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The Equation of Motion of a Dislocation*
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The elastic 6eld surrounding an arbitrarily moving screw dislocation is found, and a useful analogy with
two-dimensional electromagnetic 6elds is pointed out. These results are applied to a screw dislocation ac-
celerating from rest and approaching the velocity of sound asymptotically. The applied stress needed to
maintain this motion is found on the assumption that the Peierls condition is satis6ed near the center of
the dislocation. A general integral equation of motion is derived for a simpli6ed dislocation model, and the
kind of behavior it predicts is illustrated.
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~I extensive literature exists dealing with the
properties of dislocations at rest (see the recent

review article by Nabarro'). There has been much less
discussion of their motion, perhaps because it is still
uncertain whether it is governed by friction or inertia.
Though at present most authors seem to suppose that
dissipative processes are dominant, some still adopt
the dynamic point of view initiated by Frank. ' It
therefore seems worth while to investigate the dynami-
cal behavior of dislocations on the assumption that
dissipative effects are negligible.

Ideally, we should discuss the change in shape with
time of a dislocation loop in an applied stress field.
Here we only consider the plane problem of an infinite

straight dislocation. As a further simplification we shall

suppose it is a pure screw dislocation. The problem is
then one in antiplane strain, and only a single velocity
of sound is involved instead of the two which would

appear if there were an edge component. (We assume

the medium is isotropic). Frank has shown' that uni-

formly moving screw dislocations behave in a manner
reminiscent of particles in the special theory of rela-

tivity (the velocity of transverse elastic waves taking
the place of that of light), and we shall sometimes find

it convenient to use relativistic terminology.
In Secs. II and III we find the elastic field surround-

ing an arbitrarily inoving screw dislocation and show

how it is related to the electromagnetic field of a moving
line-charge. This is illustrated (Sec. IV) by the case of
motion from rest with constant proper acceleration,
and the applied field necessary to maintain this par-
ticular motion is found by requiring the Peierls condi-

tion to be satisfied. In Sec. V a general equation of

motion is derived for a simplified model of a disloca-

tion, and the kind of behavior it predicts is exemplified

in Sec. VI.

*part of this work was carried out at the H. H. Wills Physical
Laboratory, University of Bristol, Bristol, England; the rest
under U. S. OfBce of Naval Research contract.
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II. THE DISPLACEMENT ROUND A MOVING
SCREW DISLOCATIO¹'

The expression'

teiet (2)

As a solution of the wave equation, c'V'w e)'w/ett—'=0,
Eq. (1) is characterized by the boundary conditions

lim w(x; y= We) = a-', M8(x)e""'
e—+0

so that it represents a region of alternating slip across
the x axis concentrated at the origin, the product of
area and amplitude of slip being b/, in the limit when
l = consth —~0.

Let us apply to both (1) and (2) the operator

e

d@

( )—
2as" c

where C is the real cu-axis indented below the origin.
From (2) we get

1
&=LH(t), where H(t) = . for t ~~0.

0

To find the associated displacement we replace the
Bessel function in (1) by the integral representation

H& &(sr)k= ——
—ikrv—'Dds)

(v' —1)

apply Eq. (3), and interchange the order of integration.
Since

1
e'"*dec = 5(s)
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w= sbtkHi's (kr) sine e'"' k=co/e, (1)

is the time-dependent part of the displacement field
around a screw dislocation oscillating along the x axis,
the position of its center being
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27rr

t-" b(y —ct/r)
sin8 8A.i v'(y'-I)

w = ——{4rt'blcoH, t"(kr)e'"')
By

and repeating for the zero-order Bessel function the
argument leading from (1) to (4), we find, for a dis-
location moving along the x axis,

sin8 H(ct —r).
2m r g(c't' —r')

If the jump occurs along the line 8= Hp instead of 8=0,
we have only to replace 8 by 0—ep. A continuous motion
in which the position of the center of the dislocation is
given by

x= $(t), y= n(t)

can be looked upon as a series of jumps from ($, g) to
(P+ ]dt, r/+ r'/dt) in successive intervals of time dt Hen.ce
the displacement produced by the moving dislocation is

t"o c(t—r) {(y—r/)5 —(x—k)it) dr
ZV= —

I
(4)

2s-& (x—()'+ (y —r/)' s

Here P and t/ are functions of r, while

s'= c'(t—r)' —(x—g)' —(y—r/)',

and rp is that root of s'=0 which is less than t. vp is
unique if the velocity of the dislocation is always less
than c, which we assume is the case.

