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A refined technique is described for approximating the numerically given radial part of atomic wave func-
tions associated with self-consistent fields with exchange by means of Slater s analytical functions obtained
by replacing each exponential in a hydrogen-like wave function by the sum of one, two, three, or more expo-
nentials. Exponents and coefFicients of these exponentials are calculated for the 3p-function of Cl, corre-
sponding to an accuracy of 0.0015 for the normalized radial part, and, with slightly less accuracy, for all the
functions of two closed-shell iona, F (without exchange) and Na+, and for some neutral first-row atoms,
C('D), N('P), and 0('S). The interpolation problem is discussed, and a new interpolation rule for the coeffi-
cients is stated, which gives excellent agreement (0.001) in the examples chosen, namely the 1s-functions
of the He-like ions and the 2p-functions of Na+, Mg~, and Si+4.

' N the quantum-mechanical treatment of many-
' - electron atoms, the total antisymmetric wave
functions describing the diferent atomic states are
usually approximated by the sum of one, two, three or
more determinants' of one-electron wave functions,
each being a product of an atomic orbital (AO) and a
spin function. The atomic orbitals are determined from
the basic Schrodinger equation for the atom by means
of the variation principle' as products of radial parts
and spherical harmonics, and the best expressions for
the former are obtained eunserically by step-by-step
integration of the Hartree-Fock equations by using the
self-consistent-field technique developed by Hartree. '

For some purposes, it has been found desirable to use
also uealytic forms of these atomic orbitals. Here we
will not discuss the question whether it is better to base
applications of the atomic theory on the analytical wave
functions rather than on the numerical tables. It has
often been said that the analytic expressions would be
better for use, e.g., in the theory of molecules and
crystals, but our experience is that it is often just as
convenient to use numerical computations as analytical
calculations and that many times the former are simpler
and quicker. However, considering the fact that many
physicists are more accustomed to analytical work than
to numerical computations, we think that both methods
should be developed simultaneously without giving
priority to anyone of them. This series of papers will be
devoted to a study of the atomic self-consistent Geld

with exchange, and various problems will be discusse
both from the analytical and the numerical points of
view.

Analytic expressions for the radial wave function
can be derived in two ways, either directly by 6xin

* This work was assisted in part by the U. S. Once of Naval
Research under contract with the University of Chicago, in part
by the Swedish Natural Science Research Council, and in part by
the Elizabeth Thompson Science Fund.

' J. C. Slater, Phys. Rev. 34, 1293 (1929).' J. C. Slater, Phys. Rev. 35, 210 (1930), and V. Fock, Z.
Physik 61, 126 (1930).' For an excellent survey of this field, see D. R. Hartree, Rep.
Prog. Phys. 11, 113 (1946).

parameters in given analytic functions, for instance, of
the hydrogen-like type by means of the variation
principle as described by Zener4 and others, ' or indi-
rectly by approximating the numerically given Hartree-
Fock functions in some way analytically, as was pro-
posed by Slater. ' Except for the simplest cases, the
former method leads to rather formidable calculations,
whereas the latter is simple but based on the assumption
that the self-consistent-field functions are given in
advance. An investigation of the accuracy of these
analytic atomic orbitals shows that the Zener and
Morse-Young-Haurwitz functions4 5 containing only a
few exponentials represent rather poor approximations
of the self-consistent fields' and hence also of the true
charge distributions, ' and that the deviations are
appreciable, particularly at large distances. The last
fact is of essential importance in the theory of molecules
and crystals, and the simplest way of obtaining good
analytical orbitals for applications in this field seems
therefore to be to use Slater's approach. ' Part I of this
series of papers will be devoted to a study of a refine-
ment of Slater's method, giving analytic atomic wave
functions with almost the same accuracy as the nu-
merical functions themselves.

I. CALCULATION OF SLATER-FUNCTIONS

An atomic orbital with the quantum numbers e, l, m
is the product of a radial wave function f„i(r)fr and a

4 V. Guillemin and C. Zener, Z. Physik 61, 199 (1930); C.
Zener, Phys. . Rev. 36, 51 (1930); J. C. Slater, Phys. Rev. 36, 57
(1930).

