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TABLE II. X-ray spectrum.

X-ray

Energy
from

previous
determi-
nations
(kev)

Intensity
from

previous
determi-
nations

(%%uo)

Energy
this

paper
(kev)

Intensity
this

paper
(%)

Refer-
ences

En x-ray
EP x-ray

I x-ray
M x-ray

77
87

0.8+0.3
0.2

9—16 20—35

71+2
85~2

9—16
1.9—3.4

0.06
less than

0.02
22 2, 7, 16

~ ~ ~

lines in the E x-ray region is an additional illustration
of the difIiculty. A striking dearth of information on
source materials exists in the published papers on both
the P- and y-spectra of RaD, and on the P-spectrum
of RaK. The question of possible complexity in the
latter must be left open until the complete decay
scheme of RaD is elucidated, since the I.x-ray intensity
suggests that the 46.7-kev state is promptly traversed

by less than 80 percent of the RaD transitions, and no

TABLE III. Additional lines in proportional counter
electromagnetic spectrum.

Line
description

X-ray?

Energy this
paper
(kev)

57
34.5~1
18.6+1
17.3&0.3

5.5&0.5

28.0&0.5

Intensity
this paper

(Fo)

0.02
0.1
0.3
0.3

0.3

0.05

Remarks

Possible coincidence peak
Not associated with RaD
Possible coincidence peak
Peak reported by Cohen

and Jaffe'
Fe x-ray or argon E x-ray

escape peak
Possible argon E x-ray

escape peak

a See reference 17.

high energy P-branch has been observed in RaD decay. "
The authors wish to express their appreciation to

Mr. J. M. Day for source preparation and to Mr. C. R.
Alls and Mr. H. I. Hyde for assistance on instrumenta-
tion.
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The equations governing the interaction of an- electron with the electromagnetic fields are used in the
form given by Schwinger to derive a linear integral equation for the function I', whose kernel is expressed
as a power series in n. The Grst approximation to this kernel is used and the resulting integral equation
solved without recourse to perturbation theory. With the aid of the solution first approximations can be
found for self-energy eftects, which are now finite, and some discussion of the analytic behavior of these and
related quantities is given. An application of the method to meson theory illustrates the classification of the
types of integral equation which arise. The possibility of extending the method is discussed.

l. INTRODUCTION

"PERTURBATION theory has been extremely suc-
cessful in electrodynamics in explaining experi-

mental results since the renormalization program has
been adopted. But almost all experimental results are
associated with interactions in which the integrals con=

cerned are quite convergent af ter renormalization,
whereas for self-energy effects as well as the other
renormalization coefficients there has been a complete
failure to obtain finite results. At this juncture two
alternative approaches suggest themselves: (1) the
Lagrangian used is not adequate to handle self-energy
eftects, though accurate enough for interaction effects,
and new ideas are required to attack these problems,
(2) we may object that since only the simplest mode of
solution has been used, that of straightforward ex-
pansion, some more powerful approach is required,

~ Now at the Institute for Advanced Study, Princeton, New
Jersey.

which wouM also be superior to perturbation theory
when the coupling constant was large. The self-energy
of the electron, for example, is expressed in perturbation
theory by

e= e'(et+ e'e2+ e'mr+ . ),

where all the nz's are infinite. Such an expansion is only
valid if me ' is analytic in e' at the origin, and there is
no a priori reason to believe this. A final point in favor
of the second approach is that many theories, such as
meson theory with gradient coupling, diverge still after
renormalization, and it is not clear if this is not also due
to the method employed.

It is this second approach which is considered here,
and an attempt to solve the quantum electrodynamics
of electrons without recourse to perturbation theory is
presented below. The formulation of Schwinger, ' in

' J. S. Schwinger, Proc. Natl. Acad. Sci, 37, 452 (1951). We
follow Schwinger's notation conventions.
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which the propagation functions are. shown to satisfy
certain functional integro-differential equations, is used.
These equations are renormalized, and the approach
of this paper is to reduce the problem to the solution of
a linear integral equation whose kernel is expressed
as a power series in the coupling constant. The 6rst
approximation to this kernel is taken and the corre-
sponding integral equation solved, and the solution dis-
cussed. The method thus provides only a partial de-
parture from the expansion method, but it hoped that
it will be of methodological interest since interesting
results concerning the behavior, as functions of 0,, of
the solutions and quantities calculated with their aid
are obtained.