III. AN ELECTROMAGNETIC ANALOGY

Physically more important than m itself are its time-
derivativew and thestresses p„=ttaw/Bx, p,„=ttaw/By
(tt is the shear modulus. ) They are rather hard to derive
from (4) by differentiation, since this yields an infinite
term from the variation of the upper limit plus a
divergent integral. We may take an arbitrary value for
7'p and follow the diRerentiation by an integration by
parts. When 7 p approaches its correct value the term
from the variation of the upper limit cancels the in-
tegrated part, leaving a finite result.

For the time-derivative of (1) we may write

E ds= f(le+me„)ds ,lor 0,=

according as the circuit does or does not enclose the
charge. Using (5) this becomes

( Bw Bwi Bw

I
&
——trt—Ids= —ds= ——or 0, (8)

& By Bx] as

showing that the elastic counterpart of the charge is a
dislocation with a Burgers vector of magnitude X/hatt
directed along the 2 axis.

With the aid of this analogy we can complete the
scheme for deriving the velocity and stresses from a
set of potentials:

jrBq 1BA ) (By 1BAy)
p-= —

/ 'I —+- I, p**=t 'I —+-
&ax c at] &ay c at)

/BAy BA,)w=p 'I — I, (9a)
& ax ay ] '

bp, & p'o d~
t() ~())— (9b)

If we identify the velocities of light and sound, this is
seen to be the x component of the vector potential of an
electrical line-charge moving in the same way as the
dislocation.

There is in fact a close resemblance between antiplane
strain elastic problems and electro', gnetic fields in
which all quantities are independent of the s coordinate.
Consider the case where E,=II =II„=0, and make the
identification

w= H./V't, p.*= ~.v't p.y= E.v't . (5)

(We use Heaviside units. ) Then all Maxwell's equations
are satisfied identically except curl E+ (1/c) (BH/Bt) =0
which becomes

Bp„/Bx+Bp,„/By= pa'w/Bt', or
c'V'w —B'w/Bt'= 0, (6)

the elastic equilibrium or wave equation. If there is a
moving line-charge with linear density X, Gauss's rela-
tion for the conservation of charge states that

bc ("& dv-

where I=
2~~ „s

BI
'I= ——

)

By

changes I into the form

It is easy to verify that if we make the translation
expressed by (5), the electromagnetic energy density

This suggests that we might be able to derive the andpoyntlng'svectorbecometheelasticenergydensity
velocity and stresses from a set of potentials involving and the elastic ener Qow ~ector
simpler integrals than that for m. The substitution

~e= pzeW, +y= pzyW. (10)r=c(t —r)i s'=r' —(x—P)'—y'
The electromagnetic momentum density becomes not
the ordinary elastic momentum density p& but the

ao- quasi momentum used, for example, in discussing the

4 c~ r —(x—g,",c
r A. E. H. Love, Mathemattea/ Theory of E/asttetty (Cambridge

University Press, Cambridge, 192'j').
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collisions of phonons with one another and with elec-
trons. For a uniformly moving screw dislocation this
quasi momentum agrees with the effective momentum
introduced by Frank. ' The Maxwell tensor becomes
the "Maxwell tensor of elasticity. '" The Lorentz force
on the line-charge becomes

F.=b(p, „+wo„), Fp
b——(p—„+we„),

where v is the velocity of the dislocation and w, p„, p,„
refer to an applied stress-field. The terms independent
of e are the orthodox expressions for the force on a
stationary dislocation. Nabarro' has shown that the
terms in v are physically signi6cant. He has also pointed
out that in the scattering of sound waves by a screw
dislocation, the force and quasi momentum are related
in the same way as ordinary force and momentum.

If there is a charge density o- in the electromagnetic
problem, the equation divE=.o becomes

Be,„/Bx—Be,./By =p-&o., (11)

in terms of the strains e„=p, /tl, , e,„=p.„/tj, Ac.on-
tinuous distribution of o- corresponds to a state of anti-
plane self-stress. A general state of self-stress can be
specified' by a tensor 5;, ; for antiplane strain the non-
vanishing components are

S,.= —ti-lBo/By, S,„=tilBo/Bx.

