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index; all time components vanish in the rest frame.
Substitution of Eq. (79) into Eq. (58') gives

S.r—f.T+rf.,„„Z.,Z„. & 0, (81)

where —,q,„„Z,Z„„is the Rayleigh dissipation rate for an
anisotropic medium. In the case of a transport process
consisting only of heat conduction this viscous dissi-
pation must vanish, since as we have seen, the entire
dissipation in this case is —5 B,T & 0. Accordingly, in

this case Z„, must vanish, and P„=P.,". everywhere.
Because of the symmetry of the stress and rate-of-
strain tensors in Eqs. (79) and (81), only 21 independent
viscosity coe%cients exist in the general anisotropic
case. In the isotropic case, in which the excess stress and
the rate-of-strain tensors can be diagonalized simul-
taneously, the number is reduced to 2, according to the
usual arguments; here p„"=—pL„where p is the
hydrostatic pressure.

PH YSI CAL REVIEW VOLUM E 90, NUMBER 6 JUNE 15, 1953

The Tamm-Dancoff Formalism and the Symmetric Pseudoscalar Theory
of Nuclear Forces

AsRAHAM Kxzrw*
Harvard Vrliversity, Cambridge, Massachusetts

(Received February 11, 1953)

The general method of deducing the Tamm-Dancoff equal-
times formalism, as generalized by Levy, from the relativistic
two-body equation of Bethe-Salpeter and Schwinger is given.
Only processes which are finite ab initio are considered. The es-
sence of the procedure is the relation between a set of conven-
tional matrix elements of the Tamm-Dancoff formalism and the
Feynman diagram which summarizes them; this relationship
provides a convenient guide for enumerating all matrix elements
of a specified type and precludes the possibility of omission of any
members of the set. Rules are also given for writing down any
matrix element. The method is then applied to the derivation
of the fourth-, sixth-, and eighth-order adiabatic potentials on the
symmetrical pseudoscalar-pseudoscalar theory. Some discrep-
ancies with the results of Levy are noted: In connection with the

fourth-order potential these are first, that a more careful treat-
ment of the energy denominators of the leading two-pair terms
brings to light contributions that cancel with all other two-pair
matrix elements that are of relative order p/3II compared to the
leading ones; second, that the one-pair terms do not vanish but
yield a repulsive interaction which substantially alters the quali-
tative picture of the fourth-order potential; third, that for the
no-pair terms the result should agree with the previously calcu-
lated fourth-order potential for the pseudoscalar-pseudovector
theory. The sixth- and eighth-order results are also in disagree-
ment with Levy. Finally, an analysis of the problem of many-
particle forces is given and explicit results obtained for the leading
terms of the three- and four-particle forces as well as for certain
smaller contributions to the three-particle interaction.

I. INTRODUCTION
' 'N a pair of extremely interesting papers recently
~- published Levy' has derived a three-dimensional
equation for the relative motion of two particles with
an interaction kernel that, in principle, can be com-
puted to any order in the coupling constant; he has
used his formalism, for the most thorough examination
of the nuclear forces predicted by weak coupling theory
so far attempted and from the results has give a plau-
sible account of the low energy properties of the
deuteron.

Levy's approach is a hybrid one. It consists, 6rst of
all, in an extension of the Pock space method of Tamm'
and Banco'' to include higher order processes involving
multiple meson exchange and pair creation, with the
proviso, however, that all infinite matrix elements
associated with "radiative" corrections be omitted. It
is then possible to eliminate all amplitudes except that
for the two bound nucleons and to obtain an equation

*Junior Fellow, Society of Fellows.
' M. M. Levy, Phys. Rev. 88, 72, 725 (1952);hereafter referred

to as L1 and L2, respectively.'I. Tamm, J. Phys. U.S.S.R. 9, 449 (1945).
3 S. M. Dancoff, Phys. Rev. 78, 382 (1950).

for the latter, which is interpreted as the wave function
of the two-particle system in momentum space. To in-
corporate radiative corrections Levy turns to the rela-
tivistic two-body equation' ' (henceforth called R.E.).
He shows that by an appropriate iteration suggested
by the solution for an instantaneous interaction the
6nite terms of the R.K. can be placed in a one-to-one
correspondence with those of the T.D. (Tamm-Dan-
coff) formalism. It is then possible to carry out all
required renormahzations before the reduction to equal
times for the two particles is eGected, and the hnite
residues can be incorporated into the three-dimensional
interaction kernel.

The present work, begun after the author's reading
of Li, was motivated by the belief that the demonstra-
tion given there of the equivalence between the T.D.
formalism and the appropriately reduced R.K., though
undoubtedly concerned with a true result, lacked co-
gency in certain details and completeness. It was felt,
moreover, that since the R.E. was required for the

4 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951).
~ E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951), re-

ferred to as S.B.' M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
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FIG. i. Feynman diagrams for the interactions representing
exchange of one or two quanta.

proper treatment of radiative corrections, it seemed
reasonable, for the applications contemplated, to rest
entirely within its frame work for the derivation of all
results.

This paper is therefore concerned with a re-examina-
tion of some of the methods and results of L1 and L2.
We shall confine ourselves completely to the parts of
the theory that are 6nite ab initio, since we have noth-
ing to add to Levy's general prescription for treating
renormalizations. In Sec. II we define the problem and
indicate an apparent difficulty in generating an eqla-
tion for equal times for the two particles using the form
of unequal times wave function suggested by the solu-
tion for a static potential. There is no obstacle, how-

ever, to the derivation of such an equation for the
projection of the wave function on the positive energy
free-particle subspace. As in Li and L2 it is this latter
quantity that we shall designate as the wave function
of the system.

Section III is devoted to a derivation of the complete
interaction kernel up to the fourth order in the coupling
constant. The main result of this section is the connec-
tion between a single covariant interaction term of a
given order (as expressed by an appropriate four-
dimensional integral and represented by a single Feyn-
man diagram) and the number and kinds of more
conventional matrix elements to which this "reduces"
in the equal-times formalism. In fact, once this rela-
tionship is seen and expressed in complete generality,
the equivalence of the result with the T.D. formalism
becomes obvious. This relationship is undoubtedly
understood by many physicists. From our present
point of view, however, it becomes an extremely useful
way of classifying matrix elements and of making
symmetry relationships clear.

