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Calculation of Peaked Angular Distributions from Legendre Polynomial Expansions
and an Application to the Multiple Scattering of Charged Particles*

L. V. SPENcER
National Bureau of Standards, Washint, 'ton, D. C.

(Received December 3, 1952)

A method for evaluating Fourier integrals is presented which relies upon qualitative information about
the integral and which combines some of the advantages of both numerical and analytic techniques. A
formula is then derived which sums slowly convergent series of Legendre polynomials by making use of a
Fourier integral "small angle" approximation. A combination of the two techniques is used to sum the
slowly convergent Legendre polynomial series which represents the directional distribution of multiply
scattered charged particles. Comparisons with "small angle" calculations by Moliere and Snyder-Scott are
included.

l. INTRODUCTION

HE directional distribution of charged particles
multiply scattered in a thin foil is typical of

many physical problems which involve an angular dis-
tribution strongly peaked at some particular angle. In
this problem as in many others the basic treatment is
greatly simplified by making expansions in spherical
harmonics; however the series which then represents
the desired peaked angular distribution will be very
slowly convergent. This slowly convergent series can
be summed by making a ". small angle approximation, "
i.e., by transforming the sum into a Fourier integral,
which can usually be more easily evaluated than the
sum. In the charged particle problem Moliere' has been
able to evaluate such a Fourier integral through the use
of a suitable analytic representation and expansion.
Snyder and Scott' have applied laborious standard
numerical integration techniques to the same problem.
The 6rst part of this note suggests a method for making
Fourier integrations which combines some of the ad-
vantages of both numerical and analytical techniques.
It has Qexibility in that it can be applied in a wide
variety of circumstances, being not particularly de-
pendent on a simple analytic form for the integrand.
On the other hand it uses analytic expressions in making
the integrations, thereby oBering the advantages of
quick and easy analytic manipulations. We shall illus-
trate this method by using it to reproduce some of the
results of Snyder and Scott (Sec. 3).

The other purpose of this note is to demonstrate a
method for summing Legendre polynomial series
exactly, but taking advantage of a Fourier integral
"approximation. " We derive the basic summation
formula which enables us thus to dispense with the
"small angle approximation" in Sec. 4. We shall illus-
trate this technique also by applying it to a particular
problem (Secs. 5 and 6) and comparing with the "small
angle approximation" results of Moliere.

*Work supported by the U. S. Ofhce of Naval Research and
the U. S. Atomic Energy Commission.' G. Moliere, Z. Naturforsch. 3A, 78 (1948).Note added in proof:—See also a further development of the Moliere technique by
H. A. Bethe, Phys. Rev. 90, 000 (1953).' H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).

Further application of these techniques will be made
in a following paper wbich will contain a full discussion
of the problem of multiple scattering of relativistic
electrons in a thin foil. A comparison with experiments
by Hanson et al. ' will be obtained which utilizes more
realistic scattering cross sections than those of Moliere
and Snyder-Scott.

2. DISCUSSION

In a previous paper, 4 complicated functions are
represented by approximate forms which require only
qualitative information reinforced by a knowledge of a
few well-known parameters of the exact functions.
These approximate forms have proved adequate for
many purposes. For example, .in reference 4 certain
integrals were calculated by combining the qualitative
information that an unknown factor in the integrand
is smooth and single-peaked with a knowledge of a few
moments of this unknown factor.

We want to apply this same idea to evaluate the
Fourier integrals which appear in the Moliere problem.
We propose to do this by aPproximating the integrand
with a set of terms which are chosen according to three
criteria:

(a) Each term must have a known or easily deter-
mined Fourier transform.

(b) Each term must agree with the qualitative infor-
mation about the integrant or its Fourier transform.
Examples of this qualitative information might be
smoothness and positiveness, or the known behavior of
the integral or integrand for large or small values of the
independent variable.

(c) The set of terms must contain constants which are
chosen to 6t exactly certain numbers characterizing
the integrand. These numbers might be integrals,
values, or derivatives of the integrand. The choice of
parameters which are to be Gtted may be made in such
a way that the Fourier integral is given particularly
accurately for a certain range of values of the inde-
pendent variable.

What we are proposing is a sort of generalized nu-
' Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).' L. V. Spencer, Phys. Rev. 88, 793 (1952).
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merical integration technique. We wish to emphasize
that the accuracy of numerical integration techniques
increases rapidly with the amount of qualitative infor-
mation which is utilized.