The method is applied to the various types of meson
theory, and they are found to provide a classification of
the various types of equation which occur.

D and P are functions of two photon coordinates,

F(P, g')= i—e'Tr, y(t; x, x')G(x', x")

I'= —(6/8eA)gy(P —eA)+M j
ie'(6—/beA) (HAGI'D)

Since GG '=1

(2.13)

(2.14)

&( I'($; x",x"')G(x'", x)d'x d4x' d4x" d4x"'. (2.12)

Details of the derivation of these expressions may be
found in Schwinger's paper.

Our interest is to be concentrated on the function F.
By iteration of the above equations it cari be expressed
as a power series in e2:

2. DERIVATION OF THE EQUATION
(6G/8eA)G '+(5G '/8eA)G=O, (2.15)

the equations for the Green's functions for the electron
G, the photon D, and the'current operator I', are given
m momentum space by

(&(P eA)+Mga-= 1,

t k'+FjD=1,
I'= —(5/5eA)G '

M=m+ie HAGI'D,

I' = —ie'HAGI'G.

(2.2)

(2.3)

(2.4)

(2 5)

(2.6)

In these equations the indices and variables are su-

pressed, a "matrix" multiplication being assumed. A
and y are considered as matrices in con6guration space:

e.g. ,

~(g; x*')= ~S(g—x)S(x—x'),

(xi A
i
x') = 5(x—x')A(x),

(2.7)

(2.8)

(2.9)

where P is the "photon coordinate. "
G, M are functions

of the electron coordinates G(x, x'), M(x, x'), and

MG=— M(x, x') G(x', x")d'x". (2.10)

In (2.2) this becomes M(P)G(P). I' is the generalization
of y which takes into account the radiative corrections
and is a function of three variables,

I„(5;*,x') = 9/~eA„(t—)JG (*,x') -(2.»).

With the Lagrangian

434—'~ vu( &~~ eA~—)4'+—m0 j
+,'F„p'+p(F„„,8-„A,—B„A„)

+Hermitian conjugate, (2.1)

Gp ',——(yP+m), p,

Do exp= &

(2.17)

(2.18)

It has been shown by Dyson' that the equations
(2.2)—(2.6), when expressed in terms of experimental
quantities can be solved by perturbation theory to all.
orders in e'. In order to obtain the renormalized per-
turbation theory, certain operations are performed upon
the series. These operations will be performed on the
closed equations (2.2)—(2.6), and it will be assumed that
the resulting functions G', 1",D' exist, and that if they
could be obtained without recourse to perturbation
theory, then would give the same series expansion as
is obtained in perturbation theory. Since the complete
nonperturbation approach is not achieved in this paper,
this procedure cannot be rigorously justified, but
appears very reasonable.

Renormalization effects a change in scale of G, 1', D
and e'. To accomplish this the expansion (2.16) must
be expressed in a symmetric form. Thus, if we write

l

(2.19)

~ I'. J. Dyson, Phys. Rev. 75, 1736 (1949).

I'= y+ie'HAGI'GI'D ie'yG(5—/5eA) (I'D), (2.16)

and so on. This I' can be used to 6nd G and D as power
series expansions, and further expansion can take place
in terms of G~= fy(P —eA)+mj ' and Dj (k') ' It-—
is well known that this approach as it stands leads to a
series of ininite terms, and renormalization must take
place before these equations are in fact the equations
which deal with physical quantities. The experimental
mass is the value of M for a freely moving electron,
i.e., one for which G~ ' ——yp+M=O. The value of the
physical I' for the emission of a photon of vanishingly
small momentum by a free electron is p, and the forms
of the Green's functions for free electron and photon
of vanishingly small momentum are, respectively,
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A may be expressed entirely in term of F:
I = ~—ie'(S/SsA) (r—A) Gl D (2.20)

Zr'= ~—ia(S/~sA)Z(r' —A')G'I"D,
I"=Z 'y i-e'(8/—beA)(I" A')G—'I"D

=Z 'y+A'

=Z 'y —ie'P'G'I"G'I"D'+ e4 terms+

(2.23)

(2.24)

This result is unaltered by charge renormalization, in
which 4I

e'=Z*&e, A'= (Z*) 4i, D'=Z* 'D
D' '= Z* 'k' ie"(I" A')G—'F'G'— (2.25)

The Z's are chosen so that

I','= p, D,'= k', Go' ——yP+m, (2.26)

where the subscript 0 denotes the value of these func-
tions for free electron and free photon, e.g.,

I"=y+A' —(A')o

The equation for F' is a nonlinear integral equation of
increasing complexity as the expansion proceeds, and
cannot be directly solved in this form.