The remainder of the paper is concerned with the
application of the formalism to the derivation of static
nuclear potentials. In Sec. IV, we compute the leading
contributions of the fourth-order adiabatic potential
for the symmetric pseudoscalar theory. Our results are
in disagreement with those of L2 for the two-pair, one-
pair, and no-pair terms. ~ In Sec. V we outline, using
our classification procedure, the derivation of the lead-
ing terms in the sixth- and eighth-order potentials.
Again the results di6er in detail from those of L2. The

' See reference 1, L2, Sec. III.

calculation of many-body forces is undertaken in Sec.
VI. Explicit expressions are given for the most im-
portant terms of the three- and four-particle forces as
well as contributions of one order of magnitude smaller
to the three-body force. Appendix A contains a pro-
cedure for a concise derivation of the three-dimensional
formalism from the R.E. and Appendix 3 points out
that the theory contains spin-orbit forces.

The paper concludes in Sec. VII with a qualitative
discussion of the status and significance of the Levy
theory. No numerical results are given, however.

II. DEFINITION AND PRELIMINARY
DISCUSSION OF THE PROBLEM

In this and in the following section we shall be dealing
exclusively with some form of the equation

h(2&+I)+~]"'b (2&—P)+~]"'4 (P.)
=fd4p'I(p, p', &)4 (p'). (1)

Before defining more closely the contents of Eq. (1)
let us settle once and for all the matter of notation.
In so far as it is possible, we shall follow the notation
of S.B. and of S.' The Dirac matrices y„are, however,
the skew-symmetric ones delned by Schwinger, ' and
the reader should especially bear in mind that we shall
use a ys matrix whose square is minus one. However,
when we pass to the 42, p matrices, we shall employ the
standard Dirac representation. For the necessary pur-
poses of comparison, the notation of L1, 2 will also
enter, especially from Sec. IV forward.

Thus, Eq. (1) is the two-body R.E. in momentum
space for particles of equal mass M, total four-mo-
mentum E, and relative'four-momentum p. For the
kernel I we confine ourselves to the assumption that

I(p, p'; &)= (2~2) '~(72r') "'(»r') "'L(p—p')~'

+~2]—1+ (2~2)
—2g2J'd4$[p 2+~2]—1[(p p( p) 2

+142] '[»r,4"(-,'E+p'+k)y22-;] "&

&&[»~~&(2&—p+&)vsr']"', (2)

representing the two Feynman diagrams shown in
Fig. 1 for the symmetrical pseudoscalar theory with
pseudoscalar coupling;" here

X=g2(22r)-2, G(p) = (pp+M) '. (3)—
We shaD not include in our discussion the terms of
order )' which are radiative corrections to the X-term.
Our problem is then as follows: We wish to derive from
Eqs. (1) and (2) an equation for the three-dimensional
function p(p) defined by

4 (p) = 4(p.)~po

8 E. Salpeter, Phys. Rev. 87, 328 (1952), referred to as S.' J. Schwinger, Phys. Rev. 82, 664 (1951)."In order to derive Kq. (2) and all other terms involving radia-
tive corrections that have been omitted, we actually employed the
technique of reference 4. See also R. Karplus and A. Klein, Phys.
Rev. 87, 848 (1952).
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This is, in general, not possible, since we do not know
the dependence of P(p„) on the relative energy variable
po Both S. and L1 have shown, however, that if one
restricts oneself to the ladder approximation and as-
sumes a static potential

[Q 2 p 2+~27 I~P 2+~27—i (5)

then Eq. (1) yields a three-dimensional equation with-
out further approximation [see S., Eq. (13) and sequel7.
In terms of the solution @,(p) of this equation, f(P„)
has the form"

with

X, @.(p-k)
J ($2+~s)

= —[2~i8~(p, Po) 7 '[~—&i(p)

-Hs(p)7y. (p) (6)
I

Sir(p Ps)=~ir"'(P Po)~w"'( P Po)
= [sII'+Ps —&i(p)7[sly' —Po—&s(p) 7 (7)

and

I' &"&= (ysysr ) &"~=—(Pysr~) &"', (r=1, 2; i =1, 2) 3). (8)

Equation (6) de/ries the function y(p), which is then
related in this approximation to p(p) by the equation"

4 (p) = P+"'(p)~ "'(p) —~-"'(p)~-"'(p))x(p) (9)

Up to this point everything in Eq. (6) is well defined,
and it can, in fact, be used as the basis of a perturbation
theory treatment of a "small" noninstantaneous inter-
action. '" This is not our purpose, however; we are
interested in deriving an improved equatiori for p(p).
Toward this end it is reasonable to adopt the second
form of Eq. (6) as an ansats, the physical content of
which is the statement that the particles having pro-
pagated up to certain common time in a bound state,
the propagation of one or the other of the particles
"further" in time is according to free-particle behavior.
[See Eq. (28) of S.B. for a nonrelativistic example. ]
We therefore insert Eq. (6) into the right-hand side
(r.h.s.) of the ladder approximation

6~(p Ps)4 (P.)
p d4k

= (2s-i) 9,1",&"I', &'& P(P„—0„). (10)
J $2+ps

"Note that we are now working in the frame of reference de-
fined by E„=(0,0, 0, S'); we have also used the relationship
PG '(p) = —F(p) so that we are working with the usual O.', P
matrices of Dirac. Note also that quantities referring to particle
2 such as H2(y), h+&'&(pl are functions of —p, though this de-
pendence on —p is indicated explicitly for F~(2) (—p, —p0).

'~ A nice logical point overlooked by S. is that having defined
x(p), say by Eq. (6), one can deduce therefrom by Eq. (9) the
equation obeyed by the adiabatic p(p), but because of the singu-
larity of the operator involved -in Eq. (9), one cannot proceed in
the reverse direction.

If we first carry out the integration over kp (with the
usual hole theory definition of the poles), we obtain
first of all an improved form for P(p„) which is a gen-
eralized version of L1, Eq. (35). We shall not record it
here since we shall eventually 6nd useful only a some-
what more limited version of the equation. Now, how-
ever, if we divide by Qs (p, ps) and carry out the p,
integral, we obtain an equation which is precisely
equivalent" to L1, Eq. (41), if, and only if, we es-
tablish the following correspondence between free-
particle energy projections:

y++=x++, @ =-x, V+ =x+-, qb+=x-+ (11)

The 6rst original comment of this section is that Kq.
(11) is a Priori an incorrect identification. Though the
plus-plus and minus-minus equalities are unobjection-
able, since they follow from Eq. (6), the plus-minus and
minus-plus equalities cannot be true, since in the
adiabatic limit it+ ——p +——0, whereas x+ and y ~ are
6nite well-de6ned functions. '4 The point is that the
functions p+ and x + are just not de6ned by anything
which has been said or done up to this juncture. The
resolution of the dilemma will be given below. As the
final observation of this section we merely note that if
one arbitrarily drops all terms of L1, Eq. (41) (or the
equivalent equation which we have derived without
writing down), which involve x+ and y ~, and if one
eliminates p in favor of @++ as described in L1, one
obtains to order X' the equation

(~'—2~.)4++(P) =~+"'(P)~+"'(P)J'~p'[&~s(p, P')

+) '~ (», p')7d++(p'), (»)
where As(p, p') recorded as Eq. (13) in the next section,
is the kernel equivalent to that of L1, Eq. (36), and
64(p, p') is that equivalent to L2, Eq. (44). The latter,
as we shall see in the next section is a small part of the
entire fourth-order kernel or even of the pair e6'ects to
this order.

