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to be found in a natural source. At*® and At*'® may also
exist but confirmatory evidence would be desirable.t
Recently, Peppard et al.!® have reported the occurrence
of minute amounts of the 4n+41 series in uranium and
thorium ores. These experiments imply the existence of
the 0.02-second At*7 in these ores, since it isa member of
the 4n+1 decay chain. The results reported in the
present paper add another isotope of astatine to this
list and supply the first case in which the half-life of
the astatine is sufficiently long that a chemical identi-
fication (as, for example, by extraction into tributyl
phosphate or volatilization at low temperature) of the
activity was possible.

It is worthy of note that other authors have pub-

t Note added in proof: P. Avignon [J. phys. et radium 11, 521
(1950)] has confirmed the work of Karfik and Bernert on the
alpha-particle group assigned to At?"® using a considerably larger
source. Avignon’s revised alpha-particle energy of 8.04 Mev is
closer to the 8.00-Mev energy assigned by Meinke, Ghiorso, and
Seaborg [Phys. Rev. 81, 782 (1951)] to the At?® occurring in
the decay chain of Pa®’ and perhaps can be identified with it.
However, this cannot be regarded as established.

19 Peppard, Mason, Gray, and Mech, J. Am. Chem. Soc. 74,
6081 (1952).
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lished predictions similar to those discussed above on
the alpha-branching of AcK and that these predictions
are in substantial agreement with the experimental
results reported here. Vigneron?® predicted an alpha-
particle energy of 5.4540.15 Mev for AcK and an
a/B~ branching ratio in the range of 1/300 to 1/2700.
He also estimated an alpha-energy of 6.2040.15 Mev
for At?® and an alpha half-life of 15 seconds to 15
minutes. Karlik® predicted an alpha-particle energy
of 5.55 Mev and an «/B~ branching ratio of 2X1073
for AcK. Feather? predicted a branching ratio of a few
per thousand. Jentschke? predicted an alpha branching
ratio of 4X107° to 6X10™* for AcK and indicated
a/B~ branching at At?? and beta-emission at Bi*.
We wish to thank Dr. F. Hagemann of the Argonne

‘National Laboratory for making the Ac®" source avail-

able to us and Dr. J. Hollander of this laboratory for
helpful discussions on this problem.

20 1. Vigneron, Compt. rend. 225, 1067 (1947).
2 B. Karlik, Acta Phys. Austria 2, 182 (1948).
2 N. Feather, Repts. Prog. Phys. 11, 19 (1948).
2 W. Jentschke, Phys. Rev. 77, 99 (1950).
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A method of field quantization is investigated which is more general than the usual methods of quanti-
zation in accordance with Bose or Fermi statistics, though these are included in the scheme. The commu-
tation properties and matrix representations of the quantized field amplitudes are determined, and the energy
levels of the field are derived in the usual way. It is shown that spin-half fields can be quantized in such
a way that an arbitrary finite number of particles can exist in each eigenstate. With the generalized statistics,
the interchange of two particles of the same kind may or may not be physically significant, according to
the type of interaction by means of which they are created or annihilated. Physical consequences of the
assumption that there are particles which obey the generalized statistics are briefly examined.

1. INTRODUCTION

T is commonly acknowledged that quantized field
theories, even in their recently developed state,
involve mathematical inconsistencies (renormalization
and regularization procedures) which make it unlikely
that they have reached their final formulation. It is
nevertheless difficult to see how they can be modified
without infringing a set of rules which are dictated by
the requirements of physical verisimilitude. For this
reason, any possible means of relaxation of the present
rigid structure of field theory deserves to be fully
explored.

One procedure of field theory which has long remained
unchallenged is the method of quantization, in accord-
ance with either Bose or Fermi statistics. This has been
authoritatively described by Pauli! One modification

1'W. Pauli, Revs. Modern Phys. 13, 203 (1941).

of this formalism which has been seriously considered
is' Dirac’s introduction of the indefinite metric?; the
only application of this device, however, which lends
itself to a consistent physical interpretation, is Gupta’s
treatment of the longitudinal electromagnetic field.?

In this paper, a generalization of the existing methods
of field quantization is investigated, which has nothing
to do with the metric, but involves a departure from
Bose and Fermi statistics which, however, remain as
special and indeed the simplest examples. To some
physical particles, the application of ordinary quantum
statistics. seems unquestionable, for example, of Fermi
statistics to the electron. To others, such as the proton,
there is still room for doubt, and to the mesons no

2P. A. M. Dirac, Proc. Roy. Soc. (London) A180, 1 (1942);
see also W. Pauli, Revs. Modern Phys. 15, 175 (1943).