Our approach will be to expand all the functions on
the right by perturbation theory with the exception of
one of the F"s, which leaves a linear integral equation
with an expanded kernel. The simplest approach is to
retain that I' which arises in each term from the appli-
cation of the (6/BeA) upon cV. In this case the integral
equation involves only one variable, and it can be
written (conventionally since commutation relations
must be maintained in bringing the I" to the right)

QO

I"(k, j)=Z 'y+ I"(k, l))P e'"K (i j k)d'l, (2.27)
0

where I"(k, j) is the I'ourier transform of I'($; x, x')
based on $—x, x—x', and the k's are independent of e .
Written out explicitly,

I"=Z 'y ie yGi'7'Gi'yDi'—+e4 terms. (2.28)

Z 'is to be fixed b-y the boundary condition (2.28).

3. SOLUTION OF THE EQUATION

The existence and behavior of a solution depend on
the behavior of the kernel, and to have it expressed as

' J. C. Ward, Phys. Rev. 78, 182 (1950l.

ie'—(6/beA) I'GI'D

+ie'(5/PeA){ ie'—(b/beA)I'GI'D)GI'D+ . (2.21)

This amounts in perturbation theory to regrouping the
terms in the expansion. If we now define I", A' by
ZF'= I' and ZA.'= A, then since eA and e'D as a con-
sequence of gauge (charge) invariance must remain
unaltered under such a change, ' from the definition of I',

(2.22)

a power series is not very satisfactory, since very few
conclusions can be drawn concerning the behavior of
a function from the first few terms of its series ex-
pansion. The simplest approximation, that of solving
with only the Eo present, will be adopted, and the pos-
sibility of a better approximation will be discussed later.
This procedure may be viewed in the following way.
Of the infinite series of terms in the fry/ perturbation
expansion of (2.27), an infinite set is picked out and the
remainder, of order e' and higher, are neglected. 4 By
approaching from the viewpoint of an integral equation,
the sum of this series is expressed as a closed function
which if expanded would again give the perturbation
series, but which may be used outside the radius of
convergence of the power series.

The equation to be solved is then, dropping primes,

|'k
I'„(k,j)=Z' 'y„ie' —y„Gi/ +i fI'„(—k, l)

2

k~ ) kq
&&Gil I—— [&Dil j—I—— ld'i (3 1)

2) 0 2]
Z'-' is the renormalization constant for this equation,
and it is not, in general, equal to Z—. The solution is
the operator which governs the emission of a photon
momentum k by an electron of momentum j, Z—'p
being the contribution of the "'bare" electron, and the
remaining term the e6'ect of the photon field, which in
this approximation is treated by perturbation theory,
retaining only those eGects due to the non-overlapping
emission and absorption of virtual photons. The integral
equation (3.1) is singular since the range of integration
is infinite. Moreover, since J y„Giy„G,y„D, diverges,
the usual methods of Neumann, and more particularly
of I'redholm, cannot be applied, there being a pole in
the kernel at infinity.

The method adopted is to find eigenfunctions of the
homogeneous part of (3.1) and investigate how the
complete solution can be built up from them, to satisfy
the boundary condition. It might be noticed at this
point that although this equation contains only part
of the total solution, it contains all the di%culties as
far as the divergences associated with straightforward
expansion are concerned. The only reason that (3.1),
indeed (2.2'I), can be solved by perturbation theory is
that the divergence associated with the kernel is so
weak that the alternative form I"= y+A' —(A) o' can be
treated.