III. DERIVATION OF THE INTERACTION
KERNEL TO FOURTH ORDER

The solution of the difficulty raised at the end of the
previous section can be obtained by combining an ob-
servation with a more diligent job of computation. The
observation is that our goal is precisely an equation of
the form Eq. (12), whereby 64(p, p') we shall under-
stand the complete T.D. interaction in fourth order.
In other words, we interpret it++(p) as the bound state
wave function in momentum space."As we shall see

"Levy has already taken spin-matrix elements, whereas we
prefer to leave our expressions in operator form until a later stage
of the calculation.

"There appears. to be an awareness of this difficulty in L2.
There, the proper use of Eq. (52) can lead to no errors in the re-
sults sought, though formally it contains the incorrect statements
that P+ (p„)=P +(p„)=0 in the adiabatic case, whereas only
their integrals with respect to p0 have this property.

'~ See reference i, L2, Sec. II, for a fuller and more precise state-
ment of this connection.
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P"'(P.) = [2~2F~"'(P P0)J"~"'(—P —Po)] 'h

P,.o)I,.(2)

X d4k 4++"'(p. 4)—(16)
k2+ ~2

tained by, dropping the second term on the r.h.s. of
Eq. (14), writing f++"&(p„k„—) for P(p„—k„) in the
first term on the r.h.s. and solving for P(p„); thus, "

FIG. 2. Diagrams representing three typical conventional matrix
elements of the twenty-four such contained in Fig. 1(b). The
labeling of (a) accords with the variables used in Eq. (17).

shortly, an equation for this function can be obtained
without having to be concerned directly about equa-
tions for @++, p +, and @ . Before showing this, we
record the form for 62(p, p'),

2p,.o)p,.(~)

~2(y, P') = (13)
»(p —p') [ll' —&n—&n —~(p—p')]

We have explicitly adjoined the factor of two to the
quantity 40(p —p') in the denominator to show their
joint origin in the Fourier analysis of the meson Geld
and to point to the fact that Eq. (13) is the sum of the
two possible matrix elements of the conventional type
that can be associated with the exchange of a single
field quantum. Since our task will later deteriorate into
the mere enumeration of such matrix elements, it is well
to establish good counting habits from the very be-
ginning.

Now it is clear that if we are to derive the complete
64(p, y'), we must include both terms of Eq. (2) in
Eq. (1). As a starting point we rewrite Eq. (1) as [see
Eq. (7) and reference 11]
Fs'"'(P P0)Fs'"'( P P0)4'(Pl )

p,.(&)p,.(~)

= (22rs) 9, d4k p(p„k„)—
k'+ p2

+ (22rs) 9,2 d4kd4p'
(k'+~') L(P—P' —k)'+~']

X[F,P -'(p'+k, po+ko)r, ]&'&

x[F,F~—
(—p+k, —p0+ k,)r;]islet (p„'). (14)

In the explicit X' term we can certainly approximate
4 (P') by [see Eq (6)]

4 (P.)=4++"'(P.)
5' ++(P, Po)] '%—2&.]4+ (P)

= —(22r2) '[(-'W+p0 E) '—
+ (k~ P0 &.) '34++—(p),—(15)

an explicit form that permits us to start grinding out
the integrations with respect to p0', k0, and p0 suc-
cessively. In the first term on the r.h.s. of Eq. (14) we
require the next approximation for P(p„). This is ob-

If we insert Eq. (16) into the first term on the r.h. s.
of Eq. (14), take the positive energy projection of both
sides, divide through by the p0 dependent operator on
the l.h.s. and 6nally integrate with respect to p0, we
obtain the equation

(~—2& )4++(p) =A+"'(p)A "'(p)(2 2) '~'

XJ'dkd p'dP, dk, dp, '[(-,'W+ p, E„) '+ (—-,'~
p + )

—1][k2+~2]—1[(p pI k)2+~2] 1

x([F;Fs '(p —k, p0 —k0)r;]&"[F;Ps '(—p+k,
po+ko)r'] '+[FP'w '(y'+k po+ko)r'] '

X[F1 —(-p+k, —p,+k,)r, ]& lg„& &(p„). (»)
Since the second term of the curly bracket is associated
with the "crossed-quantum" diagram, Fig. 1(b), it is
clear that the erst term of the bracket, obtained by
iteration based on Eq. (16), is nothing more than the
iteration of Fig. 1(a). The dependence of the r.h.s. of
Eq. (17) on the variables p0, k0, and p0' is explicit; all
poles are well defined, and therefore the integrations
can be e6ected.

We now claim that the r.h.s. of Eq. (17) contains all
of the T.D. 64(p, p') [as well as the iteration of
62 (y, p')]. We have verified this by actually performing
the integrations over the relative energy variables and
unscrambling the results. Whether it would have been
possible to emerge from the labyrinth of algebraic
manipulation involved without knowing the answer
beforehand is a moot point. In any case, it is much
more instructive to describe the answer than to repro-
duce the manipulations, since the description leads
immediately to the generalization of the result to any
order in the coupling constant, whereas actual computa-
tion by the means described starting from an equation
like (17) becomes prohibitive for any order higher than
X'. A more concise, and in a sense more physical, pro-
cedure for deriving the results described below is given
in Appendix A.

