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The First Excited States of Even-Even Nuclei
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The collective model of the nucleus, as expressed in A. Bohr s strong coupling approximation, ia applied
to the low levels of even-even nuclei. It yields the correct level order of the first few states, and predicts
the qualitative regularities of the first excited energy surface which are observed experimentally. The
approximation is shown to be much better for two or more extra nucleons than for one, but the first excited
energy spacing is sensitive to second-order corrections even for many extra nucleons. Predicted nuclear
distortions are larger than is reasonable (a} in the rare earth group, and (b) near doubly magic Pb"'. An
empirical way to correct for this discrepancy is to diminish the particle-to-surface coupling coeAicient.

A simple formula is given for computing an upper limit to the nuclear distortion from the first excited
energy of even nuclei. After correction by a single adjustable parameter, this formula yields a fair correlation
with quadrupole moments and a better correlation with isotope shifts in the region 50(1V (126.The energy
level behavior beyond Pb gives a prediction of quadrupole moment and isotope shift behavior for 3f) 126,
Certain regularities in the levels of odd-even nuclei are also predicted.

I. I5TRODUCTION

l
'HE first excited levels of. even-even nuclei (here-

after called simply even nuclei) are known to
exhibit regularities in spin and parity, '' and also in
energy. ' A large majority of these levels whre spin and
parity are known have spin 2, even parity. (There is
also a tendency, less marked, for the second excited
states of even nuclei to have spin 4, even parity. ") As
a function of mass number A, the energy of the first
excited states of even nuclei shows a generally decreas-
ing trend with A, but with large variations around the
mean. These variations are strongly correlated with the
magic numbers, and show a remarkable regularity as
a function of N and Z.' Closing a shell in either N or
Z brings about a sharp increase in the energy of the
first excited state, and closing shells in both N and Z
(Ca", Pb"') a still sharper increase. Those nuclei
farthest from any magic number, the rare earths,
exhibit anomalously low energies of the first excited
state, as do the heaviest elements, around uranium. If
the data available for the energy of first excited states
of even nuclei are plotted as a function of both &V and
Z, an energy surface is suggested with sharp spikes at
the doubly magic nuclei, sharp ridges along the magic
numbers, and broad valleys between the magic numbers.

The predominance of spin-two, even parity first
excited levels of even nuclei has received theoretical
explanation in terms of the shell model (independent
nucleons in spherical well with particle interaction
added). ' ' It is assumed that the first excited level is
due to the excitation of a single pair of nucleons. Taking
a central attractive force of reasonable range between
the nucleons, it is found that the ground state is 0+,
as observed; the first excited state is 2+, as usually
observed; and the second excited state is 4+, as

' M. Goldhaber and A. W. Sunyar, Phys. Rev. 85, 906 (1951).' G. Scharff-Goldhaber, Phys. Rev. 87, 218 (1952).' B.H. Flowers, Phys. Rev. 86, 254 (1952).
4 D. Kurath, Phys. Rev. 87, 218 (1952).' A. De Shalit and M. Goldhaber (to be published).

sometimes observed. The 0—2 energy spacing for the
configuration (j)' is proportional to (2j+1) and equal
to about 1.5 Mev for j=&, a value large compared to
most experimental values. The 2—4 spacing for the (j)'
configuration is found to be much smaller than the 0—2

spacing. Experimentally the 0—2 and 2—4 spacings are
comparable. De Shalit and Goldhaber' argue that the
observed regularities in the first excited energies can
be explained qualitatively in terms of mixtures of states
of excitation of different neutron and proton pairs.
The farther one is from a magic number, the more
states will be mixed in the first excited level, and the
more will that, level be lowered due to their interaction,
other factors being equal. I

The preponderance of spin-two, even parity excited
levels receives a simple explanation also in terms of the
pure liquid droplet model. On this model, the lowest
excited state of collective oscillation is the I'2 ellipsoidal
mode, with spin two, even parity. Because of the.
collective description, however, no explanation of shell
structure effects can be given by this model. It gives
for the lowest excitation of vibrational energy,

Ei A(C/8) l—— (1)
where

C=C,„,t +C„„~, b=4rp'A'0 —(3/10ir)(Z'e'/rpA') (2)

8= z ppf p A ~'= mass coefFicient.

Here 6 is the nuclear surface tension, given empirically
by 4xrp'6 —15 Mev. pp is the density of nuclear matter,
and the nuclear radius is assumed to be equal to rpA'.
For medium and heavy nuclei, where the liquid droplet
model is expected to have validity, C—60 Mev and
does not vary much with A. In this range, therefore,

Zt~(100/AP ') Mev. (4)

No such simple law is obeyed. Sharp variations in the
empirical E1 due to shell structure are observed, and
the average E&, as nearly as it can be approximated,
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seems to decrease more rapidly with A than the negative
5/6 power in Eq. (4),

Both the independent particle model of the nucleus
and the liquid droplet model are inadequate to explain

,the observed regularities of the 6rst excited states of
even nuclei. Because of the marked shell structure
effects, the pure liquid droplet model is especially
inappropriate.

The purpose of the present article is to apply the
theory of the combined liquid droplet-free particle
model, hereafter called the collective mode), to the prob-
lem of the low states of even nuclei. This model has
been developed principally by Bohr' and by Hill and
Wheeler. ' According to the collective model, the rapid
variation of potential near the edge of the nucleus
creates a membrane-like surface capable of undergoing
oscillation (conventional liquid droplet model) and in
addition capable of being distorted by the action of the
"free" nucleons within the nucleus into a permanently
nonspherical shape. The nonsphericity is important for
quadrupole moments. In addition, the nuclear distortion
acts back on the particles and strongly affects the
interparticle coupling. The nonspherical shape of the
nucleus, therefore, will affect a large number of nuclear
properties. In particular, magnetic momentss and the
order of nuclear levels will require an understanding of
the nuclear surface effect for their explanation.

In the following sections, Bohr's theory of the
collective model is generalized to several extra nucleons
and applied in a straightforward way to even nuclei.
It is found that the model explains the qualitative
regularities of the 6rst excited states but requires
modification to give reasonable quantitative values for
the energies in the calculable cases near closed shells.
The model suggests a relation between the energy of the
erst excited state of even nuclei and the quadrupole
moments of neighboring odd-even nuclei. The regu-
larities in these two quantities are in good qualitative
agreement for the heavy nuclei, but the nuclear distor-
tion calculated from excitation energy of even nuclei is
considerably larger than the distortion calculated from
quadrupole moments.

II. SPIN, PARITY, AND ENERGY OF FIRST
EXCITED STATES

A. Bohr Theory for Single Extra Nucleon

Our starting point is the theory of the interaction of
extra nucleons with the nuclear surface, as developed
by Bohr, especially his strong coupling (of particle to
surface) approximation. The direct interaction among
the nucleons is neglected. In his treatment of a single
extra nucleon outside closed shells, this effect did not
enter. We neglect the direct interparticle interaction

6A. Bohr, Kgl. Danske Videnskab, Selskab. Mat. fys. Medd.
26, No. 14 (1952).

7 D. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).' A. Bohr, Phys. Rev. 81, 134 (1951).

because it is the aim here to show that the coupling of
particles to the nuclear surfac- and thereby indirectly
to each other —is alone sufhcient to account for the
general pattern of the low states of even nuclei. Since
the interparticle interaction tends to produce the same
order of levels as is derived here, its inclusion would
serve to reinforce the conclusions on level order derived
from the collective model alone. The inclusion of the
direct particle interaction in a calculation of the energy
of 6rst excited states would greatly complicate the
problem and prevent the remarkable result of the
collective model —the sensitive dependence of excitation
energy on the permanent distortion of the nucleus—
'from emerging with full clarity.

For ease in treating the case of strong coupling of
particle to surface, Bohr develops a Hamiltonian for
the nucleus in terms of particle coordinates relative to
nuclear axes (r', o.'), coordinates of distortion relative
to nuclear axes (P, y), and coordinates of the nuclear
axes relative to space axes (Euler angles 8,8s8s). A

principal underlying assumption is that the particle
motion is so rapid compared to the motion of the
nucleus as a whole, that, it is a good approximation to
treat the particle motion as if the nuclear axes are axed
in space. It is also assumed for convenience that very
strong spin-orbit interaction exists, and that j for each
particle remains a good quantum number. In fact, the
strong surface interaction will break down j-j coupling,
and it will be important to consider a 6nite spin-orbit
interaction in problems involving an odd number of
particles (e.g. , ground-state magnetic moments). For
even nuclei, however, the surface-induced pairing effect
is so strong that the magnitude of the spin-orbit
coupling is probably less important for the behavior of
the ground and erst excited state than in odd-even
nuclei. This point is being investigated in greater
detail, but the assumption that j is a good quantum
number is retained in the present paper.

The nuclear Hamiltonian is written as the sum of
three terms: B„, particle Hamiltonian; H„surface
Hamiltonian; and H;„~, interaction energy averaged
over the particle motion. The particle term is

H„=T„'+V'~„,n (prime denotes variable r'

relative to nuclear axes). (5)

Taking the nuclear surface relative to the nuclear axes
to be given by

R=Rsl1+Q„n„'Vs„(8', y') j,
where

. ns' ——n s' ——(1/V2) p sing, n~' ——n ~' ——0, ns'= p cosy,

we obtain the surface energy in terms of the distortion
coordinates p, y, and the Euler angles de6ning the
nuclear orientation in space:

H, = T;b+T„g+V..
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Surface vibration energy: J3 j& representation. These are"

1 8 8 1 1 8 8 h')
T;b —————p'—+—. —sin3y —. (8) Ho=Hn+T»b+ v.+I + II-1(~+1)

28 P48P BP P'sin3yBy By &4@&

Surface rotational energy:

T...= p (O'Q, '/2s. ).