Equation (3.1) still presents considerable difficulty
4 It will be seen that this has similarity to the "ladder" approxi-

mation which has been suggested in the two-body equation by
Bethe and Salpeter. In terms of Feynman diagrams we retain
only those in which photon lines do not cross, and closed loops
and self-energy parts of electron 'lines are omitted. The ladder
approximation, in the two-body problem, leads in certain cases to
integral equations of the type displayed here, and the solution of
the two-body equation in this approximation from the integral
equation point of view has been investigated by Dr. J. Goldstein,
to whom the author is indebted for some interesting discussions.
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and so is simplified in the following way. Since the
integral equation operates on j only, it is possible to
consider the case k=0, which introduces special simpli-
fications. Also, we can look for a solution in the form

p„f(j'), and neglecting the terms in o„„p„,etc. , and the
finite part, which arise from the commutation properties
of y. Ke then get

f(j') =z'-i— f(P)d4t

(2s.) " (P+m')(j —l)
(3.2)

The terms neglected can always be brought in later
on the basis of the solutions of (3.2). In meson theory
with ysf(j'), Eq. (3.2) would in fact be complete In.
the case of (3.2), solutions in a closed form can be
obtained to the homogeneous equation,

f(l')d4l. I'2l
t. ~') J (p+ms)(j i)''—(3.3)

details of which are given in the Appendix. Since the
method there does not work for k/0, or when a meson
mass is present, a wider approach is made to (3.3),
which can be generalized to these cases. In order to
make its structure clearer a transform is used, which
reduces this to a one-dimensional integral equation.
Write f in the form of a "Stieltjes transform":4

r~ F(a)da
(~') =

a+p
(3.4)

xF(a)d4/

LP+ j'xy(1 —xy)+tis'x(1 —y)+a(1—x)7'

=—(2s)' 'da il dx ~ dyF(u)x

X(j xy(1 —xy)+~(1 —x)+~'x(1—y) 3-'.

Now invert the transformation (3.4),

im' r
'

"o

~l
dx

'

dyx(1 —x)

where a small imaginary part is added to the denomi-
nator, thus giving the form of a superposition of
propagation functions. Integrating in the usual manner,

f(l') d41

(p+m') (j—l)'

F(a)d4l

J J (p+~s)(p+p)(p —2fj+js)

which can be transformed into

~i oo

f(js+~')=& dy id'(1+i) '-
~o ~o

The boundary condition is now f(0)= 1, and since only
positive arguments appear in f under the integral, we

can consider this a one-dimensional equation in a
positive variable $= j'. To extend the solution to
negative $, when f appears in an apparently non-

singled valued form, the form (3.4) is implied, the small

imaginary addition to the denominator ensuring that
the functions exist and are single valued. Since the
usual method of obtaining eigenvalues and eigenfunc-
tions are not available, we consider the equation when

$ is very large.
Then (3.6) becomes

f(k)-I dr &deaf(t)D+&(1 X)j—' (3 7)
~o o

This belongs to a general class of equations for which,
if f($) is a solution, then so also is f(p$), and the solu-
tions are powers $ ~.' Substituting this form into (3.6),
where for reason of convergence 0(RP&1, and $((eP,

~),P '(P—1) '$

i.e., |I=s)1&(1—4X)I), which if X is small gives P= X,

1—), and is complex when ) &4. There are no other
solutions, ' so that the general solution is C$ &&+8) ~&,

Pi, Ps being the two roots for a given X. The spectrum
of (3.6) is continuous, therefore, and the eigenfunctions
are not square integrable; moreover none of the avail-
able methods can be employed to construct an ortho-
normal set. Returning to (3.2), we are forced to the
conclusion that Z' '=0, and there exists a solution to
(3.2) with Z' '= 0, for all values of e'/4' = n, this being
Ss.X above. The solution for (3.2) is obtained in closed
form as a hypergeometric function in the appendix, and
the various results above are confirmed there. For the
solution to (3.2), and the more general equation we

proceed from the form at infinity, g ", X the smaller

root, by writing it in a form equivalent to expansion
about a point A; e.g., A "(js+eP+A) " is a form be-

~ This transform assumes that fhas only poles and branch points
as singularities, Before the integration can be carried out, the
position of the singularities of f must be known, and the trans-
formation is a device for accomplishing this; with its aid many
complicated functions can be integrated in the Feynman sense,
with very little difBculty.