3. THE FOURIER INTEGRAL OF MOLIERE
AND SNYDER-SCOTT

In order to obtain the (projected) angular distribution
Ft(&e) of originally monodirectional charged particles
multiply scattered by a thin foil, Moliere and Snyder-
Scott evaluate the following Fourier integral [reference
2, Eq. (8, 2)]:

F,(re) = (2sr) ' doe' ' exp{—A[1—Lt(o)]}, (1)

where A is a constant, and we use the notation'
L,(o)= oK.( )r,rK„being the Bessel function of the
second kind with imaginary argument as given by
Watson. ' The letter ~ refers to the total deQection angle
divided by a scaling factor which is immaterial for our
present purpose.

The available qualitative information about Ft(re) is:
(a) Ft(ce) is a smooth, positive, single-peaked func-

tion of co'.

(b) Ft(re) tends to be Gaussian for small values of &e.

(c) For large values of re, Ft can be calculated by
expanding exp{—A [1—Lt(o)]},i.e.,r

Ft(re)~(2sr) ' ~ doe'"'ALt(o) = (A/2)(1+to') 1 (2)

Furthermore, if co is small Ii & is essentially an integral
over the function exp{—A[1—Lt(o)]},each value of o

contributing to the result according to the magnitude
of this exponential function. This suggests that for
small m accurate answers can be obtained if an approxi-
mate function is fitted to a series of values of this
exponential function distributed over, e.g., the range

1~)exp{—A[1—Lt(tr))}& r'o.
On the other hand, if co is large Ii

& is essentially deter-
mined by the region of small 0, as illustrated, for ex-

ample, by (c). This suggests that a good approximation
.for large co, which calls for an accurate representation of

exp{—A[1—Lt(~)]} for small o., can be obtained by
using derinatines of exp{—A[1—Lt(o)]} evaluated at
some small value of 0..

A. Approximation by Gaussians

These considerations suggest that for small co we

approximate the integrand by Gaussia, ns:

exp{—A [1—Lt(o)]}=P tt„exp(—rr„os), (3)
s Compare, for example, with Eq. (A.2l, G. Moliere, Z. Natnr-

forsch. 2A (145), 1947.' G. N. Watson, Bessel FNnctiorts (MacMillan Company, New
York, 1945).' See reference 6, p. 172, Also, see Campbell and Foster, Fourigr
Ietegrals (D. Van Nostrand Company, Inc. , New York; 1948),
p. 125.

Ft(te) = P a.cr.-l exp[ —td'/(4cr. )].
2+sr

(4)

Sample calculations of this type indicate that the ap-
proximation (4) with two or three terms is accurate to
within 3 percent for values of ~ in the range

1 ~& Ft(re)/F r(0) & 0.02.

In this simple calculation, no account has been taken
of (c). This additional information may be introduced
in two ways. We write either

exp{—A[1—It(o)]}=P„b„exp(—P„o')+BpLt(Br(r),
(5)

or

exp{—A[1—Lt(o)]}={P„c„exp(—y„o')}Lt(Co), (6)

where 80, 8~, and C are assigned values at the outset
which will insure the correct asymptotic behavior.
The constants b„,P„,c„,and y„are chosen in each
case so that the approximate function agrees with the
exact one at values distributed over the range
1&~exp{—A[1—Lr(o)]}&~rro. ' Of the two forms the
more meaningful and more accurate is (6). Each term
is the sum (6) refers to a Gaussian diffusion super-
imposed on a single scattering which very nearly obeys
the correct differential scattering law. This form has the
drawback that the angular distribution is represented
by a folding integral:

Ft(CO) = ~ dM E(c-V- ')
2 7m

&«xp[ —(~—~')'/(4v )] {(C'/2)(C'+~") '} (7)

Fortunately, this is a practicable integration to perform
numerically.

For a sample calculation of this type we chose
A =C'=100. Three Gaussians were used and the c„,y„
were determined so that the approximate function
agreed with exp{—A [1—Lt(o)]}at o'= 0, 0.004, 0.008,
0.012, 0.016, and 0.020. The resulting angular dis-
tribution obtained from expression (7) is given in the
second column of Table I. It compares quite well with
Snyder-Scott results for Fr(&e)/Ft(0) &0.005. For larger
values of co, diBerences of ~6 percent appear. If the
tabulation had been continued to still larger, co, the

s For an account of the 6tting procedure see reference 4, Appen-
dices B and C.

where the a„and O,„aredetermined so that the approxi-
mation agrees with the exact function at values of o.

.distributed over a range determined by

1&exp{—A[1—L (o)]}& —,', .'

Since Gaussians transform to Gaussians, this yields the
approximation:
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TABLE I. A comparison of Gaussian and inverse power approxi-
mations with the Snyder-Scott results for A = 200.