A varying S;; formally represents a state of plastic Qow.
In place of (5) we might have taken an electromag-

netic field in which E =E„=II,=O and made the
identi6cation,

w= E*/V's, p—-= IIpv't p*—.=&*v'~ (12)

In place of (6) and (11) we should have

BP„/Bx+BP,„/By+i,/c =pB'w/Bt', Be,„/Bx Be„/By=0, —
where i„the current in the z direction, has to be equated
to c times the body force. (which must be parallel to
the s axis to preserve the antiplane strain character).
In contradistinction to (5) the correspondence (12) is
adapted to problems with body force'but no self-stress.
We can, however, simulate the stress Geld of a dis-
location with the help of a double layer of force along
the x axis extending from the center of the dislocation
to in6nity. The electromagnetic 6eld of the corre-
sponding double current sheet can be derived from a
vector potential (0, 0, A,). However, A, is equal to w

and the analogy is too good to be useful.
A possible third analogy is suggested by the static

case. It is natural to identify the displacement of a
stationary screw dislocation with the scalar potential of
a current-carrying wire; (p„, p,„)—which transforms
like a vector for rotation about the z axis—is then
proportional to (H„H„).However, this analogy cannot
be extended to the time-dependent case since the equi-,
librium equation div(p„, p,„)=pB'w/Bt' must come
from one of Maxwell's curl equations, which alone

8 F. R. N. Nabarro, Proc. Roy. Soc. (London) A209, 278 (195I).

contain time derivatives. Hence, the identification of
the stress with E or H must always have the crosswise
character of Eqs. (5) and (12).

IV. A DISLOCATION KITH CONSTANT
PROPER ACCELERATION

As an example we consider a case of accelerated
motion. Since a uniform acceleration would 6nally
bring the velocity above c, we consider a dislocation at
rest for negative t and thereafter moving with constant
acceleration in its-own rest system:

$=xp, pt=0 for t&0;
c'P=—x,' rt=0 for t&0

For t&0 there are the simple relations

j=c't/P P—=g(1—P/ )c=*/P B P/BP=P'cP/xp.

The dislocation starts with an acceleration c'/xp, con-
veniently speci6ed by its initial x coordinate xo, and
approaches the velocity c asymptotically.

It is convenient to use the abbreviation

g2 =X2—C&t2
)

where x, t refer to the point and time of observation,
Then at any time points near the dislocation line are
distinguished by small xo=E and small y.

Choosing units in which c=1, we have to evaluate
(Qb) with

s'=r' 2tr+sp', —$=j=0 for ~&0;
sP=2xg —2tr —RP —yP —xpP, (=r/$,

' j=0 for r)0;
where

sp ——g(2xxp —R' —y' —xp')
I

is the interval between (xp 0, 0) and (x, y, t). The in-
tegral for v &0 is elementary; we omit an infinite
constant. The integrals for r &0 yield to the substitution

tang= s'/((R —xp)'+y'),
giving

y = btj&/2rr(xp/R) l (2/kR) (tk' tang —xt 6 tang
+-,'(1+k")F—E$}+(b/2pr) In(t+ sp),

A, =by&/2pr(x, /R)&(2/kR)(xk' tang —tLA tang
(14)

+-', (1+k'P)F—Ej) A =0
where with the usual notation for elliptic integrals

A=+(1—k'si&P), F(P, k) = —,E(iP, k) = hdiPJ,
and

tant' = spk/k'Q{4xpR) k'= 1—k"=4xpR/ f (R+xp)'+ y') .

The displacement can be expressed in terms of elliptic
integrals of the first and third kinds. Equation (14) is
only valid when

c'P (x—xp)' —y') 0, t)—0, x& ct,

but this is all we shall need.
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Near the center of the dislocation p,„ is given ap-
proximately by

I

Ij,b x' 1 Sxp' 2xp
p,„=— — ln (t—sp)

2m. Pr" 2xo r' so'

where now

Sp

(15)
xoso 2xo(t+so)

F'&&xo, sp»r'. (16)

We shall be interested in values of r' of the order of a
few lattice spacings. The first condition then means
that the velocity acquired by the dislocation in the
time that sound travels one lattice spacing shall be
small compared with the velocity of sound. Otherwise
expressed, the proper acceleration of the dislocation
inust be small compared with the acceleration (about
10"cm/sec') of an atom oscillating with an amplitude
o'f one lattice spacing at the frequency of a lattice
vibration near the Debye limit. The second condition
requires that the diameter of the disturbed region,
(x—xo)'+y'-&P, which spreads from the starting posi-
tion of the dislocation shall be large compared with the
lattice spacing. Since sp~t for small t, this means that
t must be large compared with the period of a lattice
vibration.