This has been proved rigorously for the kernel (x+y) ' by
G. H. Hardy and E.T.Qitchmarsh; see, for instance D. V. %'idder,
The LaPlace Transform (Princeton University Press, Princeton,
1941). The approach in the appendix proves this rigorously for
(3.3), and it is assumed that the result holds also for the more
general equations. Equations of this type have a considerable
though rather unsystematic literature. T. Carleman, SNr les egla-
tionsintegrales singulieres (Almqvist and Viksells, Uppsala, 1923).
A general discussion is found in E. C. Titchmarsh, The Fozcrzer
Integral (Oxford University Press, Oxford, 1931).
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i.e.,
(m'(1 —x) ) -"

E j'x+m'J
(3 g)

where @(x) 1, and Jtip(x)dx=i. The work in the
appendix shows that for (3.2), P(x)=x "(1+1), and
this yields

r
' x—~(s» (m'(1 —x)~ ~(s»

Z'„«&(0, j) y„( ( (Ex, (3.9)"~, 1—n/Sx I, j'x+m')

which agrees with the perturbation theory expansion
of (2.2):

n (' (m'(1 —x) y
f(j')=1—' iogl I+O(~s)" .

Sm &s ( j'x+m')

When j' is negative the fractional power is to be under-
stood as having been put in the form (3.4).

Though in (3.2) we have dealt with a very simple
case, the arguments are quite general. The case of k/0
may be considered, as also can the nonsymmetric
terms such as a.„„p„withoutany difference in approach,
though with considerable mathematical complication.

r

4. A DISCUSSION OF I (')

F&'& expresses the nonlocalization of the electron
induced by the field in a closed form, which is clearly
expressed if we consider F&'& in configuration space for
the static case j'=k' —m', k a three-vector, when we
find the distribution Ca 'r s+~(s»y(r), where y(r) is
finite at the origin and decays exponentially.

The self-energy of the electron and polarization of the
vacuum can be calculated with F"'. The convention
must be adopted that, as in derivation of F(0), only one
F (0& is retained in the integrals concerned, and in all the
rest of the integral the first approximations are used.
Then both these quantities are found to be of order
unity, whereas in perturbation theory they are assumed
to be of order n, so that in perturbation theory an at-
tempt is made to expand a pole as a power series, which
leads to a series of divergent terms.

When a is negative, there is no solution for F&'&,

which must therefore be considered as defined for o. &0
only, and similarly everything calculated with it. Per-
turbation theory appears to give solutions equally
valid for either sign of n, but from the present point of
view this is invalid. This kind of behavior has been
conjectured by Dyson' from general physical arguments,
and through F&'& is only a partial solution it may be
regarded as an illustration of Dyson's remarks.

" F. J. Dyson, Phys. Rev. 85, 631 (1952).

having correctly at the origin and at infinity. But more
generally an expansion along a line is to be expected,
e.g.)

f(x) (Px+m')-"dx,

The result Z' '=0 is at 6rst sight surprising since it
implies the absence of the "bare" electron. In pertur-
bation theory Z '=1+Zn"Z„,where all the Z„'sare
infinite, a result which would follow if Z' ' were forced
into this form. The two results arise from diBerent
viewpoints, depending on whether we ascribe unity to
the bare electron and attempt to express the eGect of
photons present in a series in n, or concentrate our
interest upon the effect of the photons, whereupon Z' '
is zero, as in the integral equation approach.

The Green's function can be found with F, though
the case with k=0 is not adequate. The result is that
when p' is very large, G(p) (yp+m)(p') (', and it
is seen that the convention mentioned above must be
employed to obtain definite answers, since the sub-
sequent use of this function can alter the convergence
behavior of 3E or F.

(A) A Nonlinear Scalar Field

As an example of a theory which offers fewer dif-
ficulties than electrodynamics, consider a scalar field,
self-coupled by a term &P. Its Lagrangian, including a
source function J(x) is

~=!(~.~)'+!"~' l7~'+~~-
This theory is especially simple since only one kind of
particle is involved. Its Green's function 6 is defined in
Schwinger's notation by

a(x, x') = &y(x)/V (x')
= '(4(*)4( '))+—(4(*))(4(*')), (5 2)

and there is one auxiliary function 0, the analog of F:
n(xx'x") = —u, (x', x")/Say(x).