5 Extensive tables have been given by Morse, Young, and
Haurwitz, Phys. Rev. 48, 948 (1935); for improvements and
corrections, see also L. Goldberg and A. M. Clogston, Phys. Rev.
56, 696 (1939), and W. E. Duncanson and C. A. Coulson, Proc.
Roy. Soc. (Edinburgh) 62, 37 (1944).

6 J. C. Slater, Phys. Rev. 42, 33 (1932); F. W. Brown, Phys.
Rev. 44, 214 (1933).

'Only in a few cases have Zener-type functions been used as
starting functions for self-consistent-held calculations; see, e.g.,
V. Fock and M. J. Petrashen, Physik. Z. Sowjetunion 6, 368
(1934); 8, 359 (1935).' H. Bethe, Z. Physik 55, 431 (1929); 57, 815 (1929), has given
a survey of different approximations of the charge distribution of
He and He-like ions in comparison to the "true" distributions
given by Hylleraas.
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normalized spherical harmonic I"t (8, tt). The best
expressions for the functions f„t(r) are now given
numerically for many atoms and ions by Hartreeand
Hartree, Fock, and others. ' In order to express f„t(r)
analytically, we will now slightly generalize Slater's
original idea and try to approximate these tables by
functions obtained by replacing each exponential in the
corresponding hydrogen-like functions by a sum of one,
two, three or more exponentials. For the lowest func-
tions, this gives the following expansions:

fr, (r) =r+„At, exp( —at,r),
f2,(r) =r+I, As exp( —atr) —r'Ps Bs exp( —bsr),

fs„(r)=r'P g BI, exp( —bpr),

fs, (r) = rPt, As exp( —at r) —r'Pq Bs exp( —bjr)
+r'Pt, . Cs exp( —c,.r),

fs„(r)=r'Ps Bs exp( —bsr) —r'Qs Cs exp( —ct,r),
~ etc.

where the exponents ul„bf„and the coeScients
A&, 8&, ~ ~ may be different for each orbital. %e will
here determine the values of these parameters by a
numerical method, which is a simple development of
the graphical method described by Slater. 6

The.exponentials involved in the expansions (1) may
be calculated by means of a method of successive
approximations" going inwards from r=~ to r=0.
The computations are based on the fact that in the
outer region (r= Do) only a single exponential is impor-
tant, in the next inner region two terms are important,
in the following region three terms, etc. The numerically
given function f(r), divided by the highest power r& of
r according to (1), is considered in equidistant points;
a qlotiemt series is then formed for the outer region by
successive divisions, and from this series a trial expo-
nential function is determined as a geometrical series.
This function is now subtracted from f(r)/r atnd the
difference is investigated in the next inner region, where
a new quotient series is formed, giving a new trial
exponential function. This second function is now sub-
tracted from f(r)/r", and the outer region is considered
a second time with a still better result for the first
term, etc. In most cases, this process is quite straight-
forward, and special care must be taken only in regions
where the power of r has to be changed according to (1).

%e note that here the quotient series have taken the
place of Slater's logarithmic graphs. The success of the
method depends partly on the fact that these quotient
series and the trial exponentials, i.e., the geometrical
series, can be computed so quickly by means of the
modern electric desk machines.

A few words may be said about the 6xing of the 6rst
trial functions for each region. It is easily seen that if a

9 According to Slater (reference 6) only the exponential multi-
plied with the highest power in r should eventually be replaced
by a sum of exponentials, but our generalization is obvious.

&o A preliminary report of this method was given at the Shelter
Island Conference, 1951.

TABLE I. Survey of the maximum errors in different intervals
in the analytic SCF-functions for Rb+ (without exchange) given
by Slater (reference 6) as an example of the accuracy of his
graphical method.

r-interval

0.00

0.04

Maximum error in units of 10 g

Rb+2e Rb+se Rb+gp

—41

0.20
—30 &17

0.50

1.00
14

function g„ is the sum of two geometric series,

g =akt"+bks",

of which the first is dominating, then the quotient
g„+t/g„ is slowly varying according to the formula

g."/~.=k.-(b/ )(k.-k.)(k,/k, )-+ . (3)

From the quotient series, considered in a region where
g„still has enough signi6cant figures, it is therefore
possible to get an approximate value of k~ and estimates
of ks and bks"/ak&", of which the latter are usually too
rough to be of real value for determining an iridial
term ak»" somewhere in the first geometrical series.
After 6xing a suitable value of k~, we form instead the
auxiliary function

h„=kg„g„~t=bks" (—kt ks)—
and its quotient series h„+&/h„, from which we get a
much better estimate of k2, bk&", and 6nally of ak&"
=g„—bk~". After choosing a speci6c initial term of the
first geometric series, we can then form our first trial
exponential by repeated multiplication with constant
factors, diferent for the various interval lengths. The
method of successive approximations, as described
above, is now started.