To 6nd the applied stress necessary to produce the
motion (13), we have to introduce nonlinearity into the
problem. Following Nabarro' we shall try to satisfy the
Peierls law relating stress and displacement at the slip
plane. The Peierls law appropriate to a screw disloca-
tion with Burgers vector b and separation u between
atomic planes parallel to the slip plane is

p,„(y=~2u)= p/2mb/usin4"/b— w(y=-', u). (17)

This is satisfied by the elastic solution for a screw dis-
location which has been moving uniformly for all time
with velocity e:

b yg(1 —v'/c')
m= —tan '

2m (x—ut)

Now, the first term in (15) is simply the stress produced
by a uniformly moving dislocation which at time t
happens to coincide in position and velocity with the
accelerated dislocation. For the accelerated dislocation
the condition(17) would be satisfied if we could impress
on every point of the material a displacement equal to

so= V'«' —Lx—4(t)7)

is the interval from (x0, 0, 0) to the center of the dis-
location at time t and

x'=x —~(t), r"=x"/P'(t)~y'.
r' is thus the radial distance from the center of the
dislocation measured in its instantaneous rest-coordi-
nates. Equation (14) is subject to the limitations

Sp

+ +
2(t+so)

t—Sot
(18)

&p

equal and opposite to the last three terms in (15) taken
at the point x'=0, y=-,'u.

When (18) is multiplied through by b, it becomes a
relation between the force on the dislocation and its
acceleration. Formally, b and a are independent param-
eters corresponding to charge and diameter of charge
in the associated electromagnetic problem. It is, there-
fore, natural to interpret the logarithmic term, which
diverges when a approaches zero, as the eGective mass
of the dislocation. In ordinary units,

Fg bp, „"=(1———P/c')-&(pb'/4m)(lnf(t)}8'$/Bt'+g(t),

where f(t) is the argument of the logarithm in (18) and
g(t) is b times the second and third terms. This has the
form of the relativistic equation of motion of a particle
with a slowly varying rest mass (pb'/4m) lnf(t) and a
radiation reaction term g(t). It has already been sug-
gested by Frank' that a rest mass (pb'/4 )lan(ri/u) can
be ascribed to a screw dislocation, where rj is a not
very well de6ned length. In the present case, f(t) =8ct/u
for small t and r& is, not unreasonably, of the order of
the disturbed region surrounding the dislocation. As t
increases, rj is a complicated function of the two lengths
xp and ct. For large t, the dislocation takes up a position
at a distance xp behind the leading edge of the dis-
turbed region, and r j becomes 16xp. The second term in
(18) comes from the part of the integral for q with
v&0, and may be associated with the discontinuity in
8'$/BP at t=0. It approaches zero as t increases. The
last term in (18) increases as gt; we mayperhaps con-
nect it with the fact that the accelerating dislocation is
continually catching up the radiation it has already
emitted.

Itis clear that, if u is of the same order as b and xo/b
is reasonably large, the stress necessary to maintain the
motion is given approximately by

p,„"/p=(b/4nxo) 1n(xo/b), (19)

except at the beginning of the motion and in the ex-
treme relativistic region. If p,„"/p=10-', (19) gives
xp~10'b. IG covering a distance 10'b, the dislocation

the difference between the displacements of the uni-
formly moving and accelerated dislocations. The non-
linear behavior is confined to the neighborhood of the
center of the dislocation, and so we may hope that it
will be enough if the impressed displacement is correct
at least in this region. On the planes y= &-,'e the last
three terms of (15) are slowly varying functions of x'
near x'=0, in view of (16). Hence the impressed dis-
placement required can be produced by a uniform
applied stress,

pb f32xo t so)—
p.„"(t)=

2''xp 'usp $0 )
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bw(x, t) = bwLx —t(t)).
We find the rate of flow W(t) of energy into the slip
plane. If W is known (for example if there are no
dissipative processes and no accumulation of energy in
the gap between the elastic half-planes of the Peierls
model, so that W=O) this gives an integral equation
connecting P with the applied stress. According to (10),

V. THE GENERAL EQUATION OF MOTION

In principle the rectilinear motion of a dislocation
in a given applied stress Geld could be found as follows.
We generalize the Peierls-Nabarro equation to include
time-dependent states. This will give p,„(x, t) on
y= &2a as an integral involving a general discontinuity
bw(h, t) in displacement across the slip plane. The
stress so found at any point is to be equated to a pre-
scribed function of Rv at the same point. Finally, we
have to Gnd a solution of the resulting integral equation
which has the character of a moving dislocation super-
imposed on the required applied stress Geld.