The equation of motion is

(— +as)$—Xps= j
which gives

5 '=O' —X(Q)+K'—iX'AM

(5.3)

(5.4)

0=1+&' hM

60
= 1+iX'(260rMA)+ iX'6

6X

(5.6)

(5.7)

The latter equation can now be iterated. The integrals
appearing in (5.7), when iterated, are all Gnite and the

S. APPLICATION TO MESON THEORY

In meson theory interest centers upon cases in which
the coupling is large. This weakens the applicability of
the methods of this paper, but in spite of this we shall

apply them to the various types of meson theory, since
they are still of considerable interest, and moreover
illustrate the various types of equation arising from
diGerent kinds of coupling.
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n=1+ks2n(~, A,~,+)i' )
= 1+i2) '0 Qs )&.'"K

&
(5.8)

renormalization of this equation may be postponed
until the equation is solved. Apart from a mass
renormalization which is infinite in perturbation theory,
these equations may be considered as they stand. The
linear integral equation is

fmlds, respectively. This gives rise to three types of
Green's function 6, 6, and D, where we shall use these
letters as they stand letting their components be im-
plicit. 6 has four components, two of which have non-
zero expectation values, 8 has three components, and
D has one. With these a series of auxiliary function can
be defined:9

where all the kernels K„have J'K„(jj)d'j bounded so
that I'redholm's method ca,n be used upon it to any
order. Providing Z'A'"K„converges, the Fredholm
method is guaranteed to converge. '

(8) Psendoscalar Meson Theory with
Pseudoscalar Coupling

This theory is of considerable interest, and falls into
the same class as electrodynamics. Its general equations
can be derived conveniently using the methods of
Schwinger's paper, with the addition that for the full

theory with photons present, third variations of the
Lagrangian are required:

b"b'(bZ(x))

r„=——
beA„

C„„=
beA„beA„

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Here again it is understood that F„has two com-
ponents, I's six (two of them zero) and so on. For
-example, in full,

(Cx') (dx")[(bZ(x) b'Z(x') b"Z(x"))+

—(bZ(x) b"Z(x")),(b'Z(x) )
—(bZ(x) b"Z(x")),(b'Z(x')) ~* '($s k4).

be(5 ) bg.@.(b)

(5.15)

(5.16)

(5.1/)

We give the equations in full for the Lagrangian,

',Q,((B„-ievA„)—g;(8„'sevA„)—(f;)+'', Q, «P-
—-',8, ( ib„e—TA„)—4+md]+Z; ',g,'[& -&,r4]4;
+ ',F„„s,'(F„„B„A,-B,A—„—)+—JQ„
+Z K,~;+ '.N, ~]+g-') Z;(~1~);(~&~);

+Herm. conj. of all term in f, g.

where

M = rN+i g'rysGI's6+i e'Ty„GI'~Dq„, (5.18)

F„), e'V b„sD,„C——),„64+2e'V'B„AV),h
ies'Ts/& b q+iesT t—ry„GI'&, G

rr =2e'V'8„6VgDg„+e4v bg„D„pC),pD igs)&ni-

xie'f

D„),b„g+sgs—try, GI'sG+ g')&sr/& 6/& '/&/

(5.19)Here it is understood that grg, etc. , are abbreviations
for P g, r;&I&;, @; having three components. Usually the
index i on g, K will be dropped. The P has two sets of
components in isotopic space. K, T, and U are matrices
that conserve change:

(5.20)

e is a matrix conserving charge.
These equations may now be treated as was electro-

dynamics earlier with a larger number of renormaliza-
tions required by the larger number of 6eMs and the
lack of gauge invariance, and with the p' term present
the convergence in perturbation theory has been demon-
strated. '0 Integral equations for I'„,F5, C„„V„,and g
can be set up, all falling into the same type. We conine

These definitions are the most useful, but alternative ways
can be used and are sometimes needed, e.g. &

C»=g's '(g/bgp)
X (glgg&t&)D», ' and (g/gg&l&) (I„D)=DV„I'sA+DgI',/st�

„

'0 P. T. Matthews and A. Salam, Revs. Modern Phys. 23, 3li
(1951).

'3A'+4~as''0 1 0'
1+rsT=, v= —1 0 0, (yUy)= 3y'+y, ys .

,34i4 s+A'&( 0 0 0,

g, J„,K; are sources of the Dirac, Maxwell, and meson

'The series ZX'"I, since perturbation theory has been used
in it, will not converge, according to C. A. Hurst, Proc. Cam-
bridge Phil. Soc. 48, 625 (1952). If, however, we follower Hurst's
interpretation that the expansion is asymptotic and should be
broken oft at a certain point to give best results, the arguments
above can be considered adequate.

