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Gaussian peaks, '4 each of them spreading about (and possibly
characterized by) a central, well-defined depth.

These discrete .depths coincide with the trap-depths given by
the "glow-curves" method, but this last method is not accurate
enough to show the existence of distributions around these depths.

The study of the decay at diferent temperatures gives the
same depths, and this provides a direct verification of the above
fundamental formula.

This agreement between theory and experiment may be con-
sidered as a proof of the monomolecular mechanism involved.
Precise experiments are indeed not consistent with the hyperbolic
decay law, which is deduced, as is well known, from the assump-
tion of a bimolecular mechanism. However, the derivation of the
1/P law implies also the assumption that there is a unique trap
depth, ' and the discrepancy may, at first sight, be attributed to
this over-simplification. I have shown that for long times of decay
the 1/f' law should then be obtained whatever the distribution
of traps may be, and so the discrepancy between the results and
the bimolecular mechanism is actual.

Thus the experiments are consistent with a monomolecular
decay, at least as a first approximation. This may be explained
if a great number of traps are situated in the neighborhood of the
activator centers. But the existence of photoconductivity and re-
capture implies the possibility of a more or less important bi-
molecular perturbation. The above results show that this per-
turbation is weak during the decay.

If the electrons in the conduction band have high energies,
they are not stopped by the defects of the crystal, and in these
conditions an approximately bimolecular mechanism is valid;
this is the case if excitation or stimulation takes place, or if the
electrons are accelerated by an electric field; it may also be the
case during the first stage of the decays (1M sec), when the elec-
trons in the conduction band are coming out of very shallow
traps. However, during the long-period phosphorescence caused
by the release of electrons from deeper traps, the conduction elec-
trons have very low energies because of the need of a thermal
activation (wave mechanical calculations" show that these ener-
gies are less than kT). They cannot then go far from the traps,
and they often faH into the next center, in agreement with an
approximately monomolecular decay.

Even in this case of monomolecular decay, however, retrapping
takes place if diGerent traps are situated around the same center;
the possibility of a bimolecular perturbation also involves re-
capture. I have studied theoretically the way in which the decay
depends on this phenomenon. Analogies appear between the re-
filling of shallow traps by electrons escaped from deeper traps,
and chains of successive radioactive disintegrations. For instance,
the quick decay of the glow curves obtained when the time elapsed
after the end of the excitation increased is rot an evidence against
recapture, exactly as the activity of a mixture containing com-
parable weights of radium and radon decreases first with the
period of radon (not of radium), and this is not a proof that radium
disintegration does not produce radon.

Experiments show indeed that recapture takes place during
spontaneous decay'; but the phenomenon is found to be much
more important under infrared stimulation, 9. and the better the
crystallization, the more pronounced is the phenomenon, in agree-
ment with the views expressed above.

D. Curie, Thesis, Paris, March 21, 1951 fpublished in Ann. phys. 9,
749 (1952)].

2 J. T. Randall and M. H. F. Wilkins, Proc, Roy. Soc. (London) 4184,
366 (1945). G. Fs J. Garlick, Cornell Symposium of the American Physical
Society (John Wiley and Sons, Inc. , New York, 1948), p. 97.

g P. Lenard, Handbuch der Experimental Physik (J. Springer, Berlin,
1928), Part I, p. 181.

4 D. Curie, Compt. rend. 229, 193 (1949); and 229, 1321 (1949).See also
G. M. Nazarian, Spring Meeting, Electrochemical Society, Philadelphia,
May 4-8, 1952 (unpublished).' See reference 2, G. F. J. Garlick, p. 91.

6 Pointed out by V. V. Antonov-Romanovskii; see W. Lewschin, Acta
Phys. Polon. 5, 310 (1936).

'I D. Curie, J. phys. radium 12, 920 (1951).
8 J. Mattler and D. Curie, Compt. rend. 230, 2086 (1950).
~ G. F. J. Garlick and D. E. Mason, J. Electrochem. Soc. 96, 90 (1949);

D. . Curie, Nature 166, 70 (1950); Compt. rend. 230, 1400 (1950).
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Fio. 1.The absorption cross sections of molecular oxygen (solid curve)
and nitric oxide (dashed'curve).

that the absorption cross sections of the oxygen windows in the
region 1100-1250A are about 10 "cm'. Moreover, the absorption
cross section for the continuum just below 1100A is about 10 "
cm~, and should be still higher in region A on the basis of the data
obtained by Hopfield and Tanaka. A reasonable value for air in

,the spectral region A would be 10 " cm rather than 10~'—5
)&10~which were used by Mitra. ' If the higher value is accepted,
process A would be placed in the lower 8 layer.

In contrast, process 8 has the very attractive feature that NO
can be ionized by Lyman alpha which has now been observed in
the D layer as a strong, solar emission line. However, the con-
centration of atmospheric NO is not known. If the tentative esti-
mate made by Bates3 from a rocket spectrogram' is the correct
order of magnitude, our absorption data for NO seem to indicate
that the major part of the production of D layer can be attributed
to process J3.

Using NO samples (impurity less than 0.1 percent), the ab-
sorption intensity of this gas was measured'0 in the region 1070-
2300A. A moderately strong absorption continuum was found in
the region below 1400A. The absorption cross section is shown in
Fig. 1 by the relatively Rat curve, a continuum with a number of
weak disuse bands.

A preliminary photoionization experiment using a vacuum
monochromator showed that the ionization current appeared
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O F the several processes suggested for the formation of the
D layer, the following appear to have the strongest support:.

02+hv (900-1000A, spectral region A)~Oe++e, (2)
NO+hv (1100—1300A, spectral region 8)—+NO++e. (8)

Recently, Mitra' has reported a detailed calculation to show that
the D layer is produced by process A, which was originally pro-
posed by Mitra, Bhar, and Ghosh. 2 On the other hand, Bates and
Seaton 3 after examining various processes, have shown that the
D layer may very well be formed primarily by process 8, which
was suggested earlier by Nicolet. 4

Spectroscopic data seem to show that the D layer cannot be
produced chieQy by process A. As pointed out by Bates, ' spectro-
grams by Hopfield5 show that a 4-mm layer of air completely
absorbs radiation in spectral region A. Tanaka, who used higher
dispersion, confirms Hopfield's results and estimates from pres-
sures used that the windows in region A are about two orders of
magnitude less transparent than those in region B.

Using a vacuum monochromator and photoelectric detection,
absorption cross sections of 02 were obtained7 in the spectral
region 1050—1900A. These data, partly reproduced in Fig. 1, show