The generalized Peierls-Nabarro equation is easily
set up. From the results of Sec. II it follows that, if
bid= H(x)H(t), then

W = ' (P,„~+P,„)bwdx, (22)

where p,„"refers to the applied field and p,„ to the field
of the dislocation. We assume that p,„"depends on t
but not on x. The first term in the integral is simply
bp, „",since we must have

acquires 87 percent of the velocity of sound, in agree- motion, i.e.,
ment with the calculations of Frank' and Leibfried
and Dietze. '0

and the corresponding stress will be

t
" c}'bw(x', 7)

P,s= ——
J

dx J' dr

Q(c'(t —r)' —(x—x')'}H(c(t —r) —
~
x—x'

~ }X- (20)
(x x') c(t r)— —

Integrating by parts with respect to r, we have the
generalized Peierls-Nabarro equation

f$Rv(x, t)j=—— dx'
p

j—00 —00

(*' )
dT

x—xI

X——— (21)(t- )'v'("(t- )'-( -")}
where f is a function with period b reducing to tibio/ii
for small Rv.

The possibility of finding interesting solutions of (21)
seems remote. Part of, the difhculty lies in the fact
that the solution would give us more than we need, the
shape of the dislocation, specified by bw(x, t), instead
of merely its position, defined for example as the point
where cjbw/c}x has a maximum or minimum. As a first
step we shall try to find an approximate equation of
motion in the following way. The shape of the dis-
location will be assumed to be independent of its

' F. C. Frank, Pittsburgh Symposium on Plastic Deformation,
p. 89 (U. S. OfBce of Naval Research, 1950).

'0 G. Leibtried and H.-D. Dietze, Z. Physik 126, 781 (1949}.

P,„= pQ(c't' —x')H(ct —
i
x I )/2nctx.

at the slip plane. A general bw(h, t) can be written as

r} bw(x ) r)
Sic(x, t) = dx' ' dr H(x —x')H(t —7),

8$ Bv

if the dislocation is to have strength b. In principle
p,„could be found from (20), but the following method
makes it clearer what choice of Rv will lead to a simple
result. Returning to the electromagnetic analogy, sup-
pose that there ig a charge distribution,

~= n{h—$(t)}b(S),

which is confined to the plane y=0 and which moves
rigidly with velocity $(t). The current is i,= rtb(y)$ and
the potentials satisfy

V'y —j' = —itb(y) V'A~ it'A, /r}t'—= —gb(y)g.

(We use units in which c= 1.) The discontinuity in II,
across the x axis is equal to the strength of the current
sheet rtj. Using Eq. (5) the elastic interpretation is that
there is a discontinuity Rv across the x axis for which

Ro= re/Qp or c}bw/Bx= —q/gp.
The latter quantity does represent a "dislocation den-

sity, " in the sense that a continuous distribution of
infinitesimal dislocations along the x axis with total
strength

db = —(itbw/itx)dh (23)

between the points x and x+dh would give the same
elastic Geld. It is clear that the stresses will be un-
altered if, to conform to the Peierls model, the two
half-spaces y~0 are separated by a gap of width a
provided the same Ro is maintained by the interatomic
forces.

By (9a) the stress satisfies

V'P*, P..=~'((1 i-')~n/~*+~d'—&/«'}b(y) (24).
In terms of the Fourier transforms,

1
p(k) =—"p.„(r)c'"'dr,

2m~,

~(lr) = ~(&.)=—
' n(x) ~(y)z'"'«= — n(h)s" dh

2m~, 2m~
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~t d2 r) —'k.LI—P(r)j5(
72=

dr'

slllk(t —r)
X rt(k„r) dr (25. )