The accuracy of the analytic self-consistent-field
(SCF) functions obtained by Slater's graphical method
may be illustrated by his own example for Rb+ in
Table I; even if the maximum error is of the order
45X10 ', the approximation is certainly good for many
applications. The analytic SCF-functions, calculated
from Slater's exponents' for other atoms of the periodic
system, have also errors of about the same order of
magnitude. In treating F, F, and Ne, Brown' reports
errors of the order 20X10 '.

In our investigation of the alkali chlorides, " we
needed the 3p-function of Cl with exchange, given
numerically by Hartree and Hartree, "with a very high
accuracy and most of the technique described in this

"P. O. Lowdin, A Theoretical Imvestigatiorl, into some Properties
of fonts Crystals (Almqvist. and Wiksells, Uppsala, 1948), thesis.' D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936).
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TABLE II. Exponents and coefficients in an analytic SCF-
function of the form (1) for Cl (3p) with exchange (reference 12).
Maximum error= 1.5&(10 '.

AO k= 2 3 k= 1 - 2 3

Cl (3P)
'
bp 4.2435 8.4758 22.314 cy 0,92426 1.6658 2.9859
BIr, 9.0441 26.493 2.49 C10 0.07099 1.3955 8.4236

TABLE III. Exponents and coefFicients in analytic SCF-functions
of the form {1) for F without exchange (reference 13) and for
Na+ with exchange according to Fock and Petrashen {reference
14). For maximum errors, see Table IV.

AO

F (1s)

F (2s)

F (2P)

Na+(1s)

Na+(2s)

Na+(2p)

ay 8.1890
A I 40.285
ag 7.1485
AI 11.755

gy 8.1093
Ap 12.835
ay 9.1285
AJ 16.895

12.187
9.5770

~ ~ ~

11.577
57.640

bI 1.6465
BIc 1.3054
bit 0.64417
BI 0.080948

bJ 2.3650
Ba 3.6178
bI 2.3718
BI 5.1958

2.7178
8.7816
1.4357
1.3016

3.9031
25.462
3.8934

14.024

4.1211 . ~ ~

6.6845
3.0759 5.9696
8.6449 7.0549

~ ~ ~

6.5076
18.128

TABLE IV. Maximum errors of the analytic SCF-functions for F
and Na+ in Table III, in units of 10 '.

paper was actually developed for the investigation of
this function. Our final result is given in Table II, and,
by using six exponentials (three in the C-group and
three in the B-group), we could obtain a fit as good as
1.5X10 ', i.e., the analytic SCF-function had about
the same accuracy as the numerical function itself.
With slightly less accuracy, we treated then two other
closed-shell ions in the same way, namely, F without
exchange" and Na+ with exchange. "The results in a
somewhat improved form are condensed in Table III
and the maximum errors d'or different intervals in
Table IV. In tabulating the errors, we are always giving
the quantity (f, ,»&;„&—f„„„;„&)for the normalized
functions in units of 10 '.

TABLE V. Exponents and coefFicients in analytic SCF-functions
of the form (1) for neutral carbon (reference 15), 'D (P=0.04),
for neutral nitrogen (reference 15), 2P state (P=0), and for neutral
oxygen (reference 15), 'S state (P=O), all with exchange. For
maximum errors, see Table VI.