Consider first the term in Eq. (17) corresponding to
Fig. 1(b). It must contain all the matrix elements of
fourth-order perturbation theory which describe the
exchange of two mesons in the manner indicated, start-
ing from a bound state of positive energy, ending with
such a state, and proceeding via free-particle inter-

"Equation (16) is the immediate generalization, in our nota-
tion, of Eq. (35) of L1, though we have not given the explicit
result of the integration with respect to ko, for reasons of presenta-
tion that will become clear below. Note that although P(') con-
tains only a plus-plus part, P&') contains both positive and nega-
tive free-particle energies.
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mediate states of both positive and negative energy. than record all twenty-four, we show in Fig. 2 diagrams
There are 24 such matrix elements corresponding to the of the type used by Levy representing three typical
4. time orderings of the interaction points of the figure. matrix elements. They yield, in our notation, the fol-
In the terminologyof L1, 2 there are sixtwo-pair terms, . lowing contributions to 64(p, p) [in the context of
twelve one-pair terms, and six no-pair terms. Rather Eq. (12)j:

LFW(p'+k)F;1&"P;~.(p-k)F j"'
h4& &(p, p')=, dk (18)

4(o&co~, &, (W E„—E~—&, (o&,) (—W &~&,—&p ~&,
—~&, ~~r k) (W -~u ~n+& 4»)

(p ) j L (p ).3
4~&4&y y &( —~y—' +—y'+& —&&) ( W Ep +& +~& —~& ~~»' &) ( +-y +u &&&)—

(2o)

(F~(p'+k)F;) "&LF,A (p —k)F,j&"
~4"'(p, p') = — ' dk (19)

4'&M~; &, (W E„&—~&, —o)&) (W—&„—&„—&~&,—&p+&—) ( &y —~r +& &su' &)-—
nd

Fp ' kF o&Fm —kF &'&

The rules for writing down Eqs. (18)—(20) are almost
self-evident from the diagrams: The factors associated
with the vertices, sums over intermediate spin states,
and Fourier analysis of meson field are indeed so; there
is a minus sign for an odd number of pairs, if all factors
of the energy denominators are written as 8"—E&,
where EI is the energy of the intermediate state. The
apparently curious form of some of the energy de-
nominators is explained, if we remark that whenever
an intermediate state contains two nucleons in the
initial or in the final state, their energy'~ is S' and not
2E„or 2E„. Using these rules one can record all the
contributions from Fig. 1(b) as they are actually pro-
vided by fairly elaborate calculation.

Turning to the contribution from the "ladder" dia-
gram, the iteration of Fig. 1(a), there are again twenty-
four physically distinct matrix elements which can be
systematically enumerated. Here, however, a new but
anticipated factor enters. Whereas in the previous case,
no matrix element contained intermediate states in
which only two nucleons are present, here one en-
counters four such elements, one of which is illustrated
in Fig. 3, and with the remaining three obvious variants
thereof. In terms of the present formalism, these are
"reducible" diagrams, since one obtains their apparent
contribution to 64 by iterating Eq. (12) in which 0 2 is
given by Eq. (13). Clearly the correct procedure is to
"uniterate" these terms. In this way we have derived
the kernel ) 52+X'A4, the latter consisting of forty-four
matrix elements of the conventional type.

Before proceeding, perhaps an additional word is in
order justifying the process of "uniteration" beyond the
purely formal reason that it leads to a known result. It
should be noted that the energy denominator associ-'
ated with an intermediate state in which only two
nucleons are present can become small of the order of
the binding energy in the nonrelativistic limit. On the
other hand, the energy denominators of intermediate
states in which there are mesons are no smaller than the

"This rule is clearly contained in the formalism. It is relevant
only when pair production is considered.

FIG. 3. Diagram representing
one of four "reducible" matrix
elements in fourth order. Others
are t4)$3)$&)/2p $3)~4)~$)~lp ~3)t4)t»t2. All yield precisely the
same matrix elements.

t4~tb~ta&tl

2

order of p,c' and those containing pairs of the order of
Mc~ in the nonrelativistic limit. Other things being
equal (as is rot the case in the pseudoscalar theory
because of the properties of the y~ matrix), the iterated
second-order terms wouM apparently give the largest
contribution to. the fourth-order potential, a result that
would vary inversely with the binding energy. If one
dropped all terms of the interaction kernel other than
these, one would notice that one solution of the result-
ing equation could be obtained by "uniterating. " This
argument is equivalent to that already presented.

At this point, the formal generalization of our pro-
cedure to any order can be made. Suppose we were
interested in the complete T.D. kernel correct through
order 2e. We could then easily write a generalized
version of Eq. (17), which on the r.h.s. would contain
n meson propagation functions and in the bracket the
factors characteristic of the n~ Feynman diagrams
(many of them reducible in the sense of S.B.) associated
with the exchange of e field quanta and no radiative
corrections. If we carried out the integration over all
the relative energy variables, we should obtain (2e)!
Xn'. matrix elements of the conventional type, many
of them reducible in the sense defined above. These can
all be recognized as arising from anywhere from 1 to
e—1 iterations of a lower order equation according to
the degree of reducibility of the matrix element. The
latter is defined as the number of intermediate states
with only two nucleons present.

In practice, we shall merely write down any set of
matrix elements that may be of interest directly from

the diagrams that. represent them. This technique to-
gether with the underlying rules will be extensively
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used throughout the remainder of this paper. We turn
6rst to a re-examination of the fourth-order potential.

Dr'. FOURTH-ORDER ADIABATIC
NUCLEAR FORCESIs

As shown in L2, the leading terms of the adiabatic
fourth-order potential are of order (in the sense of ex-
panSiOn parameter) (g2/42r)2()t4/2M)2 and (g2/42r)2(f4/

2M)'. To the former order one has strictly a static
potential. To the next order, however, one ynust

recognize the appearance of velocity-dependent forces.
One can show, however, as in part C of this section
(Levy was undoubtedly aware of this) that such terms
need not be considered in connection with the low en-

ergy properties of the two-nucleon system. Even omit-

ting these terms we are in disagreement with the re-
sults of L2, as demonstrated in parts A and B. We
preface the detailed discussion with a simplided for-
mulation of the adiabatic limit.

To dehne the adiabatic potential one takes matrix
elements of both sides of Eq. (12) with respect to posi-
tive energy free-particle Dirac spinors" and transforms
back to coordinate space. The r.h.s. of Eq. (12) then
takes the form"

V&p(r) = Jdr'[V'2(r, r')+ V4(r, r')]&p(r'), (21)

A. Two-Pair Terms

VoV5~-Vox'=~+, (28)

and the latter may be replaced by unity to the order
indicated. "The isotopic spin operator associated with
Mi elements is (e") e"))'=3—2e"' ~"' whereas that
associated with 3f2 elements is 7i{')v;{')7){')r"'=3
+2go) .g(2)

Following Luders, "we note that it is necessary to
treat the energy denominators of the leading terms,
involving at most one pair at a given time, with a little
extra care. For example, M1 contributes two denomina-
tors of the form (Fig. 1ai of L2)

( +p +p» o)1) (IV +p Ep "1 "2 o)1 o)2)

X (—Eu-&1-~2—Zu —»—~2):——(2M)'(~1+~2)

According to our method of counting there are
twelve distinct matrix elements of this type, " six hav-
ing their origin in the ladder approximation (hence-
forth called Mi matrix elements) and six in the diagram
of Fig. 1(b) (henceforth called M2 elements). A typical
spin matrix element is

(p ~

I';&')A &') (p —k)I' ")
~ p —k —k )=.,~);t &+0(( /M) ) (2r)

since

where the quantity that now interests us, V4(r, r'), is

given by the expression
O)1+

X 1+—— +
2M (e&1+o)2)

p'+ (p —ki —k2)'
+e 1 (29)

2M
V4(r, r') =)~2(22r) 'J'dpdp'e'2'e 42''"

X(p, —pl~4(p, p')
I
p', —p'), (22)

and the matrix elements are between appropriately
labelled Dirac spinors for the two particles. We further
note that 64(p, p') has the form

64(p, p') =J'dk104(p, p', ki). (23)

p'= p- ki —k2.