Inverse Inverse
Sny der- Gaussian power Snyder- Gaussian power

Scott approx. approx. co Scott approx. approx.

0
10
20
30
40
50
60
70
80
90

100
110

X10 fl

22850
18740
10780
4904
2041

888.4
430.0
236.3
140.8
93.34
63.92
45,96

X10 6

22740
18670
10780
4905
2051

887.9
428. 1
233.4
137.1
89.39
60.22
43t14

X10 6

1833
836.7
423.7
237.1
144,4
94.23
64.92
46.71

120
140
160
180
200
220
240
260
280
300
330

X10 e

34.38
20.76
13.52
9.132
6.691
4.973
3.798
2.968
2.364
1.913
1.430

X10 ' X10 6

34.79
20.89
13.57
9.329
6.699
4.976
3.800
2,969
2.364
1.914
1.430

we write

exp( —&L1—Li(o))}=+.le.L..(Eo). (9)

Knowledge of the exact asymptotic trend leads us to
specify the constants in one term of (9) in such a way
that the asymptotic trend will be given correctly, i.e.,
so=1, &o=~E '

The function (E+aP) ' & behaves like a Gaussian
for &'((E' and like an inverse power for co'))E'. Thus
a=E is a transition region between the two types of
behavior. This suggests that E be identified with the
abscissa of the point of inQection of the function
logF t(co).s This value for E can be determined from the
simple Gaussian approximation described in A.

As discussed early in this section we want to fit the
approximate function to the exact function by means
af derivatives or combinations of derivatives evaluated
at small (T. We make use of the relations:

1 d
{S}L.(o) = ———L„(a.)=L, g(o),

a 80
(1O)

{T}L.(o) = {—s(o'S' —1)}L.(o)=(~—1)L.-t(o). (11)

If we apply to (9) the operators (S'}, {TS+3Ss},
{T'S+STS'+9Ss}, and (T'+6T'S+19TS'+27Ss},
and if we evaluate the resulting four equations at the same

9 On semilog paper a Gaussian becomes monotonically steeper
whereas an inverse power becomes monotonically flatter.

discrepancy would have increased slightly and then
decreased again as co—+~.

B. Ayyroxima. tion by Inverse Powers

For large co, Ii& tends to obey an inverse power law.
The first idea which springs to mind, therefore, is to
approximate by functions of the type (E'+to') "

&,

where E and a are constants. This form is not only an
inverse power for large ~, but it is also capable of
behaving like a Gaussian for small m. Because of the
Fourier relationship, '

(2s') "(~—-') i

(2s) ' doe'"'L„(Ko)=, (8)
2+m (E'+co')'+&

small value of 0-, we obtain four nonlinear equations
which can be solved simultaneously. ' This enables us
to determine four, constants and include two terms in
the sum (9) in addition to the term giving the asymp-
totic trend exactly. The recurrence relations of the L„'s
enable us to calculate the desired derivatives of the left
side of (9) quite readily.

Calculations of this nature have been accomplished
for the case A =100. We chose K=35, which is about
the value for which (d'/CkP) logF~(a&) =O. The deriva-
tives were all evaluated at o-'= 10 4. During the solution
of the set of nonlinear equations it becomes necessary
to evaluate L, for nonintegral v. There are series ex-
pansions which can be used for this purpose; however we
preferred to obtain the desired values from graphical
interpolation using the easily obtained integral" and
half-integral L,'s. The final results of the calculation
are given in the third column of Table I. They agree
well with Snyder-Scott for ~&55. For small ~ this
approximation is in error by 10—20 percent. "

As shown by Table I, there is a considerable overlap
between the Gaussian and inverse power approxima-
tions. A combination of the two yields an approximation
accurate everywhere to better than 3 percent.

It should be borne in mind that the calculations de-
scribed in this section represent but two of a number of
ways in which the general approach described in Sec. 2

may be used to evaluate the Fourier integral (1).
The number of man hours involved in one of these

calculations may be of interest. Assuming that pro-
cedural details have been ironed out, but allowing
rather generously time for checking and for tabulating
the final results, we estimate that either of the two
types'of calculation requires about 10-12 hours.

4. A SUMMATION FORMULA FOR LEGENDRE
POLYNOMIALS

The actual summation of a slowly convergent
Legendre polynomial series will now be discussed. We
will derive a summation formula which converts a
Fourier integral approximation into the exact sum.
Thus, suppose we want to sum the series

G(tl) =g g&P&(costi).
l=o

(12)

We let g(l+~s) be any continuous function of (l+z)
over the range —oo &~(l+s) &~oo whichhastheproperty
that for positive, integral values of l, g(l+ ,') =gg (This-.
does not define g(l+-', ) uniquely. Each of the various
functions satisfying these criteria is equally good for
our purposes. ) If g(1+~) is, e.g., an antisymmetric

'4 Tables of the Bessel Functions Fo(&), Fi(&), Eo(&), ICi(x),
0 ~& x ~& 2, Natl. Bur. Stand. Applied Mathematical Series
February 22, 2948.