State AO

1D C(1s)

C (2s)

C(2P)

~P N(1s)

N(2s)

N(2P)

1S O(1s)

O(2s)

o(2P)

k= 1 2

aI 4.9840 7.0411
A rc 14.881 12.811
alp 3.9471 ~ ~ ~

AIC 5.9095 ~ ~ ~

ay 6.2736 10.920
A g 28.744 6.8632
aI 4.1749
AI 7.8400

ap 7.2052 12.523
Ay 35.267 8.6933
aa 5 9096

9.8450

bk 1.4784
Blr, 2.5829
bI 1..0789
BIO 0.87935

2.8493 7.7990
5.2230 4.5676
2.1444 5.92 16
3.3336 2.1226

4 1.7123 3.4424
Bg 3.5 175 11.832
by 1.2210 2.4466
BIr, 1.0755 5,2350

8.8037
8.4171
5.6236
3.4611

bI 1.9764 3.6744 13.931
BR 4.9049 11.246 5.5364
be 1.3632 2.7487 5.9169
BIr, 1.3284 7.3218 6.0887

In the theory of molecules, some first row atoms are
of particular importance, and we have therefore tried
to obtain analytic SCF-functions for neutral carbon-
('D-state), neutral nitrogen ('P-state), and neutral
oxygen ('S-state), all given numerically with exchange
by different authors. " The results are condensed in
Table V, and the maximum errors are given in Table VI.
We note that all the functions in Tables III and V are
of orthodox Slater-type, ' having only their highest-
power exponential developed in a sum. The accuracy is
essentially higher than in Slater's original functions, but
this improvement is gained by adding at least one more
exponential, which will again increase the work in the
applications.

As was already pointed out by Slater, ' all these
expansions are not uniquely determined at all, and the
exponents and the coefFicients may vary over consider-
able ranges. A drastic example of this phenomenon is
obtained by comparing our 2p-function for carbon ('D)

r-interval F 1s

0.00

0.08

0.3

0.6

1.2

3.0

6.0

10.0

F 2e

0.0

0.2

—10

4 &1.

0.4

1,0

2.0

0 &1

' F 2p r-interval Na+1. Na+2e Na+2„
in Table V with the 2p-function in Table VII given
previously by Mulliken and others;" it is impossible to
see directly. that these functions with essentially different
parameters approximate the same numerical function,
but this is actually the case. The respective errors may
be found in Table VI, and a closer investigation shows
that the two error functions have opposite signs almost
everywhere. In general, the order of magnitude and the
sign of the errors will determine how much the different
parameters in the functions (1) may vary.

The different states of a specific electronic con6gura-
tion of an atom (or ion) may be characterized by
Slater's" parameter P, and Hartree and others" have
found by experience that the corresponding radial

"D.R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).
14 V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368

(1934). The slightly improved tables for Na+ given by D. R.
Hartree and W. Hartree, Proc. Roy. Soc. (London) A193, 299
(1948), were not available in Uppsala at the time of these first
calculations.

"C: A. Jucys, Proc. Roy. Soc. (London) A173, 59 (1939).
N: D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).0:Hartree, Hartree, and Swirles, Trans. Roy.
Soc. (London) A238, 229 (1939).

"Mulliken, Rieke, OrloR', and Orloff, J. Chem. Phys. 17, 1248
(1949); the function in their Eq. (76) is transformed to our form
(1)."J.C. Slater, Phys. Rev. 34, 1293 (1929).



ATOM I C SELF —,CONS I STE NT F I EL D S

TABLE VI, Maximum errors of the analytic SCF-functions for C,
N, and 0 given in Tables V and VII, in units of 10 '.

r- 1g
inter-

val C1e C2e C2@

Mulli-
ken r-

inter-
C2p val

2P
A

Nle N2e

1S
A

N2@ Ole O2e

3P

02„02'
0.0

0.2

0.8

6 4

+3 8

3 —4

0.0
3 —3

0.04
+3 12

0 12 —18 —2

8 —2

0 0

1 10 1 3 ~1
0.2

~4 2 2 ~4 —123 ~8
2.4

4.0

8.0

0.5
0 —4

1.2
4' —2 2

4.0—2 2
7.0

&3 &2 &6 &3 —6

—1 ~6 ~3 —1 —9 %2 &6

1 '

2 —3 ~2
—1 0

coefficients; the absolute values were then determined
by the normality and orthogonality conditions.