In the limit in .which p becomes vanishingly small Eq.
(22) reduces to

To arrive at the adiabatic limit it is convenient to
introduce the variable k2 by setting

where e is the binding energy. Equation (29) is essen-
tially an expansion in powers of (tu/M), and though
objectionable from a strict mathematical point of view,
it certainly has equal validity with the other approxi-
mations carried out in the nonrelativistic domain, for
example, the manner of evaluation of spin matrix
elements.

It is found that the elements of 351 and M2 contribute
equally to the final result (the e") ~") dependence
canceling). With a notation paralleling that of L2, we
then find

X' 3
V,&')(r, r') =- ' dpdk, dk,

(22r)2 (2M)' ~

V4(r, r')—&5(r—r') V4(r), (25) X&iP ~ {r—r') &i{k1+k2) ~ r'

~12 1 2

V4(r) =X2J'dkidk2 exp[i(kt+k2) r]
X(p, —p~04(p, ki, k2)

I

X p kl k2) p+ kl+ k2)
~
q=o (26)

4„,+o)2 [p'+ (p —ki —k2) 2]/2M+ 4

X
O) 1+O&2

(30)

' The results of this section and of the following one were re-
ported by the author in Phys. Rev. 89, 1158 (1953).

'9 As in reference 1, Li, Sec. III, 1. See also L2, Sec. II. Since we
shall be interested only in the adiabatic potential, we need not be
as elegant as in the latter reference.

MThe differences between f(xl and the function 4&&'')(xl of
L2 are immaterial for our purposes.

2' See Fig. 1 of L2 for typical diagrams.
~ It is shown in Appendix B that the terms neglected in Eq.

(27) give rise to spin-orbit coupling.
~ G. Luders, Institute for Theoretical Physics, Copenhagen,

Denmark (unpublished manuscript). However, Luders does not
include the binding energy terms in Eq. (29), which play an im-
portant role in the considerations of part C below.
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In Eq. (30) the f&rst term in the face brackets is the
t/'4~ ' of L2; the second term, which results from ex-
pansion of denominators associated with intermediate
states which contain a pair,

'

precisely cancels the V4'"
of L2; the third term is velocity dependent. The latter
type of term always results from the expansion of an
energy denominator in which there are no pairs and one
or more mesons. It will be shown quite generally in
part C that such terms need not be included in the
treatment of the low energy properties of the two-
nucleon system. We therefore assert that, except for
corrections of relative order (p/M)', the adiabatic po-
tential contributed by the two-pair terms has the form

(& &'(~ l' »
l

—-&~(2~~)
& 4n.) &2M) pr'~

(31)

B. One-Pair Terms

Of the twenty-four one-pair matrix elements twelve
are too small by a factor p/M. The remaining twelve
belong half to M1 and half to 3f2. Three of the diagrams
for MI are shown in Fig. 4. The remaining contribu-
tions to M1 result from interchange of the two particles
and those of M2 by uncrossing the meson lines. Beneath
each diagram is indicated its energy denominator in the
adiabatic limit. The first point to be emphasized is that
each set of three matrix elements yields precisely the
same set of energy denominators. The second fact to
be noted is that the spin matrix element for one particle
is unity, whereas for the other it has the typical form 24

Lpl ~-'"&(p—k&)
I p —k~—k2]

= —(2M) 'e&"& k&e~"' k2+O((p/M)'). (32)

All the spin matrix elements have this form with the
interchange of k1 and k2 the only alternative that arises.
The remainder of each matrix element is symmetrical
in the two momenta, so that this is not a significant
change. In short, we claim that the M1 and 3f2 ele-
rnents yield precisely the same contributions, except
for the isotopic spin operators and when added together
the ~&" ~(2) dependence cancels, but the remainder
adds. In all we find that

-2M(u((&u(+(u2) -RM(u( (us 2M(us((u&+(up)

(a) (b) (c)
FIG. 4. Diagrams representing three of the six one-pair

matrix elements belonging to MI.

The net result is thus a repulsive potential, which at
distances r&p, ' is appreciably more significant than
the second-order central potential. The neutral theory2~

yields a third of Eq. (33).
The fourth-order potential which we propose is the

sums of Eqs. (31) and (33). It is hoped to report sepa-
rately on the low energy properties of the two-nucleon
system predicted by this potential used in conjunction
with the well-known second-order result (and the hard-
core model of I 2). Further qualitative discussion of the
model is given in Sec. VII.

C. Velocity Dependent Forces

We turn here to the proof of the assertion made in
part A that a certain class of velocity dependent forces
need not be included in a first treatment of the low

energy properties of the two-nucleon system. The pro-
cedure to be employed is merely an adaptation to the
present case of the proof given in L1 of the well-known
result that there is a cancellation in the neutral scalar
theory between the fourth-order potential and velocity
dependent corrections to the second-order potential.
For the sake of concreteness the discussion will be
confined to the terms of actual interest, though it will
be seen that the method of attack is widely applicable.

Consider the Schrodinger equation in momentum
space with interaction terms consisting of the second-
order terms plus the leading two-pair fourth-order
terms,

( p' q t.dk e~'&. ko&'& k
I

———e l&(I&)=~„i—
M ) & o) '(2M)'

V4'(r) =—3' &i(kI+k2) r

dk, dk, 4k, k,
4M 1C02

X +
. 1 1 2 2 1 2 ~12"

6)&.' ( kdke'"'q '

(2M)'EJ ' )

g(1) .g(2)
t

dk, dk;
~(I —k)+

lV —E„—E„g—(o (2M)'" 4a»cv 2

2(3—2~ "& ~&2&)

8'—Ey —EP —&1—&2—cO1—td2

2(3+2~ "& ~'2&)

t/I/' —Ey —EP —I 1 —I;2—cv1—cO2

= 6(g'/4~)'(p/2M)'(pr') '

X [1+(pr) ']'e '&". (33)
~ The value of the 6rst term of the matrix element is obtained

without the adiabatic approximation.