It is easy to show that

tt(k. , t) = tt(k. , 0)e'" & "&

assuming for convenience that $(t)=0 for t=0. Ac-
cording to Parseval's theorem,

fl(r) f2(r)dr= fl(k) f2*(k)dk,
J»

if f„is the Fourier transform off . Applying this to (25)
we have

(so that tt is the transform of rtb(y), not of rt), Eq. (24)
becomes the ordinary diGerential equation,

k2P+ d'7I/dP = tt—&(d2$/dt2 ik—.(1 P—))ltd(k„ t),

with the solution:

pb' t. t d2$(r)/dr2
bp, „"=W(t)/$(t)+ d7'

42r" „((t—r)'+a2/C2}'*

a'/c2pb2 pt d ](t) g(r)—
dv

82r~ „{(t—r)2+a2/e2)& dr

The result with n= 0 is well known; regarding it as the
potential of a point charge in cylindrical coordinates we
reach the general case by diGerentiating n times with
respect to s and comparing with the potential of a

. linear multipole in polar coordinates,

B~r '/Bs" = (—1)"22!r—"-'P„(cos8) with
r'= p'+s', s=r cos8.

Because our physical assumptions are invalid for large
velocities, it would be pointless to carry the expansion
beyond terms of order ]/c. In addition the higher terms
give a nonlinear relation between the stress and $ and
its derivatives. Because of the dependence on past
history we must be content to give the remainder in
terms of V(t), the greatest value of j((r) ~

for r&~t The.
result is

p,pbledx= p' p.„rtgb(y)dr= p&j(t)) ptt*dk
oo r »

!A(r)= $(t) ', dr dk ~ ik,g1 —P(r)g [
—rt(k„0) ~2

sink(t —r)
Xexp(ik, L)(r) —$(t)j}

which gives the equation of motion,

W(t)
bP,„"= +2r dr dk,

$(t)

d'k(r) —2k.L1—52(r)jd2

bp' u bp&

2I(x, 0)=, rt(k. , 0)=—e &'~"*~. (27)
22r x'+ 'a' 22r-

The expression (26) can then be evaluated by expanding
exp( }in a power series and using the relation

nl 2'

e-*"Jp(pe)2 "dl = P„
(p'+s')'"" (p'+s')' ~

yexp(ik, L&(r) —t(t)]}~
rj(k„0)

~
'Jp{k,(t—7)}. (26)

%e have now to choose an expression for Re. A physi-
cally reasonable form is

b —8
Re= —tan '

x g(t)—
since it satisfies the Peierls equation approximately for
small velocities. Then we have

In estimating the remainder we use the fact that
I g(t) —$(r)]/(t —r), the mean velocity between t and
r, must be numerically less than V(t) and that

~
P„(x)

~

&a.
In the electromagnetic analogy, Eq.' (22) divided

through by $ expresses the fact that the total force on
a rigidly moving charge distribution balances a re-
tarding force —W/$. Thus our method is equivalent
to that of Lorentz for the electron. %e could use the
same argument for the dislocation provided we admit
that there is a force (p,„~+p,„)db on each element of
the distribution (23) according to the usual rule. The
analogy with Lorentz' method suggests that we might
apply to a point dislocation )a~0 in Eq. (27)) recent
methods which give an equation of motion for a point
electron. This is not so, however. First, these methods
introduce advanced potentials either explicitly or sur-
reptitiously, and whatever they may signify in electro-
dynamics we cannot very well allow advanced quan-
tities in our elastic problem, particularly as in two
dimensions they would involve integrals over the whole
future motion of the dislocation. Secondly, they
eliminate the electromagnetic mass, allowing an arbi-
trary inertial mass to be ascribed to the electron,
whereas a -dislocation is clearly the analog of a weight-
less charged rod with purely electromagnetic mass.

Equation (26) is the true equation of motion of a
hypothetical "rigid" dislocation. It takes no account of
the change of shape of the function Bw(x, t) which a
rigorous solution of (21) would give. For small ac-
celerations the main feature of the change in shape
would presumably be a Lorentz contraction appropriate
to the instantaneous velocity (. Because of the lack of
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contraction in our model, there are none of the rela-
tivistic sects encountered in Sec. IV. Indeed; nothing
untoward happens to Eq. (26) even if the velocity is
supersonic. It is easy to show from (26) and (27) that
a moving supersonic dislocation would experience a.
retarding force bp, „"=(v'/c' —1)~pb'/2pra even in the
absence of dissipative eGects. Physically, this is be-
cause it is continually creating a greater disturbed
region, or from another point of view, because the
leading elements of the dislocation density distribution
exert a force on the trailing elements, but not con-
versely, since each element produces a disturbance
only in a wake behind it. In principle a "rigid" disloca-
tion can reach supersonic velocities, but not one which
contracts to zero width as the velocity of sound is
approached. Admittedly a dislocation which obeys the
Peierls law (or some generalization of it) contracts,
but the effective width of the source can hardly be
much less than one interatomic spacing, so that a super-
sonic dislocation is a formal possibility.

