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The Energy of Nucleon-Nucleon Collisions~
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The problem of determining the energy of the primary particle in a nucleon-nucleon collision at extremely
high energies is discussed. A new nomographic method is proposed which is less subject to Quctuations than
most estimates used previously. The method allows a redetermination of the energy of the "S"star, which
con6rms the previous estimate.

A NUMBER of authors have recently analyzed
nuclear events of extremely high energy. ' " The

problem of determining the energy of the primary has
been attacked by various methods, some of which will

be discussed below. For a complex nucleus interacting
with another particle the analysis is complicated by
various kinds of phenomena usually referred to as
"plural, "that is, a succession of multiple or single events
inside the same nucleus. As we shall discuss, the sym-
metry of an extremely high energy nucleon-nucleon
collision allows one to draw some conclusions with a fair
degree of confidence.

We will denote quantities in the laboratory (L)
system of coordinates with unprimed letters and the cor-
responding quantities in the center-of-mass (C) system
with primed letters. The direction of motion of the
primary is chosen along the positive X axis in both
systems. (See Fig. 1.) If the velocity of the C system as
measured in the L system is P, measured in units of the
velocity of light c, then applying the well-known for-
mulas of the Lorentz transformation to the X com-
ponent of momentum of the ith particle, we obtain

Ps,"'——y(P*;—PE;/c), y = 1/(1 —P') &, (1)
where p*; is the X component of the momentum of the
ith particle and E; is the total energy of the ith particle.
If we write Eq. (1) for i= 1, , st (where st is the total
number of secondary particles, both charged and
uncharged), we get the X component of the total
momentum, which must be zero in the C system:

o=~.'=Z p.,'=Z vl p*; p-
1 i=1 ( c

From (2) we get
n n

p=cQ px, /p E,. (3)

Using the value of p found in Eq. (3) one gets the fol-
lowing exact expression for the total energy of the
primary:

E~ =Mc'(1+ P')/(1 —P'), (4)

n n

P = P E; cos8,/P E;.

where j/I is the nucleon mass.
Three points must be discussed in connection with

the use of Eqs. (3) and (4):
1. Both energy and momentum of the particles enter

into this formula, but at very high energies these quan-
tities cannot be separately determined with present day
techniques.

2. Some of the secondaries may be neutral and hence
unobserved, except through subsequent decays or
secondary interactions.

3. At extremely high energies, even some of the
secondaries are beyond the range of even the best mul-
tiple scattering measurements.

Ke can deal with these problems as follows:
1. In the region beyond the relativistic increase in

ionization"" the energy is so much greater than the
rest energy that the relation pc= (E'—srtsc')& reduces to
pc E. Let (t; be the angle between the X axis and the
momentum vector of the particle (in the I. system), so
p*;=p; cosa;. Then, using Eq. (3), where we assume
all the particles are in the relativistic region, we have

=xi 2 p*; PZ —
i

(—2)
( i=1 i=1
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To within the approximations used in the derivation of
the formula, the quantities E;, the particle energies, can
be determined, fox example, by multiple scattering
measurements '4"

2. At such high energies that spin interactions can be
neglected, which may be reached when the primary
energy is of the order of several Bev, one can assume
that a nucleon-nucleon event has in the C system a

'2 Daniel, Davies, Mulvey, and Perkins, Phil, Mag. 43, 753
(1952)."L.Voydovic, Phys. Rev. 86, 1046 (1952).' Goldschmidt-Clermont, King, Muirhead, and Ritson, Proc.
Phys. Soc. (London) 61, 183 (1948)."M. Berger, Phys. Rev. 88, 59 (1952).
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FIG. 3. Analysis of "S"star. Numbering of particle tracks is
from right to left in Fig. 1 of I-ord, Fainberg, and Schein (reference
3).Tracks 5—9 correspond to 250 Bev or greater; all other energies
are measured.

"F.Mosteller, Ann. Math. Stat. 17, 377 (1946).

180'—O'. In other words, the probability of a given
particle having the X component of momentum, p, ', is
independent of the ratio of p„' to p, ' and is the same
as the probability of —p, '. Owing to this fundamental
symmetry which is assumed to hold, not only with
respect to all the particles but also with respect to the
charged particles alone, we can determine the trans-
formation from the L system to the C system by the
requirement that we get a distribution in the trans-
formed system which satis6es the above-mentioned
symmetry properties.

To put this in a practical form, however, we need to
characterize the symmetry property in terms of a
parameter lending itself to convenient computation.
The best parameter to use, in general, is the mean of
the'Inomenta, but as we have discussed above, this is
not applicable in our situation, since we cannot deter-
mine all of the momenta. ""'however, we can make a
theoretical comparison of,'other estimates with this
mean. A common parameter is for instance the median,
that point on the momentum distribution (Fig. 2) such
that haH the secondary particles lie below and half
above it. For the normal distribution'~ the efEciency of
the median is 64 percent of the eKciency of the mean.
For the bimodal distributions Lsee Fig. 2(c)j it is much
less eScient since it is based on an area where the
probability of 6nding a point is low. For this reason we
choose to look at the quartiles, that is, the points such
that one-fourth of the particles lie above the upper
quartile, as shown in Fig. 2.For the normal distribution'

TABLE L "S"star energy determinations (in electron volts).