Surface potential energy:

V, =-',CP'. (10)

Ip'+—i (i+1) jp'—
—(j+p)(~+p)( —1)' '&(~k, )&(& p))

+(&'/2'p)(lp —jp)'

3Q' —j(j+1)
+P cosy(5/~)&T, (16).

4j(j+1)

8 and C are the quantities deined by Eqs. (3) and (2).
8„ is the effective moment of inertia of the nuclear
surface about the ft axis and is given by

~= Us+ Up+ ~p,

U'=(1 —D)
I 'J'——Ipi p

—
I&

dg Sp )
(17a)

S„=48/' sin'Ly —(2m/3) ~).

h' TP sing )
+(15/ )' . . IU' —j ') (17b)

&4dg 4dp 4j(j+1)](12)Q.—I.—g.,

(11)
where D is the projection operator onto the jpI, (Q, E)

The component of the rotational angular momentum of representation,
the nuclear surface, Q„, is given simply by

where I„and j„are components of the total angular
momentum and of the angular momentum of the
particle along the egctear axes. The interaction energy,
taken to 6rst order in E.—Eo, is given by

( h' h'
q

E4y, 4a,)
(17c)

H' g= —UpRp5(r' Rp)g„a„'Yp„(—e', p'), (13)

where Vo is the depth of the nuclear potential well.
Consistent with the assumption of rapid particle motion
relative to nuclear vibration and rotation, this expres-
sion is averaged over particle coordinates r'0'q' before
insertion into the Hamiltonian. It yields

H&'&;
& (nl jmIH; &In——ljm)

j(j+1)—3m'
= —P cosy(5/m) &T

4j(j+1)
(14)

where T is an energy of the order of magnitude of the
particle kinetic energy, which depends on e and l but
is here assumed. to be a constant. (In the limit of
in6nite nuclear potential well depth, 7 is exactly the
particle kinetic energy. ) The matrix elements of Eq.
(13) which are diagonal in nlj but off-diagonal in m,

H&'&;„,=(nljm&IH' ~Inl jmp)
= p sin&(15/~) &TL(j~m&)(j™-1)

X(j~m,+1)(j~m,+2))& 8(m, , mp~2), (15)

must also be added to the Hamiltonian to account for
the mixing of diRerent ns's.

Bohr then splits the Hamiltonian into a zero-order
part Ho, which commutes with I3 and je, and a per-
turbing part U, with no diagonal matrix elements in an

The part of Ho enclosed in curly brackets, since it
contains no derivatives in P, p, may be regarded as an
effective surface potential. It is denoted by W(P, y),
and the values of P, p for which W is minimum, by
P', y'. W contains three parts in the following historical
order: (1) V, =~pCP'=classical liquid droplet surface
potential, minimum at P=0, appropriate for spherically
symmetric nuclei; (2) the interaction term H;, , linear
in P, which displaces the minimum of W to P' diferent
from zero, as considered, e.g. , by Rainwater" and by
Feenberg and Hammack;" (3) the rotational terms,
proportional to 1/P', introduced by Bohr to take proper
account of the total nuclear dynamics. For extremely
strong particle to surface coupling, the rotational terms
become negligible and one may revert to the simpler
theory which treats the nucleus as stationary in space.
Such a limit is not attained in actual nuclei. For rather
strong coupling, the rotational terms are smaller than
the surface potential V, or the interaction term H; ~,

but are not negligible. This appears to be the situation
for the low levels of most heavy nuclei (A& 150). The
strong coupling approximation is then valid (particle
motion rapid relative to nuclear rotation) and the
perturbation terms U are found to be small. For
larger rotation terms, the strong coupling approxima-
tion begins to fail, the amplitude of nuclear oscillation

~ These expressions are not exactly as given by Bohr, because
of the diagonal contribution of Bohr's U&, pointed out by Davidson
and Feenberg (see reference 14).' J. Rainwater, Phys. Rev. 79, 432 (1950)."E. Feenberg and K. C. Hammack, Phys. Rev. 81, 285 (1951).



becomes comparable to the mean distortion, and the
perturbation terms in U become large. This appears to
be the situation for 2&75. In the range 75&2&150,
the validity of the strong coupling approximation
depends on the number of extra nucleons participating
in the distortion. Adding extra nucleons increases the
values of II;„& and V„ increasing Pl, and thereby
decreasing the magnitude of the rotational kinetic
energy and of most of the terms in U.

B. Extension to Several Extra Nucleons

The extension of the theory to several extra nucleons
is straightforward. The interaction term becomes a sum
over the extra particles, and the components of rota-
tional angular momentum are given by

Insisting on I&, j,3, all i, as good quantum numbers of
the zero-order Hamiltonian, we obtain

II =Q II "'+T b+ —2Cp2+(k'/282)(I2 —Q j 2)'

1l' ll' l22
y

+-~ — +. ~LI(I+1)—I '+Z' j'(j'+1)—j"
2 E2s, 2a2)

—Q (j -0„)(j,„+Q..+1)b(j,, j.)B(0., 0,—1)
$22 Nl

—(I+2)(—1)' ""+"""B(& 2)

XP;(j,+-',)B(0,, —,)B($0,), L
—0.$))

30,2—j;(j,+1)
+ (5/2r) &Fp COSyg, , (18)

4j.v'+1)
where n is the number of extra nucleons, 5(j;, j ) =0
unless the quantum numbers (nl j);=(nl j)„„and
B(LQkf, t

—0&)) vanishes unless for every particle with
quantum numbers (nl jQ), except the 2th particle, there
is another particle with quantum numbers (nlj, —0).
Note that for a closed subshell all of the sums over
particle quantum numbers vanish. The perturbing
Hamiltonian is

~= ljo+ foal+ &2+ &2+ &4

II0 (1 D)(I2 /4@1+~/4@2)( Q j'1j 1+j'2j 2) (19a)

where D is the projection operator onto the Isji&
representation;

Ul= (1—D) L
—(&'/~1)I1Z'j'1 —(&'/@2)I2E*j'23' (19b)

) I22 h2

(4jel

Fp siny q
+(1~/~)' . . 1(j'1'—j'2'); (19c)

U2= ,'(k'-/S, h2—/S2) (I,2 I—2);

U4 2(h /~1 Il /~2)( Q j'lj 1 j'2j 2) ~

i yam

(19d)

(19e)

E=W(P1V1)+Ep-1 .1.+EP+E, (20)

Es and E~ are the energies of the P and y vibration
oscillations about the equilibrium value Pl, yl. These
can 'be found approximately by expanding W about
pl, yl to order (p —pl)' and (y —yl)', giving a harmonic
potential for the vibration levels. Introducing a corre-
sponding approximation in T;b, Bohr obtains

B'p ——(2h2/Bp12)+ A(np+-'2) p(B2W/Bp2) pl, l/Bgl, (21)

E =k(n„+1)L(B'W/By') p 1/BP1')', (22)

for the case y~=0 or x. For other values of y~, to the
same approximation, Ep is the same and-

E = {(9/8)(h2/BP12) cot23yl

+h(n„+ ', )$(B2W/-By2) pl~1/Bp12$&)

Here ep and e~ are integers equal to the number of
excitation quanta in the P and y vibrations. The level
spacing of the P and 7 vibrations is, in general, large
compared to the level spacing of different rotational-
states. This gives the important result that the rota, —

tional energy of the nuclear surface contributes signifi-

cantly to the ground and low excited states of nuclei,
while the vibration levels do not. The previous conclu-
sion that the liquid droplet model cannot take account
of shell structure properties is thereby altered com-
pletely. According to the collective model, the im-

portant contribution of the nuclear surface to low-lying
levels comes via rotational energy, but the rotational

As before U has no diagonal elements in the I3, j;3
representation. The terms Uo, ~ V4 are arranged more
or less in order of decreasing importance. Matrix ele-
ments of angular momenta appearing in U~, U2, and U~
have been given by Bohr. ' Matrix elements needed for
evaluating the eBect of Uo and U4 are

(0;0
~ j;1j„l+j,2 jm2 ~

0,&1, 0m&1)
= l L(j*+0+1)(j'~0') (j-~0-+1)(j-~0-)3'

(010m
~ jul jml ji2jm2

~

0 +~1 Qim~1)
=-', L(j;~0;+1)(j;~0;)(j,.~Q„+1)(j.~Q„)]-:.

Vo connects states for which two particles have 0;
changed by one, and Q, 0,=0 is unchanged. Ul con-
nects states for which one particle has 0, changed by
one, and E is changed by one. U2 connects states for
which one particle has 0, changed by two. U3 connects
states for which E is changed by two. U4 connects
states for which two particles have 0; changed by one,
and P; 0;=0 is changed by two.

In order to get numbers for the energy levels of
nuclei on this theory, one further approximation is
necessary. The energies will be given by
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energy depends sensitively on the nuclear distortion
(~p '), which in turn is determined by the orbits of
the extra nucleons. The collective distortions of the
nucleus in this respect, therefore, enhance and multiply
shell structure eGects, rather than smooth over them.
It is found also that the vibrational energies Ep&'& and
E~&'& are insensitive to changes in p~, y~, so that the
level order and level spacing are given to fair approxi-
mation by the potential minimum W(p&p&) alone. In
the calculations described in the next part, W alone
was 6rst minimized; then Ep and E~ were calculated. A
more consistent procedure would probably be to 6nd
pg rg by minimizing the entire energy expression (20).
This would yield slightly larger values of the nuclear
distortion than minimization of 8' alone.