"In a separate calculation of this same type we have achieved
an accuracy everywhere to about / percent. This was done by
choosing K in such a way that the approximation was correct at
co=0. The value of K determined in this way was slightly higher,
i.e., 45 instead of 35.
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function of (f+&&) we may defme a function R(r) by TABLE II. A comparison oi approximate values for 2&C& as
'ven by Eq. (18), with the exact values of Eq. (17).

the integral 2+v =0.001765.)

R(r) = (2or) ' d(l+1) sin[(l+&s)r]g(l+$). (13)

%e have then the reciprocal relationship,

277C&

0
2.034X10 5

5.636X10 '
10640X10 '

& -L 1(~) —kn«(~) —kn

10—12

2.039X10 '
5.642X10 '

10.655X10 '

1 —L1(gr)

2.977X10 ~

2.925X10 '
5.877X10 5

10.877X10 '

1

g(l+~~) = dr sin[r(i+sr)]R(r). (14)

If we make use of (14) together with' a well-known
integral expression for P~(costi), ts we may rewrite (12)
as follows:

1

1
G(tl) = P dr sin[r(l+$)]R(r)

s.~ i-o

I'2~ -s
X dg sin[&(l+$)](cost7 —cos@) & .

Jy

1 / 27r —0
d&(costi —cosg) & I drR(r)

XQ sin[r(l+gr)] sin[/(l+$)].
0

The sum over / can now be performed:

Upon changing the order of the integrations and the
summation this becomes

numerical illustration of Sef-. 6, only the m=0 term is
signi6cant.

In the next section we shall present the g(l+-,') for
the Moliere problem both exactly and in a very useful
approximation. Both diGer slightly from the form used
in the ordinary "small angle approximation, " and
therefore the Fourier integral which we shall mak. e use
of is not quite the usual one.

5. THE SPHEMCAL HARMONIC COEFFICIENTS
FOR THE MOLIERE PROBLEM

The differential scattering cross section which leads
to the Fourier integral of Moliere and Snyder-Scott is
o(tl)=2r7A{1+2rl —costi} ', where A and rl are con-
stants. The solution of the diGusion equation with this
cross section, by expansion into spherical harmonics,
yields the following expressions:"

G(t7) =P~ g~P~(cost'l), gg= (l+-,') exp( —2riAC~),
(16)

C~=
J d(costi)[Po P((cost7)][1+2ri —costi]

-1

drR(r)

X Q (—1)"b[r—(y+2s.m)]

1 t 2'-8
G(tl) =— dg(costi —cosP) &

Vl ~s

(15)

Ke may evaluate rather easily the integral for C&."
jC)——— d(cos8)

ci(2rl)

X [Po—P~(cos@)][1+2rl—cos@] '

f2' —8 tO

=%2 dp(costi —cosp) & P (—1)"
Jy to~0

{2Qo(1+ 2rl) —2Qi(1+ 2rl) }
ci(2q)

(17)

XR(P+2rrm).

Expression (15) is the formula we wanted to derive. "
Whenever the Legendre polynomial sequence (12) con-
verges slowly the series in (15) converges rapidly. In the

' See, for example, E.T. Whittaker and G.¹Watson, Modern
Analysis (MacMillan Company, New York, 1946), p. 315.

» This formula assumes a g(l+s) which is antisymmetric in
(1+,). Circumstances may arise in which it is convenient to dehne
a g(l+-, ) which is symmetric or which contains both symmetric
and antisymmetric parts. For these situations it is advantageous
to make use of the formula

G(8)=v2 dp{cosp —cos8) & Z (—1)
Q t1~0

X (R(P+Zsm) —RL(2s.—d)+Zsmgl,
where

R{r)= (Zv) 'f d(l+$) cosL(l+s)r jg(l+$).

{1+f[(1+29)Q(1+»)—Q~- (1+2~)]}.
2rj(1+ rl)

A very accurate approximation (for small rl) which we
shall use instead of (17) is

C~= (2g) '{1—L ( )—-', r)L ( )—xrl}, (18)

where o=2rl&(i+st). Table II compares (18) and (17)
and with the "small angle approximation, " i.e.,
C~= (2rl) '[1—Lt(o)], for the 6rst four values of /. The
form (18) was suggested by Lewis' Eq. (15),'4 but it is
asymptotically correct-as l—+~.