VI. EXAMPLES AND DISCUSSION

Because nothing is certainly known about dissipative
eGects, we shall give some examples of dislocation mo-
tion on the assumption that 8" is zero. The possibility
of a contribution to 8' from the nonlinear region
——,'a&y& 2a of the Peierls model is taken up later.

(a) Constant acceleration f starting from rest at
t=O. Here d'$/dt'=fH(t) and for t&0

pb' cl, pb'
bp, „"=—f sinh '—+—f

4or a 8or t+ (t'+a'/c') '*

This gives an effective mass (pb'/4or) ln(2e&ct/u) for
large t, agreeing roughly with the results of Sec. IU.

(b) Impulsive change of velocity from 0 to rt at
t=0. Here d'$/dts=eh(t) and bP,„"can be found from
the previous result by di6erentiating and multiplying
by e/f. Roughly speaking, we have to apply a constant
stress for a time of order a/c followed by a stress falling
off as 1/t ever afterwards. Since the acceleration is zero,
except initially, we cannot calculate a mass directly.
However, the time integral of the applied force times
the velocity is the work done by the applied stress,
and if this is equated to —,'me' we 6nd the same eGective
mass as before.

(c) Sinusoidal oscillation: d'g/dP = (d'P/dP) p cosoot.

The solution can be given in terms of Bessel and Struve
functions of imaginary argument. For boa/c&(1 it
becomes

As it stands, our equation of motion gives the stress
required to maintain a given acceleration. Of more
interest is the inverse equation giving the acceleration
under a given applied 6eld. The exact solution of the
last problem, which connects a sinusoidal stress with a
sinusoidal acceleration, could be used to invert (28)
by expressing the arbitrary applied stress as a Fourier
integral. The result is not very helpful and it is more
convenient to use Laplace transforms. Consider the
case where p,„" (written simply p in what follows) is
zero for 1&0. If we introduce the Laplace transform,

Z{f}=~' e-"f(t)dt,
0

and use the result"

fi(t r)fs(r)—dr =2{fr}2{fr},
0

(29)

where

then

2{f} s ~L(s ') for s~—O(e&),

L(rex)/L(x) —+1 for x~0(oe ),

t

~

I f(r)dr teL(t)/I'(P+ 1) for t—+ oe (0) .
0

(d) A constant stress pp is applied at t=0. Here
Z{p}=p,s ', and applying the theorem to (30), we have

we And

Z{d'$/dP} = (8~/pb) 2{p}[2h(x)
+Ir"(x)—x—'h'(x)+x-' —2x—'] ', (30)

with

&(x) = s7r{Ho(x) —Yo(x)}, x= sa/c,

where I"0 is the usual second solution of Bessel's equa-
tion and Ko is Struve s function. (Their difference is
monotonic though each is oscillatory. ) Formally this
solves the problem of finding d'$/dP in terms of p; we
have only to find the function of which [] ' in (30) is
the transform and apply (29). However, the necessary
Mellin inversion integral is not simple since I'0 is
multiple-valued. But since

h(x) x—1n(serx), x&(1; h(x) x ', x))1,
we can find & for large and small t with the help of a
theorem" which states that if

with
bp =rl(d'g/dt')pcos(rot cr),

pb' err)' t
2c )' i

m= —
I

—
I

&2& ( erma)

4m

$(t)=p. t))a/c;
pb ln(ct/era)

( 2c
tanu=-', ~/in~ ~, e~=1.78 . ,

&e~~a)
'

po)
3pbc

t&(a/c.

in rough agreement with Nabarro. ' » G. Doetsch, LaPlaoe Tra»sformatr-'ow (Julius Springer, Berlin,
1937).



EQUATION OF MOTION OF A DISLOCATION

For large t the dislocation gathers speed more slovrly
than a Newtonian particle; the eRective mass is
(pb'/4s. ) 1n(ct/e&a). As well as a free dislocation sub-
jected to a suddenly applied force, we may consider (d)
as describing a locked dislocation which breaks free
when a gradually increasing stress reaches a certain
value and also, though more schematically, a Frank-
Read source which passes suddenly from a stable to an
unstable state vrhen a critical stress is reached.