The interpolation problem can, of course, be treated
rigorously by investigating the efI'ect of variations of
the atomic number Z in the basic Hartree-Fock equa-
tions, " but, with the present mathematical methods,
the error margins seem to be too large to render really
useful results. For the moment, it seems therefore to be
better to work intuitively by using the hypothesis that
the SCF-functions are closely analogous to the hydro-
gen-like functions, but that they just have more general
exponents replacing the atomic number Z. The interpo-
lation rule for the exponents seems very plausible from
this point of view, "but, in order to obtain full accuracy
also in the interpolated functions, we must modify the
interpolation rule for the coefIl.cients.

"Compare also D. R. Hartree and W. Hartree, Proc. Roy. Soc.
(London) A166, 450 (1938), and reference 3.' Compare also the exponents in the analytic wave functions
for Be-like atoms and ions, calculated directly from the variational
principle by V. Foct and M. Petrashen, Physik. Z. Sowjetunion 8,
359 (1935), Table IV.

functions f„&(r) vary almost linearly in this parameter.
In order to investigate whether this simple linearity in

P could be transferred, e.g. , to the coefficients in the
analytic SCF-functions, we have treated neutral oxygen
in two of its states, namely the 'S-state (P=O) and the
'P-state (P = —0.6). As may be seen from a comparison
between Tables V and VII, the preliminary result was
negative, and the problem is therefore still under
investigation.

II. INTERPOLATION OF SLATER-FUNCTIONS

The purpose of the original Slater-functions' was not
only to describe numerically given SCF-functions
analytically, but even to permit interpolations to atoms
for which these self-consistent fields had not yet been
prepared. This interpolation was based on the rule that
the exponents should vary linearly for similar electron
configurations and diferent atomic numbers. The
coeKcients in the last group were interpolated by
means of an auxiliary "intermediate" exponent, also
varying linearly, which gave the ratio between the

TABLE VII. Exponents and coe%cients in an analytic 2p-
function of the form (1) for the 'P-state of neutral oxygen (refer-
ence 15), and in Mulliken's (reference 16) 2p-function for the
'D-state of neutral carbon (reference 15).

State

3P

Ao

O(2P)

ID C(2p)
Mulliken:

1.4107
1.4384
0.898
0.2727

2.8500
8.3557
1.416
1.427

6.5935
4.7562
2.694
3.576

and, according to our analogy rule, the last relation
indicates that, also for the SCF-functions, the quantity

(6)

will vary linearly with Z. We have tested this rule on
some numerical SCF-functions calculated by Hartree
and others, ' and the results in Table IX show that the
"linearity rule" holds with excellent accuracy. Similar
quantities E&„E», K3„~ ~ may be constructed also
for the 2s-, 2p-, 3s-, functions, and a closer investi-
gation shows that they are approximately linear in Z,
too. Complete results also for the higher functions will
be given in a later paper in this series. We note that all
these quantities are important in the calculations of
self-consistent fields with exchange, since they char-

TABLE VIII. Analytic SCF-functions of the form (1) for Li+(1s)
and for C+4(is); the maximum error is below 1.0&(10 '.

AO

Li+(1s)

C+'(1s)

2.4346
6.6641
5.4523

23.919

4.4250
2.5618
9.5935
4.0324

~ V. Pock and M. Petrashen, Physik. Z. Sowjetunion S, 547
(1935).

Let us consider the simplest SCF-functions, namely
the 1s-functions of the He-like ions, which we will
express in the following form:

fr, (r) =A~r exp( atr—)+A sr exp( —a.,r). (4a)

The numerical functions for I.i+(Z=3) and C+4(Z=6)
are given by Fock and Petrashen" and by Jucys, "
respectively, and the corresponding values of our
parameters in (4a) are condensed in Table VIII; the
maximum errors are in both cases below 1.0)(10 .'. By
using these data, we will then try to make interpolations
and extrapolations in the series of the He-like ions.