"H. W. Lewis, Phys. Rev. 78, 527 (1950).
'~ See, e.g., reference 12, p. 320. I am indebted to Dr. C. H.

Blanchard for the expression of C~ in terms of Q~'s.
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TAsLz III. The Legendre polynomial sum as compared with
Moliere's "small angle" results for A = 118.4, 2g)) =0.0017658

exact expression for the four combinations of derivatives
mentioned in Sec. 3, part 8, evaluated again at cr2= 10 4.

The constant E' is again given the value 35.
Since we shall make numerical integrations which

involve the E(2+)7&o) we tabulate the functions

Polynomial
sum

Polynomial
sumMoliere Moliere

X10 '
8.24

'2.15
1.32
0.589
0.173
0.0843
0.0461
0.0322

(degrees)
0
0.561
1.121
1.682
2.243
3.364
4.486
5.607
6.728

X10—e

2870
2730
2320
1780
1260
511
182
65.2
26.1

(degrees).
8.411

11.214
12.500
15.000
20.000
23.750
27.500
30.000

X10 '
8.43
2.17
1.35
0.601
0.175
0.0864
0.0479
0.0338

X10 '
2850
2710
2320
1800
1270
511
179
67.7
27.1

f .
' 1

( ')=( )'' ' Z(' '')
2&~ -t

X[2( — ')/(4y ')) e p[—( — ')'/(4r ')]

X A 2 A p&"){( / )( +
g(2'&(g) = (4/3 1(2~f~3 1(2~)' The tabulated quantity is actually -4q times the polynomial

sum (16). {Q [k~'(2E")".'(Ir '+-')!$(E"+&o')—""' "'
6. AN ILLUSTRATION OF THE SPHERICAL

HARMONIC SUMMATION

We now want to make an application of-the sum-
mation formula (15) by performing the summation
(16) for specific values of A and )t, corresponding to a
15.7-Mev gold foil scattering experiment of Hanson
et a/ ,s i.e., A.= 118.4, 2g)) =0.001765.

Our 6rst step is the evaluation of the integral

+~A(E"+ro') "'+-'rtA(E"+p)') )t'}

The two approximations overlap within. a few percent
in the region co=80, as expected. Because we have
taken the derivative, the two do not join quite as well
as in Table I. Since we shall be integrating again this is
not serious.

Finally, we evaluate the integral

R(2)l4o) = (2)r) r(2))l) do' sin(o'ro)o G()7) =V2 " d(2)fico) [cost)—cos(2)14&)j l

Xexp{—A [1—L&(o) —-', ))Lp(o) —-„')lj}
(19)

00

= —(4)t)-' (2~)- do cos(o~)
BM

Xexp{—A [1—L,(o) —s ~Lp(o) ——;&j},

X Q (—1)"R[(2)lapp)+2)rm].
tn=0

Only the 6rst term in the sum is significant and we
neglect the others. This integration can be made very
simply by writing

where o =2)7&(l+-,'). This is very nearly the same cal-
culation as that discussed in Sec. 3, since the last two
terms in the exponent are very small. We make very
nearly the same approximations, i.e.,

G(e) = 2v2
& (cos8+1)&

"0
d[cos)7 —cos(2)7'p))j'

X {[sin(2)t4) ) '[R(2)typo)+E(2)r —2)7'*pp) j}.
exp{—A [1—L&(o) —s))Lp(o') —4)7j}

= {P c„'exp( y'o') }—L,(A lo) (small e))
n 1

exp{—A [1—Lr(~) ——',gLp(o) ——,'q j}
tp„'Lx„(K'o)+AK' 'Lr(E'o)

n=l)2

+-,'A)iLp(E'o) (large ro),

where the c„',~„'in the "small co" approximation are
assigned values which fit the approximation to the
exact expression at six values o)s=),+0 003j In th. e.
"large op" approximation the four constants k„', I(.„'
are given values which fit the approximation to the

We plot the quantity in curly brackets against
[1—cos(2))4o)7. For each value of costi we then read
quadratically spaced values from the graph and sum
them according to a standard numerical integration
formula.

Table III gives G(e)) calculated in this manner as
compared with Moliere's results obtained by Fourier
inversion. The two calculations agree quite well for
small angles. The oscillating discrepancy of 3 or 4
percent in the region 5' to 11' seems to be due largely
to the neglect of the f' term in Moliere's approximation.
At large angles where single scattering is predominant,
the exact sum is larger than the "small angle approxima-
tion" by about a factor o (exact)/o (small angles)
=—'„r74/(1—cosg', which amounts to 1.047 at 30'.