Assuming for a moment that the perturbing terms U
have a small eHect on the solution of the zero-order
Hamiltonian Ho, as appears to be the case for heavy
nuclei containing several extra nucleons outside closed
shells, it is worth while to examine some of the basic
qualitative di6erences between the free particle model
alone and the collective model of the nucleus. (1)
According to the collective model, a given nuclear state
is characterized by more quantum numbers: I,- the
total angular momentum, and its component M along
an axis in space; E, the component of I along the 3-axis
of the distorted nucleus; QI . 0„, the components of

-- the particle angular momenta j; along the 3-axis of the
nucleus, and np, e~, the degrees of excitation of the
surface vibration. J, the total angular momentum of
the particles, is Not a good quantum number; nor is Q,
the angular momentum of the nuclear surface. (The
term nuclear surface rather than nuclear core is used

because the rotation is not a rigid body rotation, but
rather the rotation of a surface wave, whose amplitude-
depends on the distortion of the nucleus, vanishing for
a spherical nucleus. ) (2) The collective model predicts
a larger number of nuclear levels than does the free

particle model. (3) According to the collective model,

the mechanism of coupling of diferent nucleons is

entirely diferent from that predicted by the free

particle model. The interaction of particles with the
nuclear surface may dominate over the direct coupling
of particles to each other. Even if j remains a good

quantum number, j-j coupling is destroyed. For
example, on the independent particle model a state of

two particles each of spin 5/2, with net angular mo-

mentum zero, contains all m's from —5/2 to +5/2 in a
prescribed combination. According to the collective

model, the same two particles can combine to zero net
angular momentum with m's (0's) =&5/2 only. (Inclu-
sion of perturbation terms U mixes in 0's of &+2, &~2,

but in a proportion unrelated to the unique speci6cation
of j-j coupling. ) A more detailed discussion of new

features of the collective model is given by Hill and
Wheeler. '

Mf.V
A~ 100

j'5/2 1 j o 9/z I j 3/Z

Aa 200
I &~02 I jo 7/z I j~9/z I
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I/2

7/2
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5/z
l/2
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I I/z

9/z
——

9/z —'- 7/Z

FIG. 1. Predicted energy levels for one extra nucleon outside
closed shells. These comprise only those low levels in which the
particle states are unchanged. Additional results of detailed
calculations with Bohr strong coupling approximation are given
in Table III.

C. Numerical Results for Several Examples

Using the Bohr strong coupling approximation, the
low-lying levels have been computed for several hypo-
thetical nuclei containing one, two, or four extra
particles (of the same nucleon type) outside of a closed

shell, with the other nucleon type considered to remain
in a closed shell. Only those levels have been treated
for which the extra nucleons are not excited to higher

'single particle levels. This is expected to represent the
true situation for the lovr' levels of most even nuclei;
but it is not expected to yield the lowest excited states
for odd-even nuclei, because of the close spacing of the
free particle levels relative to the nuclear rotational
levels.

The results for the case of one extra nucleon are
given in Fig. 1. The ground state is seen to have spin
I= j, as already pointed out by Bohr. ' (For the case
j= 2, the ground-state degeneracy in 6rst order will be
important for magnetic moments (see reference 14).g
The erst excited states have spin j+1, the second
excited excited states, spin ~~ or spin j+2, and the
energy of the 6rst excited state increases with j. This
"6rst excited state" is the lowest. excited state with the
odd nucleon state unchanged. Lower excited states
could appear due to a transition of the odd nucleon to
another free particle state, which appears to be the
case in most odd-everi nuclei.

The Bohr strong coupling picture should give better
results for two extra nucleons than for one: First, the
high excitation energies of the magic nuclei suggest
that pairs of like nucleons are strongly coupled to zero
net angular momentum. Therefore, for even nuclei,
states due to excitation of nuclear rotational degrees of.

freedom could lie below levels due to transitions of the
extra nucleons among free particle states. Second, the
approximation itself is better because of the larger
nuclear distortions computed. The results of the compu-

tations for two and four extra nucleons are shown in

Fig. 2. The computed level order agrees very well with

available data. The computed spins for the ground,
Grst excited, and second excited states are 0, 2, 4, with

the third excited state being of spin 0, 2, or 6. In one
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2
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FIG. 2. Predicted energy levels for nuclei with two or four
nucleons outside closed shells. Additional results of detailed
calculations with Bohr strong coupling approximation are given
in Table III.

of the computed cases the level order is 0, 2, 0, 4. The
empirical data, which give 0; 2; 4 or 2 as the usual
level order, is summarized in Table I, from the recent
compilation by Scharff-ooldhaber. '

The computed level spacing appears to be of the
right order of magnitude, but probably too small. The
eRect of inclusion of the oR-diagonal terms in the
Hamiltonian in the strong coupling approximation
decreases the computed spacing, as discussed in part D
of this section. Detailed comparison of theory and
experiment for level spacing is possible only in the
vicinity of doubly magic Pb'", where the strong coup-
ling approximation should be reasonably good, and
where there exist simple examples of even nuclei with
only two or four nucleons outside closed shells. Even
here, however, the orbital assignments of the extra
nucleons are not unambiguous. Table II gives a com-
parison of observed first excited energies with those
calculated "from 6rst principles, " using the simplified
formula derived in part III, and a nuclear distortion
computed by minimizing the eRective surface potential
S' neglecting the rotational terms. For the simplest
example, Pb"' (Z=82, iV=124), the neutron orbital
assignment (p;) ' gives good agreement with experi-
ment. The assignment (its/9) ' gives considerably too
small an energy spacing; the assignment (pi) ' gives a
spherically symmetric nucleus with no low lying rota-
tational state. For Pb'", the neutron assignment

(pi) '(its~s) ' gives the best agreement with experiment.
For Po'", no reasonable assignment gives agreement.

It can be concluded from Table II that the computed
nuclear distortions are unreasonably large, and the
computed energies therefore too small, on the strong
coupling approximation. Halving the particle-to-surface
interaction, for example, would lower the values of P to
more reasonable magnitude, would bring the energies
of Pb and Pb into good agreement, with the con-
figurations (i~as) s ' and (i~sos) ~ ', and would bring the
predicted energy for Po'" more nearly into agreement
with experiment.

Also for many extra nucleons, distortions calculated
from first principles are too large. Assuming half-6lled

State

Predicted spin, collective
model, assuming no
nucleonic excitation

Ground 0+
First 2+

excited

Second 4+ (sometimes 0+)
excited

Observed spin"

0+, no known exceptions

2+, no known exceptions
above A = 75 among 37
examples

4+, ~40 percent
2+, ~40 percent
0, 1, 3, ~20 percent

Third
excited

0+, 2+, or 6+ if second
excited is 4+

(4+ if second excited
is 0+)

a See reference 2.

leveP' of Ca" at 3.8 Mev does agree with the prediction
of Eq. (1), however.

The numerical results of the detailed computations
using the Bohr strong coupling approximation are given
in Table III, for those levels diagrammed in Figs. 1 and
2, and also for higher levels. The higher levels are not
included in 'the figure because they are incomplete,
leaving out some levels, especially for the quantum
numbers E and 0 unequal, and also because the strong
coupling approximation breaks down at the higher
excitations. This is indicated by the fact that the
rotational energy term W3 becomes comparable in
magnitude to Wt and ~Ws~.

The allowed combinations of quantum numbers can
be found from the symmetry requirements on the wave
function discussed by Bohr. In particular, the wave
function must. be invariant under a rotation of x about
the 2-axis (his Et operator) and under a rotation of
s./2 about the 3-axis (his Es operator). These operators

"J.A. Harvey, Phys. Rev. 88, 162 (1952).

shells of iiy2 neutrons and h~J~2 protons, one 6nds the
maximum possible distortion in the rare earth group to
be P=1.0, or three times larger than the largest dis-
tortion computed from quadrupole moments. Again a
reduction in the particle-to-surface coupling appears to
be required. For this case of strong interaction, however,
the eRect of higher order terms in the interaction
energy should also be investigated.

Figure 3 shows the variation in energy of the first
excited state and in extra binding energy due to surface
coupling for even nuclei 61ling -a hypothetical shell of
j=9/2 particles. The closed shell eriergy levels in Fig. 3
and in Table II are computed from Eq. (1). It should
be noted that the large energy at double magic Pb"' is
an important defect of the theory. Two of the three
basic parameters of the collective model enter Eq. (1),
which should provide an Npper linzit for the excitation
energy of doubly magic nuclei. An increase by a factor
4 of the product (C)(5'/8) is required to secure agree-
ment with experiment for Pb" . A recently determined

TABLE I. Comparison of observed and predicted level
order for even nuclei.
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act on an n particle wave function in the (n,l;j,ns;)
representation as follows:

E,p( n, l,j,ns," )
= (—1)x'&3''+"'&z( ~ n, l;j, ns—, ~ "), (23a)

E x( n lj nr, )'

=e " /2'~' "'z( n, l,j,ns, '). (23b)

As a result the wave function must be of the form
(replacing n3; by 0,),

+sr'=( P + Z )V"a, ~(P V)
Q&0, K 0=0, X'&0

ENERGY OF FIRST EXCITED STATE

I -- I I

4 6 8
No. of extra nucleons

The values of ~IC Q~ are—restricted to even integers.

TABLE II. First excited states of selected even nuclei
near doubly magic Pb~'.

nucleus

82Pb122

82Pb124

Theoretical

Assumed
configuration

L(P3/2) 7/r
L(P3n) (P2/2) '7/v

[(Pw2) '(323/2) 27/v

[(pl/2) ($23/2) 7Ã
[(323/2) 7N

C(p»2) 27v
C(p»2) '7/v

[(313/2)

Distor-
tion,

P cosy

0.0
0.17
0.48
0.33
0.50

0.0
0.17
0.33

Experimental
Energy of energy of

erst excited first excited
state (Mev) state (Mev}

13
0.86
0.10
0.21
0.10

1.3
0.86
0.21

0.374

0.803

82Pb126

82Pb 128

82Pbiso

84PO126

84PO128

closed shell

C(gw2)'7/2
C(d w2)'7/v

L(g2/2) 7//
C(gw2)'(24/2) '7/v

C(&3/2)'7tv

C(h2/2)27/

C(t w2)'7~[(gwr)'7~
C(&w2)27/ C(dw2)'7, v

0.0
—0.30—0.24

-0.39—0.52
0.23

—0.30

—0.58—0.52

1.3

0.25
0.40

0.15
0.085
0.44

0.25

0.068
0.085

unknown

unknown

0.719

If E and 0 are separately good quantum numbers, as
in the 6rst-order approximation used here, then there
is only one term in Eq. (24) and further restrictions
arise. For an even number of extra nucleons, all of the
same e, 3, j, and for 0=K=0, + vanishes for all odd I.
These two rules were used to determine the allowed
levels in Table III.