(e) An arbitrarily varying stress is applied between
t= 0 and t= t~, so that the total impulse is

~tI
bp(t)dt.

Jo

For s« ti Z(p}=P/b and the theorem gives

4m

$(t)~ P—:,t&&a/c, t))ti.
pb' ln(ct/e&a)

A dislocation started by an impulse and then allowed
to run free gradually loses speed. Again a mass propor-
tional to ln(ct/e~a) is appropriate since Newton's law,
d(nz])/dt= 0, is then satisfied during the free motion.

Like the example of Sec. IV the results (a), (b), (d),
and (e) fit Frank's picture of a mass (pb'/4') ln(ri/a),
with r~ of the order of the radius of the disturbed region
surrounding the starting point. In all these cases $ is a
monotonic function of t, and presumably the elastic
Geld in the disturbed region, Iogarithmically speaking,
does not diRer much from that round a uniformly mov-
ing dislocation. For a more complicated motion (e.g. ,
oscillation) this is no longer true.

It can be shown that the results we have obtained are
largely independent of the exact form of the density
distribution q provided that, like the particular form
(27), it is a bell-shaped curve with a width of order a
and enclosing an area p&b.

Even if vre assume that there are no dissipative
eRects, S' will not be zero if there is any variation in the
energy stored in the gap at the slip plane. The calcula-
tion of this energy is dHFicult because of a certain am-
biguity in extending the Peierls approximation to
dynamic problems. H vre take as our model tvro semi-
infinite elastic solids separated by a gap a, the con-
tribution to TV is zero since the vreightless interatomic
forces have no kinetic energy and their total potential
energy is independent of time, depending only on the
shape of the prescribed function Re. On the other hand,
if we apply the Peierls recipe of replacing the crystal
lattice by a continuum only outside the gap, we are
left with a number of half-atoms adhering to the faces

of the gap, and their kinetic energy changes at a rate

2Xx2pa—~~ (-,'hw)'dx= ———,
Bt~~ 2m' dt dt~

if we use the 8th corresponding to (27). The W term in
(28) becomes pb'(d'$/dt')/27r, an addition of "inertial"
mass to the "electromagnetic"- mass represented by the
other terms. The modification to our examples is small.

If this or some similar account of the eRect of the
inertia of the matter in the slip plane is accepted, the
results of Sec. IV and the generalized Peierls equation
(21) need modification. In particular this spoils the
elegant result that an antiplane elastic Geld satisfying
the Peierls condition, or some generalization of it, con-
tinues to do so when moving uniformly with an appro-
priate Lorentz contraction.

It may be as vrell to contrast our calculation of the
eRect of the inertia of the material in the slip plane
vrith Nabarro's. ' In his problem the contribution to
tb at the slip plane from the applied 6eld (a sound wave)
is not zero, and the half-atoms above and below the
slip plane move in the same direction. In our problem
it is assumed that the external stress is applied in such
a way that tb is an odd function of y, and so the half-
atoms move in opposite sense above and below the slip
plane. The corresponding term in Nabarro's calculation
is of an order higher than he retains.

Ke should also make a slight correction to allow for
the fact that strictly not only the dislocation but also
the applied elastic Geld. makes a contribution to Sir in
(22). If we assume that this contribution is approxi-
mately a8'w"/ByBt, as it would be if there were no
nonlinearity at the slip plane, it can be shovrn that a
term abp, „"/2c must be added to the left-hand side of
(28). This will be partly offset by a contribution of the
same order to the term in S', the exact value depends
on the details of the nonlinear behavior in the slip
plane. In any case the correction will be negligible if
d(lnp, „~)/dt&&c/a 10".

In conclusion it should be emphasized that the fore-
going is only a first step towards solving the much
harder problem of the motion of a dislocation 1oop.
It is not clear how much light the present calculations
throw on the general problem. The curious behavior
expressed by the integral equation (28) is, of course, due
to the fact that a given element of the dislocation is acted
on not only by the applied stress, but also by delayed
disturbances from other parts of the dislocation line.
The same eRect will presumably be important in deter-
mining how a dislocation loop spreads under the in-
Quence of an applied stress.

I should like to thank Dr. G. Lee-Whiting for valu-
able help.