—(b'Z(x') b"k(x")),(bZ(x))

y 2 (bg ( ))(b g ( ))(b g ( ))] (5 9)
The final equations for the Green's functions are

t 7p+M]G=1,
(k'+F]D= 1,

t k +«s'+II]5=1
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our attention to Fs which satis6es

1'5 ——ygZ' '+ig' t YgrGFgGy6vh. (5.21)

The solution Fs ——yt;f contains no approximation as far
as y5 is concerned, but the closed form cannot be ob-
tained, and the approximate method must be used.
The r's give +1, 0, —1 according to whether symmetric
charged, or neutral theory is employed, and only the
former can be used in this approximation. f(0, j) for
large (j)' behaves like (P) s, where

the nucleon, which has the same magnitude but opposite
sign in the two cases. The types of approximation used
so far are clearly not adequate to tackle this problem,
but we may make the observation that since the eGect
of F, V is to introduce a cutoR which makes the resu1t
finite, and since the result will come mostly from the
terms which are infinite in perturbation theory, the
sign of our answer can be expected to be the sign of
the in6nite, contribution of perturbation theory. By
considering the 6rst terms to be involved, e.g. ,
g'e'F~GF„GFSAV„A, the sign is found to be incorrect,
This result, however, can clearly not be taken in any
way as conclusive.

with logarithmic solution when P= 2. For large g', i.e.,
g'/4n )2~, P= ~2+i& "T.his means that for large g the
solution behaves like cos log(j'), and one can expect
the Green's function also to have a series of roots.
Since this behavior would apparently be ruled out on
physical grounds, this may be taken as an upper limit
in coupling constant to the applicability of the method.

When P=-2, the expansion of (j')—
& in powers of g'

has lost all signi6cance. The approximate solution for
P(-,'is

(1 P){m—'x+a'(x ' 1))i'—
"0

X f j'x(1—x)+m'x+~'(1 —x)) &dx, (5.22)

differing from the electrodynamic case by the ~' term,
which may be interpreted by saying that the particle
presents a dense core "radius" (the Compton wave-
length of the nucleon) surrounded by a diffuse region
"radius" (the Compton wavelength of the meson).

The interaction of the electromagnetic 6eld with a
nucleon is described by I'„,and this suggests that some
attempt might be made to estimate the proton neutron
mass difference. Since the mass operator is dominated
by its meson part, the approximate integral equation is

I', =Z-'y„(1+rg)(2 i g'ygrGF„Gpgr—h

ig'ysrGygrA—V„b, (5.23).
Consider firstly only the first and second terms on the
right. They give an integral equation which is essentially
the same as (5.21) and has Z '=0 a condition for
solution. This implies that the isotopic matrix in F„
satisfies t= Cr, tr;, i.e. , t= 1 not —,(1+73). This just states
that if mesons are always present, then both proton
and neutron interact in the same way with the electro-
magnetic 6eld, the difference being in the charge on the
meson cloud. Thus, the self-energy due to the term
ie'F„GF„Dis the same for both proton and neutron. A
similar argument can be applied to the self-energy due
to mesons interacting with one another, an argument
which holds in perturbation. theory. Thus, the dif-
ference comes from the interaction of the mesons with

"This change is simi1ar to the change from Legendre functions
to conal functions, which are rea1.

(C) Pseudoscalar Mesons, Gradient Coupling

The only difference to the Lagrangian of (8) is the
coupling term ~egg, ps'„g]8„qkThe first approximate
integral equation is

vsvy~p &g 757y~yGlflG175v~~vi » (5 24)

where 0 is the analog of I" in this theory.
The kernel of this equation has a linear, rather than

logarithmic singularity. If the homogeneous equation
is substituted into itself, an equation is obtained which
must contain all of the solutions to the homogeneous
equation itself. This is

g Y5+p~pGl+5+vvGl~Gl+5+hokG1+5+m ~m'~~.

But if the subsidiary integration in this equation is
carried out, it leads to a divergence in the kernel; the
only solution is the trivial one, and (5.24) has no
solution. This argument does not entirely rule out the
possibility of a solution to the complete equation, since
the approximation used to derive (5.24) depends on its
having a solution. But clearly, if a solution exists, some
much more powerful method is required to obtain it.