D. Vamity of the Strong Couyling Approximation

The collective model of the nucleus has two appealing
features. First, it contains only a few physical param-
eters, and none of these are arbitrary. Second, the
application of the model through the strong coupling
approximation developed by Bohr is relatively easy in
first order. The question of the validity of the assump-
tions on which the whole model is based are therefore

Fio. 3. Energy of 6rst excited state and energy change of
nucleus due to surface interaction for highly idealized nuclei. A
shell of j=9/2 nucleons is assumed to fill while the other group
of nucleons remains closed shell. The mass number is taken to be
100. The results at 2 and 4 (same as at g and 6) extra nucleons
are taken-from the strong coupling calculations of Table III and
Fig. 2. The results at zero (and at 10) extra nucleons are the weak
coupling limit with excitation energy given by Kq. (l) in the
text and with no particle-to-surface interaction.

most easily approached by means of applications of the
model to various examples and comparison with experi-
ment. The more fundamental approach of analysis of
the initial assumptions of the model from first principles
has been begun by Hill and Wheeler. ' lt is intended
here mainly to discuss the question of the validity of
the first-order strong coupling approximation relative
to the complete Hamiltonian developed by Bohr. Some
of the limitations on the complete Hamiltonian are the
following: (a) Only the ellipsoidal mode of deformation
and vibration is considered. (b) The extra nucleons are
taken to have j as a good quantum number. (c) The
particle motion is taken to be rapid relative to the
motion of the core, and the interaction term is averaged
over the particle motion.

The three parameters which enter the theory are
coefFicients in the three terms in the e6ective surface
potential W PEq. (18) and caption of Table IIIj. The
parameter C LEq. (2)g is the coefficient of the nuclear
distortion term, Wr ——srCP2. Using a surface tension
energy 4xro'8=15.4 Mev, values of C are obtained as
given in Table IV. In the calculations performed at
mass numbers 100 and 200, a value C=65 Mev was
used. It is not certain that the dynamic surface tension
is the same as the static surface tension, ~ but approxi-
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TABLE IIE. Summarized results of calculations using Bohr strong coupling approximation.

I=Total angular momentum of nucleus.
0;=Component of nucleon angular momentum along 3-axis

of distorted nucleus.
a=Z;n;.
E=Cornponent of total angular momentum along 3-axis of

distorted nucleus.
Pi= Equilibrium value of distortion parameter.
p&= Equilibrium value of shape parameter.

Wr= Potential energy of surface deformation= )Ctls.
W2= Interaction energy of extra nucleons with nuclear surface

("Rainwater interaction")

30"—j'(j*+i)= (5/»r)&f'P cos»Z;

WS=Kinetic, energy of surface rotation (diagonal part)
= (i/4) (k~/ fi&+As/ fi2) [I(I+i) —IP+2;j;(j&+i) —0p

—(I+r)(—i)r-&6&+5(~-&)g(E' g)
X& (j+$)5(0 xs)b([0t] [—01])
—Z b(j;, j„)b(0, , 0;—i) (j„,—0 ) (j„+tl',„+I)].

4+Is

lV= Wi+Wg+W~= ¹teffective surface potential energy,
Ep= Zero-point energy of P oscillation.
E& Zero-point energy of y oscillation.

E Er W—+ES+E»=(net nuclear energy) —(unperturbed parti-
cle energy) =diagonal matrix element of Hamiltonian in
Bohr strong coupling approximation.

E„&=Nuclear energy normalized to ground state energy=0.
All energies in Mev.

COBy l

A = ioo, one extra nucleon, j=5/2

5/2
7/2
i/2
5/2
9/2
3/2
9/2
3/2
5/2
'I/2
5/2
7/2
9/2

5/2 5/2 0.2466 -i.0000
5/2 5/2 0.2971 —i.0000
i/2 1/2 0.2483 i.0000
i/2 i/2 0.2646 i.0000
5/2 5/2 0.336i —i.0000
i/2 i/2 0.3176 i.0000
i/2 i/2 0.3176 i.0000
3/2 3/2 0.2446 i.0000
3/2 3/2 0.2755 i.0000
i/2 i/2 0.3724 i.0000
i/2 5/2 0.360'I 0.8)69
3/2 3/2 0.306i i.0000
3/2 3/2 0.3353 i.0000

1.977 —1.778
2.870 —2.142
2.004 -1.432
2.275 —1.526
3.671 —2.423
3.278 —1.831
3.278 -1.831
1.945 —0.353
2.466 —0.397
4.508 —2.148
4.228 —1.845
3.045 —0.441
3.655 —0.484

1,088
1.799
1.288
1.512
2.460
2.362
2.362
1.769
2.267
3.434
3.305
2.825
3.413

1.287
2.526
1.860
2.262
3.708
3.808
3.808
3.361
4.336
5.795
5.688
5.429
6.584

4.460 2.829
3.726 2.897
4.519 2.912
4.234 2.931
3.376 2.936
3.594 2.980
3.594 2.980
4.846 3.139
4.295 3.147
3.204 3.015
3.298 3.078
3.904 3.154
3.627 3.159

8.576
9.150
9.291
9.427

10.021
10.382
10.382
11.347
11.779
12.014
12.065
12.487
13.370

0.000
0.574
0.715
0.851
1.445
1.806
1.806
2.771
3.203
3.438
3.489
3.911
4.794

A=i00, one extra nucleon, j=9/2
9/2

ii/2
1/2

9/2 9/2 0.2905 —i.0000
9/2 9/2 0.3430 —i.0000
i/2 i/2 0.32'IO i.0000

2,744 —2.666
3.823 —3.147
3.475 -2.000

1.411
2.250
2.475

1.489 3.692 2.795
2.926 3.239 2.863
3.950 3.497 2.973

7.976
9.028

10.420

0.000
1.052
2.444

A =200, one extra nucleon, j=3/2
3/2
3/2
1/2
5/2
7/2
7/2
g/2
9/2
9/2

3/2 3/2 0.i64i —i.0000
i/2 i/2 0.i642 i.0000
I/2 i/2 O. i898 i.0000
3/2 3/2 0.20i9 —i.0000
i/2 i/2 0.2i63 i.0000
3/2 3/2 0.231I —i.0000
i/2 i/2 0.24i3 i.0000
3/2 3/2 0.25'I4 —i.0000
i/2 i/2 0.285 I i.0000

0.876 —0.828
0.876 —0.829
1.170 —0.958
1.324 —1.019
1.521 —1.092
1.744 —1.169
1.892 —1.218
2.153 —1.299
2.653 —1.442

0.462 0.509
0.462 0.509
0.691 0.904
0.815 1.120
0.975 1.405
1.160 1.735
1.283 1.958
1.503 2.358
1.932 3.143

2.869 1.572
2.869 1.572
2.442 1.605
2.295 1.617
2.152 1.630
2.029 1.641
1.964 1.648
1.871 1.658
1.745 1.672

4.951
4.951
4.951
5.033
5.186
5.405
5.569
5.886
6.561

0.000
0.000
0.000
0.082
0.235
0.454
0.618
0.935
1.610

5/2
7/2
1/2
5/2
9/2
i/2
3/2
9/2
7/2
3/2
S/2
5/2
7/2

A =200, one extra nucleo n, j=5/2
—1.412—1.677—1.118—1.187—1.883—1.482—1.413—1.413—1.648—0.266—1.418—0.299—0.332—0.364

5/2 5/2 0.i959 —i.0000
5/2 5/2 0.2326 —i.0000
i/2 i/2 O.i939 i.0000
i/2 i/2 0.2058 i.0000
5/2 5/2 0.2613 —i.0000
5/2 i/2 0.2432 —0.8453
i/2 i/2 0.2450 i.0000
i/2 i/2 0 2450 i 0000
1/2 1/2 0.2857 1.0000
3/2 3/2 0.i846 i.0000
i/2 5/2, 0.2762 0.8899
3/2 3/2 0.2076 1.0000
3/2 3/2 0.2306 1.0000
3/2 3/2 0.2524 i.0000

1.247
1.759
1.222
1.377
2.218
1.922
1.951
1.951
2.654
1.107
2.480
1.401
1.728
2.071

A =200, one extra nucleon, j= 7/2

0.541
0,920
0.662
0.784
1.276
1.182
1.244
1.244
1.830
0.974
1.771
1.251
1.561
1.889

0.376 2.263 1.523
1.002 1.940 1.570
0.766 2.356 1.580
0.973 2.222 1.593
1.612 1.780 1.597
1.622 1.915 1.558
1.782 1.915 1.628
1.782 $.915 1.628
2.835 1.724 1.654
1.816 2.675 1.744
2.833 1.780 1.669
2.353 2.375 1.750
2.957 2.162 1.755
3.596 2.011 1.759

4.162
4.512
4.702
4.789
4.988
5.095
5.326
5.326
6.213
6.235
6.283
6.479
6.874
7.366

0.000
0.350
0.540
0.627
0.826
0.933
1.164
1.164
2.051
2.073
2.121
2.317
2.712
3.204