3S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1950); see
also K. Bleuler, Helv. Phys. Acta 23, 567 (1950).
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existing theory seems to be properly applicable. It is,
of course, quite possible that all physical particles obey
the ordinary quantum statistics, and that the source of
our modern difficulties should be sought in other
directions. However, the existence of schemes of quanti-
zation more general than those normally employed is
an interesting fact whose possible physical significance
cannot be ignored.

In the interaction representation, any field ¥(x) can
be expanded in the form

W (x) =2 1{br+or+(*)+ 00— (%)}, ey

where ¢4 (¥) and ¢ () comprise a complete set of
ortho-normal functions of which the former contains
only negative, and the latter only positive frequencies.
One may take, for example,

@>0)  (2)

where V is the volume of the 3-dimensional region
considered, p;* are the possible values of the energy-
momentum 4-vector,* and ¥y, is a suitably normalized
scalar, spinor, or vector. The vacuum will be the state
of lowest energy provided its state vector W', satisfies

bk+‘po= bk_‘Fo=0; (3)

Crt+= V-1 exp(:Fipk"‘xa)\I'ki,

with this notation b, (r=k-+ or 2—) always annihilates,
and b,* always creates, a particle of positive energy. A
scheme of quantization will be considered satisfactory
if it ensures

6a‘I/(x) = iEde \I’(x):]y (4)

where P, is the total energy-momentum 4-vector for
the field.

2. SPIN-HALF FIELDS

It will be assumed that the energy-momentum
4-vector of a spin-half field is obtained in the form

P°‘=Zr p;“[b,*, br]- ’ (5)

This is, for example, the form to which the energy-
momentum of the electron field naturally reduces, when
expressed in the usual way (apart from a factor %, which
is for convenience absorbed into the operators b, and
b.*). Now, the necessary condition under which (4) is
satisfied is

[bfx [b8*> bt:l:]= 6rsbt; (6)
for s=¢; it will be assumed to hold in general. This,
with the relation obtained by taking the Hermitean
conjugate, implies .

[Pa; br]= —P,-"‘br, [Pa’ br*]"f’r“br* (7)
—which are equivalent to (4), on account of (1) and
(2). The relation (6) will be supplemented by

(0,, [bs, 0:1]=0. (8)

4 Greek affixes run from 1 to 4 and are used consistently with
a metric tensor gog=(—1, —1, —1, 1).
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It follows from (6) and (8) that
(8%, (s 0. J]=0rabe—8,ids,  [0:%, [0:%,0411=0. (9)
All the above relations are satisfied if one assumes
{05, 03=0, {b/%, bs} =130, (10a)

in the usual way; however, there is an infinite number
of other ways in which they can be satisfied as well.
For example, if one has

bbb bbb, =0,
br*bsb t+ btbsbr* = arsbty
brbs*bt""btbs*br: 6rxbt+ 6tsbr,

(10b)

. they are satisfied identically; but the relations (10a)

are incompatible with (10b). In fact, (10a) and (10b)
determine completely different representations of
matrices which satisfy (6). It is important that

[[br*; br]; [bs*’ bs]]‘_‘o (11)

is a consequence only of (6); thus, whatever additional
assumptions are made, the various terms in the sum-
mation (5) can be diagonalized simultaneously and the
energy levels obtained. The fact that the &’s neither
commute nor anticommute in general does not add an
intolerable complication to the theory.

To obtain the energy levels of the system, it is
necessary to select a definite representation for the 4’s.
It will be shown that any one of them, b, say, has an
irreducible matrix representation with k41 rows and
columns, where & is any integer. The representative of
b, in this representation, which makes the energy
diagonal, is :

(®r)mn=8m, na{Fm(k—m+1)}}, (1<m, n<k+1). (12)
This gives

(8%, b, Jn= bma(n—1—3P), (13)
and ‘
(s, [0:*, 5,1 ]mn= bm, a1{3m(k—m+1)}}

Thus (6) is satisfied for r=s=¢. It is clear from (13)
and (5) that the separation of neighboring energy levels
corresponding to any eigenstate  is .4, and one may
therefore interpret the (j+41)th energy level in the
usual way as corresponding to a state in which j
similar particles are present. If W, is the normalized
state vector for the vacuum,

Wi ={2/(k—7) (G R)Gw,  (15)

is the normalized state vector for a situation in which j
particles are present in the rth eigenstate. It follows
from (12) that (b,*)**'=0; so that it is impossible to
have more than k particles in the same eigenstate.
According to (5), the ‘“zero-point” energy of the
vacuum would be —3£3", p,4; this has to be subtracted
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from P* to obtain the observable energy. Thus,
" Pope®=X, p([0*, b, 1+32). (16)