CONCLUSIONS AND OUTLOOK

The meson theories indicate a classi6cation of types
of equation, being soluble in the Fredholm sense,
soluble though unbounded, and insoluble, according to
whetlier the kernel behaves for large k' like (k') ' ',
(k') ', (k') '+', 5)0. This categorization is similar to
that obtained in perturbation theory of trivially renor-
malizable, nontrivially renormalizable, and nonrenor-
malizable, and will extend to the more complex types of
theory whose general classi6cation has recently been dis-
cussed by Sakata eI, a/. "But it must be pointed out that
such classi6cations are not conclusive, since the expanded
kernel in (2.27) may, if expressed in closed form, fall into
either of these classes, "and the final answer to the ques-
tions raised here can only be given when this function is
obtained. Electrodynamics, for example, might in this

"Sakata, Umezawa, and Kamefuchi, Prog. Theoret. Phys. 7,
337 (1952};H. Umezawa, Prog. Theoret. Phys. 7, 551 (f952).

'3 This remark may be considered va1id even if the series ex-
pansion does not converge; for, providing the series is in the
asymptotic category, there is sti11 a generating function.
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f(i')=~ ' f(k') d4k

4m' ~ (k'+ m') (k —j)'
(A.1)

Consider the homogeneous equation, andput (ks+m') 'f

form be soluble in the Fredholm sense and have Z '/0,
" while it also might be quite insoluble. The main dBBculty

lies in the expansion associated with the renormalization,
since the approximation of putting FG= yG~ is valid at
high momenta, and also the functional derivative can
be replaced in certain cases by a partial derivative, '
which, though not a systematic approach, agrees with
the solution found above. %e have chosen the erst
term in the expression in (2.27); however, any other
term could have been chosen and would lead to a solu-

'

tion behaving like momentum squared raised to a power
equal to a multiple of n when n is smaH, for high
momentum, in spite of the extra powers of 0, appearing
in front of the kernel, these being recompensed by the
greater degree of unboundedness of the kernels. Simi-
larly, the contribution to, say, the self-energy of the
electron from each of these kernels is of order unity,
and if this type of approach is to converge, it cannot
rely on the smallness. of 0. ; then we have no criterion of
convergence.
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APPENDIX

%e give here a complete treatment of the approxi-
mate integral equation. The equation under considera-
tion is

Multiply by j'. Putting j~=x, arid differentiating twice
with respect to x, we return to the original form,

$x(xy 1)y(x) 1"= —}y(x).

Now return to f W.e get

(A.5)

or
(xf)"= }f—(x+1) ',

x(x+1)f"+2(x+1)f'+}f=0

(A.6)

'(A.7)

It will be noticed that in the process of diGerentiation,
arbitrary constants have been introduced, so that the
solutions of (A.7) contain also the solutions to

P(P —1)+X= 0, (A.9)

which has been obtained earlier. Such functions cannot
be used as the basis of a complete set in any interval
containing the point at ininity, and so A=O, i.e.,
Z—'=0. At the origin the indices are 0 and —1. The
latter is to be expected in the light of the coeKcient 8
in (A.8), and the solution containing it must be avoided.
At x+1=0, where we wish to apply one boundary
condition, the solutions are of the form

P a.x" and P a.(logx)x"+g b„x",
1 l 0

and the latter (corresponding to index 0) is the one
appropriate to one problem. It is given in closed form
in %hittaker and %atson, " the form suitable for one
purpose being

s &(1—s)&(1+xs)—&ds,
~o

8 s,a
t f(hs) d4k

f(j') =A+ —
~
— . (A 8)j' 4sr' & (k'+m') (k —j)'

where A and 8 are arbitrary constants.
Equation (A.7) has the indicial equation at infinity,

t 4(j')d'k
(j'+m')y = iX

(k —j)'
Apply a transform of the type (3.4):

t
C(A)dA

~(k') =
& (A+ks)s'

t 4(A) A+j'
(j'+m') P(j') =

X) ln
j2

(A.2)

(A.3)

(A.4)

P being a root of (A.9), i.e., P~n/8sr, or in the notation
of (3.9), normalized,

~l (m')(1 —s) t+""
f(k') = t&)

~. L1-(/8 )j (k"+ ') ~

which is the solution obtained earlier by less direct
arguments.

"E.T. Whittaker and G. N. Watson, A Course of Modere
Assalysss (The MacMillan Conrpany, New York, 1946}, p. 297,
Ex. (6}.