7/2
9/2

11/2
3/2
3/2
7/2

7/2 7/2
7/2 7/2
7/2 7/2
1/2 1/2
7/2 3/2
i/2

0.2169 —1.0000
0.2540 -1.0000
0.2824 —1.0000
0.2216 1.0000
0.2631 —0.8694
0.2368 1.0000

1.530 —1.825
2.097 -2.136
2.592 —2.375
1.595 —1.331
2.250 -1.924
1.822 —1.422

0.617
1.029
1.405
0.930
1.288
1.111

0.322 2.004 1.507
0.990 1.772 1.553
1.622 1.655 1.580
1.194 2.069 1.601
1.614 1.768 1,.524
1.510 1.958 1.614

3.833
4.315
4.857
4.864
4.906
5.082

0.000
0.482
1.024
1.031
1.073
1.249
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TAnLE III .—(Continued)

I/2
11/2
8/2
5/2
S/2
S/2
7/2
7/2
9/2
9/2
9/2

11/2
ii/2

1/2
I/2
8/2
I/2
3/2
5/2
3/2
S/2
3/2
1/2
S/2
3/2
S/2

I/2
3/2

0.2692
0.2246

I/2 0.2870
3/2 0.24Q1
5/2 0.2026

1.0000
1.0000
1.0000
1.0000.—1.0000

2.355
1.639
2.676
1.873
1.335

—1.617—0.809—1.724—0.865—0.243

1.546
1.234
1.814
1.440
1.223

3/2
S/2
3/2
1/2
S/2
3/2
S/2

0.2576
0.2267
0.2754
0.3220
0.2493
0.2933
0.2704

1.0000-1.0000
1.0000
1.0000—1.0000
1.0000-1.0000

2.254
1.670
2.466
3.369
2.020
2.796
2.376

—0.928—0.272—0.993—2.934—0.299—1.057—0.325

1.690
1.534
1.969
2.401
1.870
2.267
2,214

2=200, one extra nucleon, j=9/2

COSTI

A =200, one extra nucleon, j=7/2 (—Contsmged)

1/2 0.2520 1.000Q 2.064 -1.514 1.307 1.857
2.284
2.064
2.767
2.448
2.304
2.917
2.932
3.442
3.837
3.590
4.006
4.265

1.867
1.784
2.136
1.713
2.022
2.441
1.926
2.201
1.829
1.607
2.038
1.757
1.920

1.626
1.637
1.684
1.648
1.692
2.758
1.699
1.762
1.706
1.665
1.l65
2.712
1.768

5.350
5.705
5.884
6.127
6.161
6.502
6.532
6.896
6.977
7.109
7.393
7.475
7.953

&re)

1.5)7
1.872
2.051
2.294
2.328
2.669
2.699
3.063
3.244
3.276
3.560
3.642
4.120

9/2
ll/2
1/2

9/2
9/2
I/2

9/2
9/2
I/2

0.2325 —'1.0000
0.2704 -1.0000
0.2526 1.0000

i.l57
2.376
2.073

—2.134—2.481—1.545

0.692
1.135
1.302

0.315
1.031
1.829

2.860
1.674
2.861

1.502
1.546
1.623

3.676
4.251
5.313

0.000
0.575
1.637

0
2
0

2
2
6

2

2

2

2
2
6
8
5
0
2
2
3

S/2
S/2

S/2
. 1/2
5/2
5/2
I/2
3/2
S/2
3/2
S/2
3/2
S/2
I/2
S/2
S/2
3/2
3/2
S/2
5/2

—S/2—S/2—I/2—S/2—I/2—S/2
-S/2—I/2

1/2
8/2

—3/2—1/2
-8/2—I/2—S/2

3/2—8/2—8/2—I/2
I/2

A=
0.2984
0.3379
0.2992
0.3925
0.3325
0.3839
0.4426
0.3820
0.2792
0.2646
0.3165
0.2781
0.3325
0.2999
0.4313
0.4893
0.3176
0.2815
0.3083
0.2755
0.2805

tra nucleo

2.894
3.722
2.908
4.981
3.593
4.789
6.366
4.742
2.534
2.275
3.255
2.513
3.593
2.924
6.045
7.783
3.278
2.576
3.089
2.466
2.557

100, two ex

-1.0000—1.0000
1.0000-).0000
1.0000—0.8893—1.0000
1.0000
1.0000-1.0000
1.0000-1.0000
1.0000-1.0000
1.0000-1.0000—1.0000
1.0000
1.0000—1.0000—1.0000

ns, j=S/2
—4.303—4.872—3.450—5.644

3.835—4.922-6.381—4.406—2.013—2.526—2.281—1.604—2.397-1.730—4.974—l.055—1.831—0.812
-0.889—0.397-0.404

0.743
1.275
1.183
2.159
1.676
2.328
3.175
2.539
1.528
1.512
2.214
1.721
2.394
2.059
3.558
4.255
2.362
2.1"l0
2.645
2.267
2.355

—0.665
0.224
0.642
1.495
1.434
2.196
3.160
2.876
2.049
2.262
3.088
2.621
3.590
3.253
4.628
4.982
3.808
3.935
4.845
4.336
4.507

3.294
3.009
3.467
2.759
3.196
2.859
2.605
2.922
3.940
4.234
3.536
4.035
3.404
3.769
2.743
2.509
3.594
4.137
3.816
4.295
4.222

2.547
2.633
2,695
2.720
2,751
2.619
2.781
2.815
2.876
2.931
2.918
2.945
2.933
2.966
2.863
2.825
2.980
3.084
3.095
3.147
3.149

5.176
5.757
6.803
6.974
7.381
7.673
8.54l
8.613
8.865
9.427
9.542
9.601
9.926
9.988

10.234
10.327
10.382
12.155
11.757
11.779
11.878

0.000
0.582
1.627
1.798
2.205
2.497'
3.372
3.437
3.689
4.252
4.366
4.425
4.750
4.812
5.058
5.142
5.206
5.979
6.581
6.603
6.702

9/2 —9/2
9/2
9/2
9/2
9/2
9/2
9/2
9/2
I/2
1/2
I/2
9/2
8/2
7/2

S/2
S/2
5/2
l/2
S/2
I/2
S/2
1/2
S/2
8/2
1/2
3/2

—S/2—S/2—S/2—1/2—S/2-I/2—S/2
-I/2
-S/2

I/2—1/2
I/2

—9/2—9/2—9/2

—9/2
7/2—7/2l/2-

-I/2—I/2—S/2—I/2—//2

0
0
2
0
2.

0
0

0
0

00, two extr

-1.0000—2.0000—1.0000—0.9114-1.0000-0.9215—1.0000-1.000Q
1.0000
1,0000
2.0000—1.0000
1.0000-1.0000

A=i
0.3605.
0.3874
0.4304
0.4306
0.4755
0.4527
0.3458
0.3538
0.3744
0.3916
0.4237
0.3517
0.4230
0.3441

a nucleo ns, j=9/2
-6.615-7.108
-7.898—7.202-8.725-7.655—4.230
-4.328—4.580
-4.791—5.183—2.689
-4.528-2.104

I

ns, j=5/2
-3.730—4.087—4.608-2.838—4.079-3.104-5.125-3.510-5.608-1.583-3.921—1.756

4.224
4.877
6.021
6.027
7.348
6.659
3.886
4.067
4.556
4.984
5.835
4.019
5.814
3.847

2.175
2.612
3.320
1.967
3.187
2.354

0.2587 —1.0000
0.2835 —1.0000
0.3196 -1.0000
0.2460 1.0000
0.3131 —0.9035
0.2691 1.0000

4.206
3.010
4.916
1.566

0.3554 -1.0000
0.3043 1.0000
0.3889 —1.0000
0.2195 1.0000

3.756
1.927

0.3400 1.0000
0.2435 1.0000

A =200, two extra nucleo

0.916
2.323
2.071
2.426
2.985
2.832
i.l7i
1.903
2.266
2.589
3.243
2.6l5
3.551
2.795

0.310
0.568
2.016
0.548
1.247
0.802
1.544
1.255
2.112
0.775
1.795
1.050

—1.475—0.909
0.294
1.252
1.608
1.837
1.427
1.643
2.241
2.'l82
3.895
4.QQ6
4.837
4.538

—1.245—0.907—0.273-0.322
0.255
0.052
0.525
0.754
1.421
0.759
2.630
1.222

2.681
2.588
2.477
2.544
2.394
2.489
3.076
3.030
2.926
2.852
2.740
3.250
2.799
3.367

2.504
1.437
1.368
1.685
1.425
1.592
1 322
1.492
1.292
2.036
1.423
1.872

2.506
2.561
2.634
2.565
2.694
2.645
2.741
2.752
2.780
2.800
2.834
2.932
2.883
2.985

1.360
1.404
1.454
1.439
1.377
1.473
1.492
1.514
2.521
1.555
1.547
1.582

3."l12
4.241
5.305
6.360
6.696
6.970
l.243
7.426
7.947
8.435
9.468

10.288
10.520
10.889

1.619
1.934
2.550
2.801
3.057
3.127
3.340
3.l62
4.234
4.350
4.600
4.675

0.000
0.529
2.593
2.648
2.984
3.258
3.532
3.714
4.235
4.723
5.756
,6.476
6.808
7.277

0.000
0.325
0.932
1.182
2.438
1.498
2.721
2.242
2.615
2.732
2.981
3.056
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TABLE III .—(Comthsmed)

