few levels agrees with experiment; (b) the
spacing of the 04+-24 and 2+-4+4 levels are com-
parable, as observed experimentally; (c) the first
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excited energy surface has the same qualitative features
as the experimental energy surface (see Fig. 5); and
(d) details of the shape of the curve of distortion vs N
in the neutron shell 82 to 126 as calculated from energy
levels agree with the curves found from quadrupole
moments and from isotope shifts.

The serious defects of the model is that nuclear
distortions calculated from first principles appear to be
larger than is reasonable, implying that the particle-to-
surface interaction may be weaker than is assumed.
Because Eq. (30a) gives only an upper limit to 8, the
large distortions calculated from even nuclei energy
levels do not necessarily speak against the validity of
the strong coupling approximation. The required cor-
rection of nearly a factor two is larger than expected,
however, for the case that the strong coupling approxi-

mation is valid (for wave functions) in first order. The
very high first excited state of Pb is also a particular
defect of the theory.

On the basis of Figs. 4 and 7, large quadrupole
moments (5-8 barns) are predicted near uranium, and
large isotope shifts (about twice the theoretical value)
are predicted near radium.

I am indebted to Professor E. Feenberg and Dr. A.
De Shalit, Dr. G. Scharff-Goldhaber, and Dr. M.
Goldhaber, for helpful comments and suggestions; to
G. Scharff-Goldhaber for supplying a summary of even
nuclei energy levels in advance of publication and to
Dr. L. Wilets for information on isotope shifts. Espe-
cially it is a pleasure to acknowledge my indebtedness
to Professor J. A. Wheeler for many stimulating and
valuable discussions.
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The relative rates of local neutron production in Al, Cu, Sn, and Pb were obtained at geomagnetic lati-
tudes A=40° and 54° at atmospheric depth 312 g- cm‘2 (30 000 ft pressure altltude) The latitude and alti-
tude dependence of local neutron production in carbon and lead were measured in the latitude interval

°-54° with pile geometries containing BF; proportional counters. From these observations several results

were obtained:

1. The relative neutron multiplicities in elements were measured and found to be in good agreement with

reported low altitude observations.

2. A neutron transition maximum in lead at ~20 g-cm™ Pb was obtained at 33 000 ft pressure altitude.

3. The absorption mean free path for the neutron producing radiation in lead was 350 g-cm™2.

4. An anomalous air absorption mean free path for the nucleonic component has been found for measure-
ments derived from local neutron production in lead at A2>40°.

5. Aside from the absorption anomaly in elements of hlgh atomic weight 4, local neutron production in
elements of high A as a function of A is in fair agreement with the free air neutron latitude effect.

6. Local production in carbon as a function of X and altitude is in agreement with corresponding free air

neutron measurements.

I. INTRODUCTION

HE production and development of the inter-
mediate and low energy portion of the nucleonic
component has been studied by observing nuclear dis-
integrations and neutrons as a function of both altitude
and latitude. The behavior of this low energy component
may also be explored by determining the properties of
nuclear disintegrations produced in a local mass ab-
sorber by incident nucleons. We shall define this process
as local nuclear disintegration production. These local
disintegrations principally yield neutrons, protons, and
alpha-particles, i.e., disintegration products. Within a
large local absorber mass the charged particles of low
energy disappear by ionization energy loss and are
* Work initiated under U. S. Office of Naval Research contract

and continued with assistance of Office of Scientific Research,
A.R.D.C,, U. S. Air Force.

not readily detected outside the local mass. The dis-
integration neutrons, however, escape from the local
mass and may be detected. We define the observed
neutron production as local neutron production.

In this paper we describe measurements of local
neutron production in the elements C, Al, Cu, Sn, and
Pb as a function of geomagnetic latltude and asa func-
tion of altitude in the range of atmospheric depths 200
to 600 g-cm™2. From these measurements we determine
the average neutron multiplicity from low energy nu-
clear disintegrations. The measurements were obtained
in a series of aircraft flights from January, 1948 through
November, 1949.

Local neutron production has been extensively in-
vestigated at sea level and mountain altitudes by the
Cornell University and Yale groups for carbon and lead
close to the latitudes A=50—52°N. Neutron produc-