Xy(p —k& —k~). (34)
2' See I.2, reference 14, where the result should be multiplied

by a factor of two. It is dificult to see how the symmetric and
neutral theory can possibly differ other than in the isotopic spin
operator dependence.
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In Eq. (34), the adiabatic limit has been selectively
taken in the fourth-order terms, namely, in the de-
nominators corresponding to intermediate states with
pairs. These denominators have been adequately treated
in part A. If we now expand the remaining type of de-
nominator about its adiabatic limit, the resulting equa-
tion can be written as

( (r(') k(r(2) k
),~(1).~(»

'

dk
M ) (2M)'

1 (p—k)2 —p2 (p —k)2
X —+—

(o' oP 2M M

3)(' r dktdks 1

(2M)' ~1~2 ~1+~2 (~1+~2)'

(p —k1- ks)' —p' (p —k, —k,)'X—

4 (p —k)

Xy(p —k,—k,). (35)

The deliberate rearrangement of the velocity-dependent
terms assumes significance, if we take the point of view
that these terms are to be treated as a small perturba-
tion to the problem defined by the static second plus
fourth order potential. First of all then, we invoke the
argument given in L1, Sec. 4.32, based on variational
principle Eq. (49) of L1, to show that the terms propor-
tional to the diR'erence of the kinetic energies of
initial and final momentum states vanish. We then
iterate the remaining velocity-dependent terms by
making use of the Schrodinger equation of the unper-
turbed problem. In this way the velocity dependent
corrections to the second-order potential give rise to
fourth- and sixth-order static potentials, whereas ve-
locity-dependent corrections to the fourth-order poten-
tial give rise to sixth- and eighth-order static potentials.
These potentials which we denote by 8V4(«), 8Vs(«) and
8V, («), respectively, have the form (after Fourier
transformation)

~dk, dk2
(«) = (g(1) ~ g(2))2 —— exp[&(kr+ks) .r]

(2M)4 co 860 2

X(r (1) .k (r (1) .k (r (2) .k 1(r (2) .k (36)

3)(2
I

dkrdksdks
gVs («) — g(1) .g(2)

(2M)' & o&to&2o&s

Xe pfix(k +k1+k2)r]s(r"' kr(r "& k1

1 1
x + , (»)

1 2 3 1 2
m4

Anticipating some of the results to be derived in the
sections which follow, we note here that when we derive
the no-pair terms of the fourth-order potential and the
leading terms of the sixth- and eighth-order potentials,
we shall find contributions which respectively cancel
Eqs. (36)—(38). This phenomenon, in addition to the
entire development of this section, points to the fact,
previously remarked, '6 that in the low energy limit it is,
in general, inconsistent to consider velocity-dependent
corrections to the potential except in conjunction with
static potentials of higher order.

D. No-Pair Terms

Here only two matrix elements are contributed by
the ladder diagram (M1), but there is the full comple-
ment of six of type M2. (Four M1 elements were of the
reducible type. ) The result we shall record differs from
that given in L2, Eq. (20), in two respects. First, we
omit the first term of the latter equation since it can-
cels, as promised, against (&V4(«), Eq. (36). Secondly,
we obtain an additional spin-independent, but charge-
dependent term not found there. As the adiabatic no-
pair term, we therefore take (some rearrangement is
involved)

( dk, dks exp[i(k, +ks) r]
V4" («) =-

(2M)'" ~1'~2(~1+~2)

XL2~(') ~(')(kr ks)2+3(r'" (k&Xk2)

2
Xo(2) (k&Xks)) —+—. (39)

0)] M2

We note parenthetically that if we multiply the equa-
tion above by (2M/&4)4, the resulting expression is just
the leadieg term of the fourth-order potential of the
pseudoscalar theory with pseudovector coupling. That
the no-pair terms give the leading contribution in this
case is a consequence, first of all, of the fact that for
derivative coupling the spin matrix elements are of
the same order of magnitude for no-pair, one-pair, and
two-pair interactions. One then chooses for maximum
contribution the terms with minimum energy de-
nominators, i.e., the no-pair terms. The equivalence to
the pseudoscalar result then follows from the observa-
tion that it is the spatial part of the coupling that is

largest for the no-pair terms.
After a fairly laborious calculation we find for the

potential of Eq. (39),

V4" (r) =&4(g'/42r)'(&4/2M)'[~(') ~(') U (J4«)

+~"'~'"f/. ( «)+~12~r(& «)], (40)
where

(&V («)=
(2M)4

I
dk, .dk4 exp[i(k, +k2+ks+k4) r]

X
~1~2~2~4(~1+~2)'(~2+~4)

(38)

U, (g) = (8/2r) [—A 1+2A2—4A 2+2A 4],

U, (g) = (8/2r)L —2A2+2As —. A4],

Ur (g) = (4/2r) L2A 2
—5A 2+4A4],

24 &. Namhu, Progr. Theoret. Phrs. 5, 614 (195&).

(41)
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and
A i——Ep'v (2x)/x, A 2= I&.0"'(2x)/x',

(42)
Ag =Ep (2x)/x, A 4= 80(2'g)/g

the superscripts indicating derivative. Equations (40) to
(42) are in agreement with the work of previous authors
who have considered the ps —pv theory of nuclear
forces

For the pseudoscalar coupling case we remark finally
that, if we wish to include in a consistent fashion po-
tentials of the order of magnitude of those considered
in this section, we must also take into account terms
arising from (a) velocity dependence in the spin-
matrix elements of the two-pair diagrams; part of
these are shown in Appendix 8 to lead to spin-orbit
coupling; (b) corrections to the pair denominators of
two-pair and one-pair matrix elements already included
in lowest approximation; (c) one-pair matrix elements
previously neglected.

V. SIXTH- AND EIGHTH-ORDER
ADIABATIC POTENTIALS

A. Sixth-Order Results

The prescription given in Sec. III can be directly
applied to the computation of any desired portion of the
sixth-order potential. All matrix elements are contained
in the six Feynman diagrams, shown in Fig. 5. There
are 3 t)(6!=4320 matrix elements in all; of these 8 from
Fig. 5(a) merely contain 62 three times, and 176 from
Figs. 5(a), (b), (c) are combinations of A2 and h4 in
either order. Only the remaining 4136 matrix elements
are bori&i fide members of the sixth-order interaction
kernel. Fortunately, only a small fraction of these
(128 in all) contribute to the leading term of the
adiabatic potential.