The simultaneous representation of many b,’s will
now be considered. It is clear that an irreducible
representation in (k4 1)? dimensions should exist for a
set of p different annihilation operators. The author
has not, however, succeeded in obtaining a simple
formula for the matrix elements of the &’s in this
representation. For this reason, only a reducible repre-
sentation in 27* dimensions will be discussed. Let o,(?
and 7, (j=1---k, r=1.--p) be a set of Hermitean
operators satisfying the following commutation and
anticommutation rules:

[0, 0, D ]=[o,®, 7,407
=[r,, 7,(0]=0, (i%7),
{o,D, 0, D} = {7, D 7,D}=5,,, {0, D, 7,D}=0.
These operators can obviously be expressed as direct
p y p direc
products of the members of pk sets of Pauli spin

operators, and may therefore be represented without
difficulty in 27* dimensions. Also, one can show that if

an

=t
br=3% 2 (o P+ir, D), (18)
7=1

the commutation relations (6) and (8) are satisfied. For

[br, b, 1=13 [0 P +Fir, @, o (DFir 7],

s (19
[br*y bs]=%Z,-[ar")—wr"’r, 08(1)_*_“-8(1)],
and
[br’ [b8*7 bt]]
=13 [0, P+ir, D, [a,D—ir,D, ¢y Fir,DT]
=15 (oD ir D), (20)

etc. The energy and momentum are diagonal if all the
10,07, are diagonal.

For the valuation of expectation values it is necessary
to supplement the definition (3) of the vacuum by

b:b W0 =%k6, W, (21)

which can be proved in the representations discussed,
but is obviously not a general relation. From (21), (3),
and (6) it follows that

brbs*bg*q"o‘—“ {%k&,sbt*—l- (%k— 1)5r¢b3*}‘l}'0. (22)

With the help of these and more complicated formulas
which can be deduced from them, it is possible to
eliminate the &’s from any function of both the &’s and
b®s when applied to the vacuum state vector.

It is natural to interpret b,*b,*W', as the state vector
for the situation with two particles in the eigenstates »
and s, respectively. However, except in the simplest
case of Fermi statistics (¢=1), this state vector is not
equivalent to b,*b,*®", which corresponds to a situation
in which the two particles are interchanged. Thus «
new state usually results from the interchange of two
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particles, in this theory. There are, however, always
certain symmetry properties which are strongly analo-
gous to those possessed by fermions. To illustrate
these, the relations (10b), which correspond to k=2,
will be considered. It follows from (10b) that, if 7, s, ¢
and # are all different eigenstates,
br*bs*bt*‘F(): ’—bt*bs*br*wﬂ H
br*bs*b t*bu*llr.o = bt*b 8*b r*b u*‘IPO
= _br*bu*bt*bs*qj‘o
= bg*bu*br*bs*‘lru.
Thus, the particles always divide into two groups in
such a way that interchange of two particles in the

(23b)

.same group does not produce an essentially different

state, but interchange of two particles in different
groups gives a new state. The particles divide them-
selves as equally as possible between the twe groups,
and particles in the same eigenstate always belong to
different groups. These conclusions are easily general-
ized. When k> 2, there are % groups of particles and it
is possible to distinguish only between members of
different groups. Not more than one particle in a given
eigenstate may exist in one group.

An observation will now be made which somewhat
counteracts the foregoing conclusions. It may happen
that, owing to the type of interaction by which they are
created, the particles will be distributed with equal
probability between the several groups, so that the
distinction between particles in different groups will
never be physically realized. In electron field theory,
the interaction energy involves creation operators
always in combinations like [4,*, 5,:*] or [b,, b,*]. But,
assuming k=2 in a theory of this type, the operator
[6.* b.*] distributes the two particles created with
equal probability between the two groups; and since

[[bﬁ bS*]: [bt*; bu*]:‘z 6ru[és*, bt*]_af![bs*y bu*:]) (24)

the application of the operator [b,, 8:*] will not interfere
with this equidistribution. It follows that if the state
vector is initially either symmetrical or antisymmetrical
with respect to the interchange of any two creation
operators, it will remain so. It might be thought that
under such circumstances the method of quantization
must reduce to quantization in accordance with Fermi
statistics. That this is not so may be seen from the
existence of a nonvanishing state vector,

[br*’ bs*][br*; bt*]lFO‘_‘ {bl*: bs*} (br*>2w0)

with two particles in the rth eigenstate.