The exponents u& and a2 are easily determined as
linear functions of Z from the fixed values for Z=3 and
Z=6. For the coeKcients Ai and A2, the normalization
condition for ft, gives one relation, but, in order to
carry out the interpolation, we need one" more equation
for them. However, we note that, for a pure hydrogen-
like 1s-function, we would have the relations

f&,(r)=2Z'*r exp( —Zr), Lft, (r)/2rj, s'*=Z, (5)
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TAnxz IX. The auxiliary quantity 1C&,= (f&,(r)/2r), 0'~' for some
is-functions belonging to self-consistent fields with exchange. 3

11
14

Atom

C
N
0
Na+
Si+4

5.760
6.757
7.751

10.73
13.73

Z

17
18
19
20

Atom

Cl
ArI+
Ca~

16.70
17.69
18.70
19.69

TABLE X. Interpolated and extrapolated SCF-functions of the
form (1) for some He-hke ions, obtained by using the linearity
of the quantity E&,. The star indicates the given quantities,
taken from Table VIII.

Z Atom

1 H
2 He
3 Ll
4 Be~
5 @+3
6 C+4'

7 N+'
8 Q+'
Difference:

Kts

0.7505
1.7608
2.7711*
3.7814
4.7917
5.8021*
6.8124
7.8227
1.0103

0.4228
1.4287
2.4346*
3.4405
4.4464
5.4523*
6.4582
7.4641
1.0059

0.9794
2.7022
4.4250*
6.1478
7.8706
9.5935*

11.316
13.039
1.7228

0.30025
2.7626
6.6641*

11.601
17.387
23.919*
31.101
38.897

1.0001
1.9104
2.5618*
3.1057
3.5909
4.0324*
4.4604
4.8621

acterize the behavior of the normalized wave functions
in the neighborhood of the point r=0.

If the Ei,-rule is applied also to the He-series, we get
a second relation for the coefficients A~ and A~, which
then may be determined. The results of the interpo-
lation are condensed in Table X, and it may be of some
interest to test its accuracy. The Is-function for Be+' is
numerically given by Hartree and Hartree, " and a
comparison shows that our analytic functions repro-
duces the numerical table with full accuracy. We may
suppose that the same will be true also for B+'. In the
extrapolations, the accuracy can certainly not be so
high, but we note that our analytic function will give
the same charge distribution for He as was once
numerically given by Hartree. " Even for H our
analytic function is comparatively good, since it gives a
much better fit to Hylleraas's charge distribution than
the best hydrogen-like wave function.

The calculations involved in the application of the
E&;rule are somewhat clumsy, and we have therefore

tried to derive a simpler interpolation rule for the

coeKcients, which could be generalized also to functions

containing more exponentials. Using the analogy princi-

ple, we will make the assumption that each coe%cient

AI, as a function of Z has the form

Ag(Z)=xp(ap(Z)i"", (7)

where the parameters xt- and p~ are independent of Z.
This means that loglpAp is a linear function of log~puj,

logtsAI, (Z) = logrsxI, +pt. logtsas(Z), (8)

TABLE XI. Coef5cients in interpolated and extrapolated SCF-
functions for some He-like ions. The exponents are the same as
in Table X, but, this time, the coeKcients are obtained by using
the simple rule (8). The star * indicates given quantities, taken
from Table VIII.

Atom

Unnormalized
coefficients

A1 A2

Normalized
coeKcients

At A2

H
He
Li+
Q e+2
8+3
C+4
N+6
Q+6

0.41560
2.8631
6.6641*

11.529
17.312
23.919*
31.281
39.349
1.6265

p= 1.5850

1.0585
1.9269
2.5618*
3.1064
3.5905
4.0324*
4.4422
4.8271
1.0713
0.5862

0.3385
2 7772
6.6641

11.593
17.382
23.919
31.117
38;930

0.8622
1.8691
2.5618
3.1236
3.6049
4.0324
4.4189
4.7759

and the coefficients AI, are therefore easily determined,
e.g. , by using divided diBerences. However, these
preliminary values of the coefficients A& are usually not
representing a function which is fully normalized, and,
in the last step of the interpolation, they should
therefore be given revised values by using the normal-
ization condition.

The results of the application of the rule (8) to the
He-series are given in Table XI, and we note that, for
the interpolated ions Be+' and 8+', the coe%cients are
practically the same as in Table X.