To see this we first look for contributions with the
largest possible spin matrix elements. These are of the
general form"

(p, ~r&"&A &"&(y„—e„k,)r&"&A (p„—e„k,—e„k,)
Xr &'&

i
y„—e„(ki+k2+ k»)) = (p, i A~&

"& (p„—e,k~)

Xl'& &P (p„—&,k;—&„k,) ~

p„—e„(ki+k2+k3)), (43)

admitting the restriction that in sixth order there can
be at most one pair associated with each nucleon line,
but insisting on that pair for maximum value of the
matrix element. We shall designate the two matrix
elements involved in Eq. (43) by (+—),+, and (—+),.
Then with 1'&"&= (pg, ) &"& these have the general values

(+—) = (2M)-'i&& ee„k&, (le W i), (44)

(—+);= (2M)—'ie'"& e„k;. (45)

According to Fig. 5, for r= 1, i = j. and 1=3, whereas for
'K, Nishijima, Progr. Theoret. Phys. 6, 815, 911 (1951).

Taketani, Machida, and Onuma, Progr. Theoret. Phys. 6, 638
(1951).

"Our notation parallels Ll. ; thus r=1, 2; p1= —p2=p; ~1= —~q

=1.The isotopic. dependence has been removed from the matrix
element; i, j, 1=1, 2, 3 each. One seeks the largest value of the
spin matrix elements first because in the adiabatic region, these
differ from one another by even powers of p /M, whereas for en-
ergy denominators one progresses one power at a time.

7 (~). (2) 6
(o)

(I). (2)+6
(b)

(l}.~(2)+6
(c)

T(I).T(2)

(d)

7r &~&.pa&+6

(e)

(I). (2)

(f)
FIG. 5. Feynman diagrams for sixth-order interaction kernel.

Beneath each figure stands the associated isotopic operator for
matrix elements derived therefrom.

r= 2 the values which these indices assume varies from
diagram to diagram but are the same for all matrix
elements arising from a given diagram. Thus for each
of the graphs &i f ther—e are four possible spin elements
consistent with our option of choosing a (+—) or a
(—+) matrix element independently for each particle.

With this much settled and with the isotopic opera-
tors already designated in Fig. 5, one can begin the job
of enumerating allowed matrix elements as soon as one
recognizes that minimum energy denominators are
associated with those processes in which a virtual pair
created at a given point is annihilated at the next inter-
action point. (The restriction to one pair at a time. is not
sufFiciently stringent here. ) A typical diagram having
its origin in our Fig. 3(f) is Fig. 3(a) of L2. A job of
straightforward enumeration shows that twenty-four
matrix elements of the specified type arise from each
of Figs. 5(d), (e), (f), twenty (irreducible) elements each
from (b), (c), and sixteen from (a), 128 in all. Counting
up is simplified by the fact that (d) and (f) yield pre-
cisely the same set of matrix elements, as do (b) and
(c). Further, for each Feynman diagram the matrix
elements classify into sets associated with the different
spin matrix elements, and when one takes advantage of
symmetry properties in the meson momenta, there
turns out to be in all only four distinct sets, comprising
at most six matrix elements each. These then combine
further into two sets. Of these one precisely cancels, as
promised, the quantity 5V6(r) of Eq. (37). The re-
mainder which we take as the sixth-order adiabatic
potential has the extremely simple appearance"

(C''&'( 1 l'
( dk, dk2dka

U&&(r)= —
(
—

[ ( [
~&" ~&'&(2~') '

&4~) &m) +12~ 2~32

Xexp[i(ki+k2+ki) rj4e&'& kie&" kg

= (4/3) (g'/4~)'( /2~)'~"'~"'( 'r') '

X[1+(jir)
—']'[e&'& ' e+&&S ]e&2'&". (46)

"We obtain the result of L2, Eq. (23), if we include only those
matrix elements which he explicitly stipulates, namely, those with
two intermediatt' states in which there are two mesons present
and one intermediate state with three mesons. There are many
other possibilities, however.
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B. Eighth-Order Results

We proceed as before: As the basis of our analysis,
we use the twenty-four eighth-order Feynman diagrams
involving the exchange of four mesons. The associated
isotopic operators are easily computed. T)ie leading
terms of the adiabatic potential are the four-pair
terms with no more than one pair present in any inter-
mediate state (see Fig. 3(b) of L2). The spin matrix
elements are unity to lowest order, as for the fourth-
order potential. The conventional matrix elements
associated with each Feynman diagram are readily
enumerated —twenty of the diagrams yield six irre-
ducible elements each, and the remaining four diagrams
just two each. In the adiabatic limit, all these diagrams
yield, aside from the charge dependence, just three
distinct sets of matrix elements. Again it is found that
a considerable part of the result cancels 5VS(r) Eq.
(38). The net result is then"

V ()=—3I I
(2 )-" dk dk

(2M)

expL4(k, yk, y k,+ k4) . rjx
COyGD2GOSGg4

X
CO]. GO2 COy CO3 GO2 O) 4

+ (47)
CO2 CO~ CO3 u~ &4

After extensive rearrangement it is found that the
integral in Eq. (47) can be performed by methods
analogous to those given in the Appendix of I.2. It has
the value

(g'l'( 4 I' 1
V~(~) = —6I —

I I I
-&i(4~~) (48)

(4x J (2M ) p'r4 m.

As pointed out in L2, the effect of V4(r) and especially
ot Vs(r) on the low energy properties of the two-nucleon
system will provide a test of "convergence" of the
asymptotic series for the nuclear potential.

dimensional formalism. Such an undertaking, because
of its length, is out of place here and will be reserved
for a possible later publication. We begin our eGorts,
therefore, with the results of such an analysis, which
for e particles is an equation of the form

(&—&»—%2— —&~.)&(pi+@2+ +p.)
X4(V .y-)=&(V+ . +li-)~+"'(P ) "&+'"'(li.)
XJdpi ' 'dp +(pi'' p;pi '''p )

Xb(p, '+ +y.')y(y, ' p.'). (49)

The kernel 6(pi p„;pi' p ') contains interactions
between 2, 3, e particles whose form is determined
completely by the rules of perturbation theory as for-
mulated in Sec. III of this paper. In particular, the
adiabatic potentials can be defined in a manner pre-
cisely analogous to the definition given in Eq. (26).

The leading terms in the e-body force arise from
Feynman diagrams involving e mesons in which two
meson lines emanate from each nucleon line and in which
there are m pairs but at most one pair at a time. Dia-
grams for typical matrix elements of the three- and
four-particle forces are illustrated in Fig. 6. The ex-
pansion parameter is then (g'/44r) ~(p/2M)". There are
also e-particle forces involving e—1 mesons, but these
can give rise to only e—2 pairs (see below for the three-
particle ease), and therefore the expansion parameter
is (g'/4m)" '(p/2M)", smaller roughly by an order of
magnitude. By restricting our attention to the dominant
e-pair terms a number of general statements can be
made about the nature of the resulting potential in the
adiabatic limit:

(1) All spin matrix elements are unity to lowest
order. The resulting forces are spin independent.