For £>2 it is also possible to devise interactions,
involving symmetrical combinations of % creation or
annihilation operators, such that the principle of
“indistinguishability of similar particles” is preserved.

3. FIELDS OF INTEGRAL SPIN

A completely parallel development is possible for
fields describing particles with integral spin. One then

(25)
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assumes. that the energy-momentum 4-vector can be
reduced to the form

P“=Zr pra{bf*y br}’ (26)

with the anticommutator instead of the commutator.
The fundamental requirement (4) then leads to

[bra {bﬂ*, bt}]': 5rsbt (27)
instead of (6), to which one adds
| ' [bry {5, 31=0 (28)

in place of (8). These relations are satisfied by the
usual commutation rules,

[bry b5*]=30+s, (29a)
but also by an infinite number of alternative schemes,
for instance, by

bsbobs—b:bsb,=0,
b:b*bs—bebs*br=8,:b1— 815Dy,
b:bsb*—b.*bsbr= bsidy,

which correspond to (10b).
If one identifies the suffixes in (27), these relations
reduce to

(29b)

b,2b,*—b,*b,2=b,. (30)

The matrix representation of two operators b, and b,*
which satisfy this relation, which arises in the quanti-
.zation of the simple harmonic oscillator, has been
discussed by Yang and Wigner.? Yang’s method can be
adapted to obtain all the irreducible representations for
any one of the &,’s; these may be compared with the
corresponding representations for spin-half fields, ob-
tained in the previous section. To appreciate the degree
of degeneracy arising in some of these representations,
however, one has to construct the corresponding
representations for a set of different 4,’s. Consider the
set of operators b, (j=1---k,r=1.--p) which satisfy

(0,9, 5,0y = (b,9%, 5,9} =0, (ix% ),

[6,, 5,0 ]=0, [b,, b,*]=135,,.
These can evidently be expressed as direct products of
a set .of operators of the type satisfying (29a) and a

set of Pauli spin operators, the matrix representations
of which are well known. Then, if one writes

(31)

=k
by= 2 b,P, (32)
=1 ,
both (27) and (28) are satisfied. For one has
Bry bo} =23, b,Db, D),
{0, 8.} =2%_; (33)

(b, b.*} =23 ; b, (Db, (¥

8L. M. Yang, Phys. Rev. 84, 788 (1951); E. P. Wigner, Phys.
](ng\g.l)ﬂ, 711 (1950) ; see also C. R. Putnam, Phys. Rev. 83, 1047
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etc. It is readily verified that
[{br*, b.}, {ba*y bs}]=0

is a consequence of (27), so that it is always possible to
diagonalize simultaneously the various terms in the
summation of (26). Also

(0.%,b,) =3 (b, D%, b},

so the energy levels of any eigenstate are obtained by
superimposing the energy levels of & similar bosons.
It is evident that nearly all of these levels are very
degenerate for £>1, though the degree of degeneracy
is magnified by the fact that a reducible representation
has been chosen.

The “zero-point” energy of the vacuum is 13, p,*,
so the observable energy and momentum of the field
must be given by

Pobsa:‘_Zr Pru({br*) br}"'%k)

instead of (16); but the vacuum state vector continues
to satisfy (21). There are again k different groups of
particles, and a new state is generally obtained by
interchanging two particles belonging to different
groups. The only way in which the fields with integral
spin differ from those considered in the last section, in
this respect, is that any number of particles can be
found in the same group and the same eigenstate.

(34)

(35)

(36)

4. FURTHER CONSEQUENCES

The vacuum expectation values of simple products of
the field variables differ in the generalized theory from
the ordinary values at most by a constant factor. Thus,
it follows immediately from (1), (3), and (21) that

(F(@)¥ ())o=kSP (x—2"), (37
where S™ is the ordinary Green’s function with posi-
tive frequencies for the spin-half field. However, the
vacuum expectation value of a product of four field
variables differs more radically from the usual value,
owing to the fact that the statistics of the particles are
different, and more than one particle can be created in
the same eigenstate. The interaction of fields whose
particles satisfy the generalized statistics clearly
requires a protracted study.

Another field in which the generalization of the
statistics may be expected to lead to new results is in
the quantum-statistical mechanics of ideal gases at low
temperatures. If any physical particles are neither bosons
nor fermions in the ordinary sense, the statistical
thermodynamics of assemblies of such particles will be
intermediate between those predicted on the basis of
quantum and classical statistics, respectively, and has
other interesting features which are at present under
investigation.