Median
method

Quartile
method

Energy of star
Energy given by random subsets

A
B
C
D

Factor between highest and lowest value
of subsets

2X10"

2 X10'4 10'4
4X 10'3 2.3X10'3
3.5X 10» 2.3X10»
5X10» SX10"

4.3

' The efEciency is only 0.2 percent greater than for the quar-
tiles.

the quartiles have an eSciency of 81 percent, for other
distributions they may be less of an improvement over
the median, but for the bimodal distributions, as can be
seen in Fig. 2, they represent a far superior estimate of
the mean than the median does. It should be noted that
there is no fundamental reason to choose just the
quartiles as the points to be used. For the normal dis-
tribution" the points 27 percent from each end of the
distribution are the quantiles of maximum efBciency. "
It is recommended that quantiles as close to this as
possible be chosen, consistent with the basic require-
ment that points near the quantiles must represent
particles whose energy can be measured.

A simple nomographic way of representing the
derivation of the energy of the primary particle from
the momentum distribution has been derived. Since the
relation (1) involves only the X component of momen-
turn and energy, we can represent the transformation as
a linear transformation of the p*; E, plane —into itself.
While the transformation is not a rotation, it aGects the
E axis as though, it were a rotation. We are interested,
as discussed above, in dnding a new E axis, such that
the secondary particles lie symmetrically with respect
to it; this is the interpretation given to the requirement
of symmetry which we have imposed. The interpretation
given to the median estimate which we have discussed
is that it is the line through the origin such that half of
the particles lie on either side of it. The interpretation
of the quartile estimate is that it is the line L (see Fig. 3)
through the origin, such that the two lines Qt and Qs,
parallel to I and equidistant from it, divide the dis-
tribution into quartiles, i.e., 4. of the particles lie above

Q& and s lie below Qs. Since the particles generally found
in events of this type are all of such high energy that
their velocity is near the speed of light, what one does
in practice is to plot the E;—p~;c plane on transformed
axes, which allow an easy expansion of scale. If one did
not do this, all the points would lie almost on the
straight line which represents the equation E;=p~;c.
Thus, one plots E; p*;c against E;. Th—e result of this
transformation is that the slope of the transformed E'
axis which is obtained from the graph is an estimate
of, 1—P. It is convenient in making the quartile estimate
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to have available a ruler with several lines spaced evenly
on each side of a central line.

In Fig. 3 we have plotted the points obtained from
the "8"star, which has been carefully measured in this
laboratory. ' The results of applying both the median
and quartile methods to this star to determine its
energy are given in Table I. In addition to this, we used
the following procedure to test the sensitivity of the
methods to Quctuations. We took a random subset of
ten particles and applied each method to this subset.
This was repeated four times, usia. g the same subset for
measurements by both methods. The range of energies
given by the method was used as a measure of the
deviations to be expected. The table indicates also the
values obtained for these measurements and the factor
between the highest and lowest measurement. It can
easily be seen that for stars of this type, with a pro-
nounced separation into two cones, the method of the
quartiles is much superior to the method of the medians
since the Quctuations are much smaller.

On the basis of this analysis, one can conclude that

the energy of the S star is 2
0 8&X10" ev. The esti-+1.45

mated errors include only statistical Quctuation errors,
estimated as indicated above, and not experimental
errors. This estimate compares well with the estimate
in the original paper' of 3X10"ev based in part on the
interpretation of the two cones contained in Fermi's
theory. "

The method was also applied to the star of Hopper,
Biswas, and Darby. This star contained only six
charged particles of which only four had measurable
energies, so that there are inherent large limitations on
the accuracy of any energy estimate. However, the
method gives an estimate of 2&(10" ev, in agreement
with the conclusions of the authors.

In general, one can conclude that the method con-
tained in this paper of determining the energy of stars
which result fiom extremely high energy nucleon-
nucleon collisions by the use of the quartiles of the
momentum distribution is a useful computational
technique.

We wish to thank Dr. L. J. Savage of the Committee
on Statistics of the University of Chicago for many
helpful discussions and fruitful suggestions.
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By considering a few extra physical complications introduced by the'-presence of boundaries, small
velocities, etc., it is possible to extend Heisenberg s methods to the calculation of critical Reynolds numbers.
Calculations are carried out for Couette, plane Poiseuille, and Blasius Qow. The results are found to be within
about 20 percent of the observed values.

1 '"SING the dimensional relations on which Heisen-
berg's theory of isotropic homogeneous turbulence

is based, ' it is possible to extend the treatment of tur-
bulence to the anisotropic, inhomogeneous field. To
demonstrate this extension let us consider the problem
of computing critical Reynolds numbers. Let us con-
sider a steady state Qow vo. We shall investigate the in-
stability of an in6nitesimal perturbation v&. To describe
the perturbation we introduce the parameter k which
is an inverse measure of the scale of v1, though it is
not to be interpreted outright as a wave number arising
from a Fourier transformation. (Later on we shall
specify 2sr/k to refer to the linear size of an eddy. ) We
represent the energy density by the function F(k).
Again let it be stated that F(t) is not to be interpreted
directly as the Fourier transform of the correlation
function. We define F(k) for the time being only by

r W. Heisenberg, Z. Physik 124, 628 (1948); see also S. Chandra-
sekhar, Astrophys. J. 1M, 329 (1949).

analogy, based on dimensional arguments, to its Fourier
counterpart: thus we let 2F(k)k' be the increase in
((curlv)')A„resulting from the perturbation vt, i.e.,

2F(k)k'= 2(curlve curlvr)A~+((curlvr)')A' (1)
The angular brackets denote a time average or an
average over the members of an ensemble. We have
chosen to define F(k) in terms of the curl of the velocity
rather than the velocity itself in order that F(k) be
independent of the translation of the particular observer
involved.

After the manner of Heisenberg we construct the
eddy viscosity by dimensional arguments as

"=P(l »vsl)A/k', (2)

where P is a constant. Now, for fully developed turbu-
lence there is .little or no correlation between curlvo
and curlvi. Thus, one obtains

2F(k)k'=(l curlvtl')A. ,