COSTI F.—EI Byes

1

1
. 2

2
3
5
3
0
2
2
3
3

3/2
5/2
5/2
3/2
5/2
3/2
5/2
5/2
3/2
3/2
5/2
5/2
5/2
5/2
3/2

-1/2
3/2—3/2—1/2—3/2—1/2
3/2—3/2—3/2—3/2—1/2
1/2

-1/2
1/2

-3/2

1
4
1
1

0
0
2
3

3
0

A =200, two

1 0.2468
0.2058
0.2158
0.2586
0.2320
0.2734
0.2450
0.2507
0.2139

0 - 0.2339
0.2076
0.2114
0.2277
0.2360
0.2666

extra nucleons, J=5
1.0000—1.0000—1.0000
1.0000—1.0000
1.0000—1.0000—1.0000
1.0000
1.0000—).0000—).0000—1.0000—1.0000
1.0000

1.980
1.377
1.513
2.173
).749
2.429
1.951
2.043
1.487
1.778
1.401
1.452
1.685
1.810
2.311

/2 (C—orttsrtged)

—1.779 1.090—1.187 0.784—1.245 0.891—1.864 1.241—1.338 1.080
1.971 1.444—1.413 1.244—1.446 1.320—0.617 1.179—0.675 1.441—0.299 1.251—0.305 1.300—0.328 1.521—0.340 1.640—0.769 1.926

1.29)
0.973
1.160
1.550
1.491
1.902
1.782
1.917
2.049
2.545
2.353
2.448
2.878
3.109
3.468

1.853
2.222
2.127
1.793
1.999
1.727
1.915
1.883
2.257
2.088
2.375
2.335
2.185
2.121
1.891

1.584
).593
1.604
1.595
1.618
1.606
1.628
1.632
1.703
1.712
1.750
1.751
1.755
1.756
1.723

4.728
4.789

" 4.891
4.937
5.109
5.236
5.326
5.432
6.010
6.345
6.479
6.534
6.818
6.986
7.081

3.109
3.170
3.272
3.318
3.490
3.617
3.707
3.813
4.391
4.726
4.860
4.915
5.199
5.367
5.462

0
2
4
6
2
3
8
8

0
0
2

2

3
6
1
2
7
0

2
1

6
0
1

9/2
9/2
9/2
9/2
9/2
9/2
9/2
9/2
9/2
1/2
9/2
1/2
9/2
3/2
1./2
3/2
1/2
3/2
9/2
9/2
3/2
7/2

'
7/2
5/2
7/2
7/2
5/2
7/2

—9/2—9/2
-9/2—9/2—9/2—9/2
-9/2

7/2—7/2
-1/2
—.9/2—1/2

7/2
1/2—1/2
1/2—1/2—1/2—5/2
5/2—3/2—7/2

-7/2—3/2—7/2
5/2

-5/2
-5/2

0
0
0
0
0
0
0
8
1
0
0
0
8
2
0
2
0

2
/
0
0
0
1
0
6
0
1

2=200, two ext

0.3180 .
—1.0000

0.3338 —1.0000
0.3610 —1.0000
0.3911 —1.0000
0.3606 —0.9267
0.3749 —0.9334
0.4210 —1.0000
0.2806 —1.0000
0.2862 —).0000
O.3OO8 1.OOOO

0.4496 —1.0000
0.3131 1.0000
0.3203 —1.0000
0.2924 1.0000
0.3361 1.0000
0.3047 1.0000
0.3636 1.0000
0.3321 1.0000
0.2736 —1.0000
0.2843 —1.0000
0.3187 1.0000
0.2652 —1.0000
0.278) —1.0000
0.2976 1.0000
0.3022 —1.0000
0.2337 —1.0000
0.2748 1.0000
0.2589 —1.0000

ra nucle ons, j=9/2
—5.836—6.125—6.625—7.177—6.)33—6.421—7.725—3.433—3.501—3.680—8.249—3.830—3.918—3.130—4.112—3.261

4 448—3.555—2.092—2.174—2.924—1.622—1.701—1.820—1.849—0.357—0.840—0.396

3.287
3.62)
4.236
4.972
4.227
4.568
5./59
2.560
2.663
2.941
6.568
3.185
3.334
2.778
3.672
3.017
4.296
3.584
2.432
2.627
3.301
2.286
2.514
2.878
2.969
1.775
2.454
2.179

A =100, four extra nucleons, j=9/2

0.369
0.559
0.923
1.383
1.160
1.357
1.897
0.843
0.912
).ioi
2.444
1.270
1.375
1.214
1.616
1.386
2.072
1.806
1.386
1.540
1.839
1.475
1.663
1.968
2.044
1.596
2.034
1.981

—2.)79—1.945—1.465—0.822—0.745—0.497—0.068—0.030
0.073
0.362
0.763
0.626
0.791
0.862
1.)76
1.142
1.920
1.836
1.727
1.993
2.216
2.139
2.476
3.026
3.165
3.013
3.647
3.764

1.228
1.2)6
).200
).)87
1.242
1.229
1.)78
1.529
).514
).477
).172
).451
1.437
).549
1.410
1.518
1.372
1.460
1.713
1.673
1.530
1.798
).743
1.673
1.659
2.135
1.847
1.971

1.342
1.367
1.404
1.438
1.366
1.407
).467
1.467
).474
).49i
1.490
1.505
1.5)2
1.525
1.527
1.537
).549
1.560
1.594
1.602
1.587
1.632
1.640
1.651
1.653
1.753
1.720
1.758

0.390
0.638
).)39
1.804
1.863
2.139
2.576
2.966
3.060
3.330
3.424
3.58)
3.740
3.937
4.)13
4.196
4.841
4.856
5.034
5.268
5.333
5.568
5.859
6.350
6.477
6.902
7.215
7.493

0.000
0.248
0.749
1.414
1.473
).749
2.186
2.576
2.670
2.940
3.034
3.191
3.350
3.547
3.723
3.806
4.451
4.466
4.644
4.878
4.943
5.178
5.469
5.960
6.087
6.512
6.825
7.103

0 9/2 7/2
2 9/2 7/2
4 9/2 7/2
0 3/2 1/2
2 3/2 1/2
6 9/2 7/2
2 9/2 7/2
4 3/2 1/2
1 9/2 7/2
8

'

2 9/g 7/2
8 9/2 7/2

9/2 5/2

—7/2 —9/2 0—7/2 —9/2 0—7/2 —9/2 0—1/2 —3/2 0—1/2 —3/2 0—7/2 —9/2 0—'//2 —9/2 0—1/2 —3/2 0—5/2 —9/2 1—7/2 —9/2 0—5/2 —9/2 1
5/2 -5/2 8

-5/2 -7/2

0
0
0
0
0
0
2
0
1
0

0.4486 —1.0000
0.4653 —1.0000
0.4963 —).0000
0.4340 1.0000
0.4500 1.0000
0.5327 —1.0000
0.5033 —0.9342
0.4802 ).0000
0.4494 —).0000

6.540 —10.975 1.052
7.037 —11.385 1.345
8.006 —12.143 1.934
6.121 —9.291 1.476
6.581 —9.634 1.764
9.221 -—13.033 2.705
8.232 —)1.504 2.480
7.493 —10.279 2.353
6.564 —8.934 2.097

0.5699 —1.0000 10.557 —13.94S 3.585
0.4/83 —1.0000 6.823 —9.109 2.269
0.3917 —1.0000 4.988 —3.594 3.191
0.3963 —1.0000 5.104 —3.$36 3.286

—3.383—3.003—2.203—1.694—1.288—1.106—0.792—0.433—0.273
0.198—0.016
4.584
4.754

2.)72
2.158
2.136
2.334
2.310
2.)17
2.194
2.272
2.376
2.)03
2.362
2.975
2.956

2.448
2.479
2.531
2.531
2.558
2.584
2.523
2.604
2.610
2.629
2.622
2.909
2.913

1.237
1.634
2.464
3.171
3.580
3.595
3.926
4.443
4.712
4.930
4.968

10.468
)0.623

0.000
0.397
1.227
1.934
2.343
2.358
2.689
3.206
3.475
3.693
3.731
9.231
9.386

mately the same value as used here has been used with
success in the theory of fission. "

The parameter 8 LEq. (3)] enters the coefficient of
the rotational energy term Ws $Eq. (18) and caption of
Table III]. It is proportional to the moment of inertia
of the nucleus and determines through 8„ the mass in-

"N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

volved in the collective nuclear rotation. 8 is also
contained in nearly every off-diagonal term LEqs. (19)],
so that the validity of the approximation depends on the
size of B. Since 8 A'~3, the strong coupling approxi-
mation improves rapidly with increasing A. The values
of It'/8 used in the calculations at A = 100 and 200 are
given in Table IV.
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TABLE IV. Energy parameters of liquid droplet model. A =mass
number; C and 8 de6ned by Eqs. (2) and (3) in text.

A

10
30
50
75

100
150,
200
240

C (Mev)

21.2
41.5

- 54.0
62.5
65.6
69.6
62.9
56.3

0.251

0.0794

0.0249

"J.Davidson and E. Feenberg, Phys. Rev. S9, 856 (1953).*A. Bohr and B. Mottelson (private communication) Gnd that
improved expressions for Ep and E& lead to a lowering of the
energy also for one extra nucleon.

The parameter T (same as Bohr's k/2) appears in the
interaction term Ws LEq. (14)). From the averaging
process of the 6rst-order Rainwater interaction. term,
7.' is defined by

V'= ', V,Z-,
i p„,(Z,) i, (25)

where p„r(Rs) is the value of the radial part of the
particle wave function at the edge of the nuclear well,
Ep is the radius of the well, and Vp the depth of the
well. In the limit of a deep well, T approaches particle
kinetic energy. For a nuclear well, Feenberg and
Hammack" estimate that 7.' is reduced by about 25
percent from its deep well value. It is at any rate a
rather uncertain quantity. In the calculations described
here, 7.' was taken to be constant and equal to 20 Mev.