The interpolation rule (8) may be directly generalized
also to the other groups of coefficients (8, C, .). As
another example, let us consider the 2p-functions of
some Ne-like ions. The functions for Na+(Z=11) and
Si+4(Z=14) are numerically given by Hartree and
others, " and our parameters for the corresponding
analytic functions (1) are listed in Table XII and the
maximum error (0.002) in Table XIII. From these
6xed data, the interpolations for Mg+'(Z=12) and
Al+'(Z=13) were carried out by using the simple rule

(8) and the normalization condition. Our analytic
2p-function for Mg+' may be checked against the
SCF-function given numerically by Yost, '4 which is
almost fully reproduced with an error below 0.0016;
it is somewhat surprising that the e'rror in the interpo-
lated function is even lower than in one of the fixed

functions (Na+), see Table XIII.
The net result of our investigation seems to be that

it is possible to interpolate analytic SCF-functions with

about the same accuracy as in the fixed functions by
using Slater's rule for the exponents and the simple
rule (8) and the normalization condition for the coefft-

cients. The results already obtained are somewhat

encouraging, and further work on this problem is now

in progress.

2'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).

~ D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928).

+ Na+: D. R.Hartree and W. Hartree, Proc. Roy. Soc. (London)
AI93, 299 (1948). Si+4: Hartree, Hartree, and Manning, Phys.
Rev. 60, 857 (1941).

'4 W. J. Yost, Phys. Rev. SS, 557 (1940).
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TABLE XII. Analytic SCF-functions for Na+(2P) and Si+4(2P) with exchange calculated from the numerical tables (reference 23),
and interpolated functions for Mg~(2p) and Al+'(2p) with the coefFicients determined by the simple rule (8). For maximum errors,
see Table XIII.

Atom
Unnormalized coeKcients

+1 B2 Bs
Normalized coeKcients

B2 , B3

11
12
13
14
Diff.

Na+
Mg~
Al+'
Si+4

2.1880
2.7226
3.2572
3.7918
0,5346

3.7288
4.4808
5;2327
5.9847
0.7520

6.8864
7.9907
9.0950

10.1993
1.1043

6.9728
11.952

~= 0.34400
p= 30046

22.590
30,781

1.1348
1.9943

21.156
23.524

3.8533
0.81944

3.6164
7.0360

12.043
18.870

15.660 18.729
22.795 21.348
31.016 23.704
40.231 25.840

CONCLUSIONS

In the theory of molecules and crystals, which is
based on the use of atomic orbitals in one or other form,
the SCF-functions take a selected and most important
place, since they represent the best one-electron AO
which are available. The problem of calculating analytic
SCF-functions has become particularly important
during the last few years, since most of the extensive
molecular tables under preparation in Chicago under
Mulliken, in Oxford under Coulson, and in Tokyo under
Kotani, are based on the use of single exponential
functions. "In order to make all these tables applicable
even to the best atomic orbitals, it would be desirable
to have the exponents and the coefFicients in 'the
analytic functions (1) calculated for all self-consistent-
6elds which are numerically available, and to carry out
interpolations to atoms which have not yet been
treated by the Hartree-Fock technique. " In addition
to the best 6ts, it would also be of interest to have
fairly accurate analytic SCF-functions containing as
few exponentials as possible.

By the generalized. Slater method described in this
paper, it is possible to calculate analytic SCF-functions
from the numerically given tables with any desired
accuracy, but, even if the technique is simple, the
computations are still time-consuming and rather
tedious. It is felt that, if the periodic sy' stem should be
investigated on a large-scale basis in order to obtain
analytic SCF-functions having errors of the order of
magnitude (0.001—0.002) examplified in Tables II,
VIII, and XIII, then it would be worthwhile to re-
examine the basic method for further improvements,
if possible. %ork on this program is now in progress,
and the results will be reported in a later paper in this
series.

"Molecular tables for particular atoms may also be prepared
directly from the numerically given SCF-functions; see, e.g. ,
reference 11, Method I.

~'It seems probable that the interpolated analytic functions
would give ver& good initial functions for self-consistent-6eld
calculations.

TABLE XIII. Maximum errors of the analytic SCF-functions
given in Table XII in units of 10 3; note that Mg~ is interpolated
between Na+ and Si+'.

r-interva1 Na+sp Si+42p

0.04

0.20

0.50

1.2

4.0

6.0

—0.6

2.0

—2.1

2.1

2 0 1

—0.6

—0.7

1.6

%0.4

—0.9

0.7
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