A simple method for a 6rst check of the validity of
the strong coupling approximation has been suggested
by Davidson and Feenberg. "This is a comparison of
the calculated diagonal matrix element of the Hamil-
tonian in first order (the E E„of Ta—ble III) with the
zero-order energy, (E E~)s (5/2)—k~, th——e zero-point
energy of the lowest mode: of surface vibration. The
energy A~ is given by Eq. (1).This comparison is shown
in Table V, where it is seen that for one extra particle
the ground-state energy (surface energy+interaction
energy) is increased in first order, while for two or
more extra particles the energy is lowered in 6rst order.
It can be concluded, therefore, that the strong coupling
approximation is probably poor for only one extra
nucleon outside closed shells and that it is perhaps good
for two or more extra nucleons. The fact that the energy
is raised in 6rst order does not prove that the approxi-
mation is useless. Level order might be given correctly,
for example, although level spacing would be greatly
in error. *

The o8-diagonal terms LEqs. (19)] contain largely
terms from the surface rotational energy. A criterion of
validity of the approximation should therefore be that
the rotational terms which are included, 5'3, are small
compared to the surfa, ce distortion energy, W», and the
interaction energy, Ws, i.e., Ws«Wi or

~
Ws~. For the

most favorable one-particle case treated, A =200,
J=9/2, Ws is about —', of Wi or

~
Ws~ in the ground

TABLE V. Ground state energies in zero order, and in 6rst-
order strong coupling approximation. Zero-order energy, E(»
=(5/2)kcu=zero-point vibrational 'energy about spherical equi-
librium position. First-order energy, E(')=surface energy +
interaction energy in strong coupling approximation. Energies
are given in Mev.

No. of extra
nucleons

A =100, B(»=5.13 Mev
g(1) QO) -g(0)

5/2 8.58 +2.85

9/2

5/2

9/2

9/2

9/2

7.98 +2.25

5.18 —0.55
3.71 —2.02

1.24 —4.49

1.24 —4.49

3.71 —2.02

A =200, B(» =3.14 Mev
j g(1) g (1) g (0)

3/2 4.92 +1.78
5/2 4.M +1.02
7/2 3.83 +0.69
9/2 3.68 +0.54

5/2 1.62 —1.52
9/2 0.39 —2.75

state. 8"3becomes relatively larger for the excited states.
For two extra particles at the same A and j, however,
Ws is about 1/9 of Wi and —,'s of

~
Ws~. The approxi-

mation for two extra particles appears definitely better
than for one by this criterion. A corollary to the rule
that t/t/'& should be relatively small is the rule that the
equilibrium deformation P should not be greatly
altered by the inclusion of the rotation terms'in 5'.
Calling P„,„;,the equilibrium P calculated from Wi+ Ws
only, it is found that the inclusion of the rotation
greatly increases this value for one extra nucleon, but
increases it only slightly for two extra nucleons.

Some data indicative of the validity of the approxi-
mation are collected in Table VI. It is clear that the
approximation is considerably better for two extra
nucleons than for one. For the particular two-particle
case listed in Table VI, the eRect of Up on the three
lowest I=O states, at 0, 1.48, and 4.39 Mev, was
calculated in more detail. The ground state (5/2, —5/2)
was shifted downward by 0.02 Mev, the state L(-'„—-', )
etc. . . 1 was shifted down by 0.08 Mev, and the state
(-'„—-', ) was shifted up to 0.10 Mev. The perturbation
Up mixed into the ground state only 0.6 percent of the
state (sr, —sx) and less than 0.1 percent of the state
(z, —ss), a negligible effect. The result would not be
so favorable at A=100, where fP/8 is three times
greater than at A=200, and the oR-diagonal matrix
elements are greater by about the same factor.

The situation with the distance to the first excited
state is not so favorable, however. Since the level
spacing depends principally on the rotation term 8'3,
it is also small compared to Wi and

~
Ws) and is likely

to be strongly aRected by the oG-diagonal terms. This
idea was tested by 6rst-order perturbation calcula-
tions on the lowest two states of each of the two and
four extra particle cases shown m Fig. 2. Up mixes the
lowest two states with a higher pair of levels with spin
0 and 2 and about the same separation. Therefore, it
has the .eRect to lower the ground and 6rst excited
states by about the same amount and not alter their
spacing appreciably. U& and U4 behave like Up in this
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TABIE VI. Validity of the strong coupling approximation
(a11 energies in Mev).

A =100, one A 200, one A 200, two.
extra particle, extra particle, extra particles,j=5/2 j=5/2 j~5/2

S'i
Ground state 8'g

S'g

Total zero-order energy
Total first-order energy

Approx. spacing of
lowest levels connected
by o6-diagonal terms

Rough average U0
values of o6- U1
diagonal terms U2
between lowest U3
connected states U4

1.98—1.78
1,09

5.73
8.58

1.0

1.0
0.3

«0.3

0.111
0.247

1.25—1.41
0.54

3.14
4.16

0.7

0.3
&0.3
&0.08

0.111
0.196

2.18—3.73
0.31
3.14
1.62

1.7
0.5
0.2

«2.0
&0.05
&0.05

0.222
0.259

III. CORRELATION OP EXCITATION ENERGY WITH
QUADRUPOLE MOMENTS

Both the 6rst excited energies of even nuclei and the
quadrupole moments (largely of odd-even nuclei) are
known to exhibit a regular behavior as a function of X
and Z, each with marked shell structure sects. The
collective model discussed above predicts that the first
excited energy of even nuclei depends principally on the

respect, and are smaller. Ui and Ug, however, connect
the first excited level with a higher excited level of
spin 2, but have no nonvanishing matrix elements
with the ground state. U& and V3, therefore, act to
lower the first excited energy and decrease the spacing
of the lowest two states. The eGect is very appreciable,
as shown in Table VII. The energy spacing is diminished

by 15 percent to 30 percent. The shift is small compared
to the spacing of the levels mixed (so that the wave
functions do not mix to a large extent), but it is an
appreciable fraction of the lowest level spacing. In
considering the validity of the approximation, therefore,
it is important to refer to the particular nuclear prop-
erties of interest.

The computed distortions in the 6rst-order strong
coupling approximation are too large, because the
coeKcient of p in the interaction term Wm is maximized

by the ground-state quantum numbers 0;. For any
admixture of other 0;, the coefficient will be decreased,
and the computed equilibrium distortion, therefore,
will be decreased.

It can be concluded that explicit calculation with the
strong coupling approximation should be valid for
several extra nucleons and for A &100. In addition, the
ideas of the strong coupling model, e.g. , that nuclear
distortion plays an important role in even nuclei, should
be valid after the strong coupling approximation in first
order breaks down. A distortion P)0.2 appears to be
necessary for the validity of the approximation in first.

order.

TABr,E VII. First-order corrections to detailed calculations.

Example

First excited
energy in Shift due
first order to Vt+Vs

(Mev) (Mev)

Energy in
second Percent
order decrease

A=100, two
extra nucleons,
j=5/2
A=100, two
extra nucleons,
j=9/2
A=200, two
extra nucleons,
q=5/2
A=200, two
extra nucleons,
J=9j2
A =100, four
extra nucleons,
j=9/2

0.315

0.397

—0.119

—0.161

—0.042

—0.039

—0.064

0.462

0.368

0.273

0.209

0.333

20

30

equilibrium value of the nuclear distortion, provided
the distortion is large enough. Likewise quadrupole
moments, especially the large moments, are most easily

'
interpreted in terms of a distorted nucleus. Because of
the observed regularities in both-of these quantities,
it is natural to test the idea of the collective model and
the idea that the nuclear distortion is a reasonably
sinooth function of E and Z for all nuclei by attempting
to correlate the known quadrupole moments with the
known first. excited energies of even nuclei.

In order to carry out this correlation, we develop
highly simplified formulas for these two quantities in
terms of the nuclear distortion. On the basis of the
detailed calculations summarized in Table III, the
following assumptions and simplifications are made for
the even nuclei. The distortion parameters pi, yi are
taken to be the same in the ground and 6rst excited
state. In fact, Pi is somewhat larger for the first excited
level. The zero-point vibration energies Ep and E~ are
taken to be the same in ground and first excited state.
The quantum numbers of the ground state are take~
to be E=Q=O, I=O, and of the first excited state,
E=Q=O, I=2. The extra nucleon states are assumed
the same for ground and first excited state. As a result
of these simplifications, only the rotation term R/';&

divers between the ground and first excited states.
The first excited energy is, therefore,

1 k'p 1 1
+

16 BPi E sin'(y& —2ir/3) sin'(pi —2ir/3) )
)& {LI(I+1)—E'

+f(particle quantum numbers)11

—(E(I+1)—IC'

+f(particle quantum numbers) jo). (26)

Inserting the values p&=0 or ~, Ii=2, Ip=0, Ei=&p
=0, 5'/8=171/2"' Mev, and fi (particle quantum
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FJG. 4. Correlation of even nuclei 6rst excited levels with quadrupole moments. The circled points are com-
puted from Eq. (30a) in the text and represent upper limits to the nuclear distortion as computed from energy
levels. The least accurate points are those near the maxima at E= 100 and E= I45, because here the energies
are minimum and are least well known. The squared points are computed from quadrupole moments. Experi-
mental errors are indicated on those points where they are known (to this author). Vertical arrows indicate
unknown experimental errors. The distortions computed from quadrupole moments are seen to exhibit a
regular behavior ss N only for lli') 50. If (a) the interpretation of the nature of the first excited states of even
nuclei is correct, (b) quadrupole moments give a correct indication of the magnitude of the nuclear distortion,
and (c) neighboring even-even and odd-even nuclei have comparable distortions, then Eq. (30a) overestimates
the nuclear distortion by a factor of about 1.7 for large distortions and by very much more for small distortions.
The factor of 1.7 is reasonable within the framework. of the strong coupling approximation; factors much
greater than 2 are not.

Q,«&= 0.0148' &P cosy. (28b)

Because of the quantum-mechanical fluctuations in the
direction of I, the expectation value of Q is reduced' by
the factor I(21—1)/$(I+1)(21+3)g. Therefore, one

numbers) = fe (particle quantum numbers), one gets

8,=5'/BPis= 171/AslsPis Mev. (27)

In order to get an equally simple formula for the
quadrupole moment, it is assumed that the nuclear
charge is uniformly distributed over a cylindrically
symmetric ellipsoid, i.e., that the contribution to Q
from the nonspherical distribution of extra nucleons is
small compared to the contribution from the distorted
core. For a stationary ellipsoid one obtains to 6rst
order in P,

Q,r,,&
——(2/5) ZRs'(3/2) (5/s. )iP cosy. (28a)

A distortion P corresponds to a fractional extension of
the radius along the symmetry axis of. the ellipsoid of
-'(5/w)&P cosy=0.631P cosy and a fractional extension
perpendicular to the symmetry axis of

—(1/4) (5/s )&P cosy = —0.315P cosy.

Positive cosy corresponds to the cigar shape (prolate)
and negative cosy to the pancake shape (oblate).
Putting the undistorted nuclear radius Eo= 1.40
)&10 "A& cm, we have

obtains 6nally

I(2I—1)
Q.„=0.0148Z~''— —p cosy.

(I+1)(2I+3)

Formulas (27) and (29) are inverted to define nuclear
distortions:

13.1
fpl=-

2"'LE (Mev)]*

67.5 (I+1)(2I+3)
Pq=— Q,h, (barns).

ZA& I(2I—1)

(30a)

(30b)

If it is assumed that the total quadrupole moment is the
sum of a moment due to the distorted core plus a
moment due to the nonspherical distribution of extra
protons outside closed shells, then pq may be too large
or too small depending on whether these two moments
have the same or opposite sign. (Note that Po has the
sign of Q, whereas the p in Bohr s theory is intrinsically
positive. )

The distortion
~ P ~

computed from the energy levels
is always too large, and in general very much too large:
First, within the 6rst-order approximation, Eq. (30a)
is an oversimpli6cation, and it can be shown that

~ p( )p (first excited state) )p (ground state). When
the strong coupling approximation is very good, and P
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is large, then
I PI is larger than P (ground state) by

only a few percent. When the strong couplin a
arely valid, i.e., 8'& is comparable to Wi and
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Fro. 7. Correlation of even nuclei energy levels with isotope shifts. P' is taken to be —,
~ p ~

' in order to bring
the maximum distortions calculated from energy levels and from quadrupole moments into agreement. The
solid lines connect computed distortions for isotopes of the same element. The dashed lines represent the slope
I d(P')/dÃgz taken from isotope shifts. The positions vertically of the dashed lines on the graph are meaningless—only the slopes are to be compared. A single adjustable parameter in the isotope shift data fitted at Pb"'
brings all the slopes into agreement except in the region below E=65, where the isotope shift slopes are slightly
too small, i.e., too negative. (The Quctuations of the energy level points at Z=92 and 94 are probably not
significant. These correspond to energy levels around 40 kev which are not accurately known. The curves
P~ vs E appear to be reaching another maximum in this region. )

equal energy and the simple model predicts an abrupt.
change from one shape to the other. If the nuclear
ground state in this region is a mixture of the nearly
equal energy prolate and oblate forms, a very small
measured quadrupole moment will result, while the
intrinsic distortion, as measured, for example, by the
energy levels, will remain large.

Wilets has suggested that nuclear distortion may
account for the regularities" in the isotope shift
anomalies. Isotope shifts could throw light on the
prolate-oblate crossover question discussed above and
on the question whether even nuclei distortions may be
larger than odd-even distortions. An analysis which
will be published elsewhere" shows that the isotope
shift anomalies are best explained in terms of a distor-
tion with a shaPe IIs X and Z derived from energy levels
of even nuclei but with a lower magnitude corresponding
to that found from quadrupole moments.

The energy level —isotope shift correlation is shown
in Fig. 7, in which the values of

~ P ~' found from energy
levels are arbitrarily reduced by a factor of three
everywhere to bring them into agreement with the
quadrupole moments at their maximum. The isotope
shift data are also altered with a single adjustable
parameter chosen to make the anomaly positive at

'~-P. Brix and H. Kopfermann, Phys. Rev. SS, 2050 {2952).
"Wilets, Hill, and Ford (to be published).

Pb"' "' and negative at Pb'" '". The isotope shifts
yield only the slope Ld(P')/dX]z, and the magnitude of
the line segments plotted are meaningless. The slopes,
however, show a generally reasonable agreement with
the trend of points calculated from energy levels.
Especially to be noted are the large positive slopes just
beyond %=82 and the smaller negative slopes below
%=126, as were observed also in the quadrupole
moment data.

On the basis of the results shown in Fig. 1, certain
regularities in the low levels of odd-even nuclei can
also be predicted. With each low-lying single particle
level of spin I=j should be associated a level of spin
I=j + 1, same parity, higher by the order of magnitude
of neighboring even-even 6rst excited energies. To the
same approximation as Eq. (27), the energy difference
of these level pairs is given by

h' (2j+2q'

~&+&,;—— I I
~r (32)Sps( 6 ]

IV. CONCLUSIONS

The successes of the collective model as applied to the
1ow states of even nuclei are (a) the order of levels for
the erst few 1evels agrees with experiment; (b) the
spacing of the 0+—2+ and 2+-4+ levels are com-
parable, as observed experimentally; (c) the irst
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excited energy surface has the same qualitative features
as the experimental energy surface (see Fig. 5); and
(d) details of the shape of the curve of distortion es Ã
in the neutron shell 82 to 126 as calculated from energy
levels agree with the curves found from quadrupole
moments and from isotope shifts.

The serious defects of the model is that nuclear
distortions calculated from first principles appear to be
larger than is reasonable, implying that the particle-to-
surface interaction may be weaker than is assumed.
Because Eq. (30a) gives only an upper limit to P, the
large distortions calculated from even nuclei energy
levels do not necessarily speak against the validity of
the strong coupling approximation. The required cor-
rection of nearly a factor two is larger than expected,
however, for the case that the strong coupling approxi-

mation is vahd (for wave functions) in first order. The
very high first excited state of Pb is also a particular
defect of the theory.

On the basis of Figs. 4 and 7, large quadrupole
moments (5—8 barns) are predicted near uranium, and
large isotope shifts (about twice the theoretical value)
are predicted near radium.

I am indebted to Professor E. Feenberg and Dr. A.
De Shalit, Dr. G. Scharff-Goldhaber, and Dr. M,
Goldhaber, for helpful comments and suggestions; to
G. ScharG-Goldhaber for supplying a summary of even
nuclei energy levels in advance of publication and to
Dr. L. filets for information on isotope shifts. Espe-
cially it is a pleasure to acknowledge my indebtedness
to Professor J. A. Wheeler for many stimulating and
valuable discussions.
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Cosmic-Ray Neutron Production in Elements as a Function of Latitude and Altitude"'

J. A. SIMpsoN AND R. B. URKTz
Imslitxde for Xssclear Sildies, Ussjeersity of Chicago, Chicagolllirsois,

(Received November 1'7, 1952)

The relative rates of local neutron production in Al, Cu, Sn, and Pb were obtained at geomagnetic lati-
tudes X=40' and 54' at atmospheric depth 312 g-cm ' (30 000 ft pressure altitude). The latitude and alti-
tude dependence of local neutron production in carbon and lead were measured in the latitude interval
0'-54' with pile geometries containing HI"8 proportional counters. From these observations several results
were obtained:

1. The relative neutron multiplicities in elements were measured and found to be in good agreement with
reported low altitude observations.

2. A neutron transition maximum in lead at ~20 g-cm ' Pb was obtained at 33 000 ft pressure altitude.
3. The absorption mean free path for the neutron producing radiation in lead was 350 g-cm 2.

4. An anomalous air absorption mean free path for the nucleonic component has been found for measure-
ments derived from local neutron production in lead at X&40'.

5. Aside from the absorption anomaly in elements of high atomic weight A, local neutron'production in
elements of high A as a function of X is in fair agreement with the free air neutron latitude eGect.

6. Local production in carbon as a function of X and altitude is in agreement with corresponding free air
neutron measurements.

I. INTRODUCTION

HE production and development of the inter-
mediate and low energy portion of the nucleonic

component has been studied by observing nuclear dis-
integrations and neutrons as a function of both altitude
and latitude. The behavior of this low energy component
may also be explored by determining the properties of
nuclear disintegrations produced in a local mass ab-
sorber by incident nucleons. We shall define this process
as local nuclear disintegration production. The'se local
disintegrations principally yield neutrons, protons, and
alpha-particles, i.e., disintegration products. Within a
large local absorber mass the charged particles of low
energy disappear by ionization energy loss and are

* Work initiated under. U. S. Office of Naval Research contract
and continued with assistance of Office of Scienti6c Research,
A.R.D.C., U. S. Air Force.

not readily detected outside the local mass. The dis-
integration neutrons, however, escape from the local
mass and may be detected. VVe define the observed
neutron production as local neutron production.

In this paper we describe measurements of local
neutron production in the elements C, Al, Cu, Sn, and
Pb as a function of geomagnetic latitude and as a func-
tion of altitude in the range of atmospheric depths 200
to 600 g-cm '. From these measurements we determine
the average neutron multiplicity from low energy nu-
clear disintegrations. The measurements were obtained
in a series of aircraft flights from January, 1948 through
November, 1949.

Local neutron production has been extensively in-
vestigated at sea level and mountain altitudes by the
Cornell University and Yale groups for carbon and lead
close to the latitudes ) =50—52'N. Neutron produc-