]
/

/

/
kIP

& 'k~
/

/

/
&kp

VI. MANY-BODY FORCES

A. General Analysis of Leading Terms.

The analysis of many-body forces" "could be carried
out from first principles by deriving a many-particle
relativistic equation and reducing this to a three-

30 See Eq. (24) of L2. We obtain the result quoted there if we
omit the considerable class of matrix elements which have at most
two mesons in all intermediate states in which there are no pairs.

"The analytic form of the m-particle force was erst given by
G. Wentzel, Helv. Phys. Acta XV, 111 (1942), using equivalent

FIG. 6. Diagrams for typical matrix elements of leading
contributions to three- and four-body forces.

pair theory methods. For the saturation problem see G. Wentzel,
Helv. Phys. Acta XXV, 569 (1952).

"The major results of this section have been derived inde-
pendently by S. D. Drell (private communication) using a method
based on the canonical transformation of F. J. Dyson, Phys. Rev.
73, 929 (1948). See also S. D. Drell and E. M. Henley, Phys. Rev.
88, 1053 (1952). The problem of saturation of nuclear forces is
under investigation by Drell and Huang. We wish to take this
opportunity to thank Dr. Drell for an illuminating discussion of
his work.
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(2) The potential will consist of a sum of terms of
the form V({

I
r;,—r, , l+ Ir;,—r, , l+" .+ Ir;.—r, ,

l }),
where i1, i2, i„ is some permutation of 1, 2, . m.

Aside from isotopic spin dependence to be dealt with-
in a moment, the number of distinct terms of this form
is the number of ways of forming e-vector differences
from e-distinct vectors, each vector being utilized
twice. This number is (n 1)!/2—. For there are ~44(e —1)
choices for the pair

I
ri, —r;, I, then r4 —2 choices for

ri3, , one choice for ri . But then any of the m-

coordinate differences can stand first in the sum and
we must therefore divide by e. The number of Feynman
diagrams contributing to one such ordering is 2", for
having fixed on which particles are directly coupled by
meson lines, we have still the possibility of interchang-
ing the role of the two mesons which emerge from a
given particle. And we can do this for e particles. The
same result is obtained by dividing (m 1)!/2 —into
2" '(44—1)!,the total'number of Feynman diagrams of
the type under consideration.

(3) The contributions from each of the 2" diagrams
belonging to a given connection scheme diGer only in
isotopic spin dependence. The sum of the 2" isotopic
spin operators has the form

«1
&

7un «1 y 7~2 «2 y «3 '' «n —1 y~~n
= 2"8n„~i8~i~g 8~„ in„3X2" ——(50).

The factor 2" will cancel a similar factor in the de-
nominator of the potential having its origin in the
Fourier analysis of the meson field.

(4) One need calculate the analytic form of the
potential for only a single connection scheme for the
others will differ only by a relabelling of particle co-
ordinates.

(5) We fix therefore on a standard connection scheme
defined by lri —r2I+Ir4 —r&l+ lr„—ril and need
consider only a single Feynman diagram associated
with this connection. There will be just eI time-ordered

,n-pair diagrams to compute corresponding to the
permutation in time of the e pairs. Only half of these
at most are distinct because of symmetry with respect
to the inversion of the (vertical) time axis.

(6) The sign of the e-body force is (—1)" ' as fol-
lows from the fact that the matrix elements contain
2e—1 negative energy denominators, but that there is
an additional minus sign for an odd number of pairs.

Summarizing statements (1)—(6), we have reduced
the problem to the evaluation of the quantity

i'(( lr —r I+" + lr- —ril))

f g p "( 1 l" Idki dk„
( 1)n,—16l

( (24r)'& (2M) ~ g, g„

Xexpl i(ki (ri—r&)+ k (r —ri))]

XL j, (51)

I

where the square bracket is a sum of 44!/2 terms, each
comprising the adiabatic limit of the reciprocal of a
product of energy denominators for the intermediate
states without pairs

B. Three- and Four-Body Forces

We apply the general considerations given in the pre-
ceding section to the cases e= 3 and m= 4. In the former
instance there are only three terms in the unspecified
square bracket of Eq. (51).These are

L j= +
1 2 &1 +8 1 +2 2 3

CO] C03 G)2 M3

2cv1

((o2+(o4) (ki' —k4') (idi+(v2) (k4' —k ')

the last form following from the observation that

(53)
(401+&2) (&2+408) (&1 &3) -~2+&8 441+~2-

Using the last form of Eq. (52), the required integra-
tions in Eq. (51) can be carried by methods indicated in
the Appendix of L2. We find for the three-particle. force
the expression

(&')'f & l'2
V..=»l —

I I

&4~) &2&V) &

+iku(lri r41+lr2 r&l+Ir4 —ril)j
(54)

&'I ri —r2I I
r2

For the four-particle force the bracket of Eq. (51)
consists of twelve terms, which the reader can easily
derive for himself from a set of diagrams. By extensive
combination and rearrangement these can be brought
into the useful form

L
(~di+(o2) (kp —k42) (k22 —k4')

4GO 1C02

(444+a)4) (kP —k44) (kP —k4')

4' 1604

(442+444) (kp —k42) (k4' —kp)

4M2G03

(55)
( + .)(k,'—k, )(k, -k, )
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The calculation is straightforward and yields the result

rr

(b)

Fio. 7. Diagrams for typical matrix elements of the three-
particle force: (a) One-pair term involving interchange of two
mesons. (b) Two-pair terms analogous to one-pair terms of two-
particle fourth-order potential.
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The integrations can now be carried out as before, and
the total result for the four-particle potential given as
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(56)

e have not tried to push our diligence beyond this
point, although it is conceivable that by su%cient
searching one could obtain by these methods the gen-
eral coefficient of the n-body force. The case of five
particles, at any rate, is certainly amenable to direct
calculation by these techniques.

C. Other Three-Body Forces

We consider briefly two types of three-body force
which are'roughly an order of magnitude smaller than
the leading term. Of course these have their analogues
in forces between any number of particles.

We turn first to the three-particle force which in- .

volves the total interchange of only two mesons, two
mesons emanating from one of the particles, say, and
each terminating on one of the others. There are six
Feynman diagrams in all: for the particle which is the
source of the two mesons we may interchange the role
of the latter. The leading terms are one-pair terms, the
pair subsisting only between neighboring interaction
points as illustrated in Fig. 7(a). Six matrix elements
of the specified type arise from each Feynman diagram.

+1~2+1~3 . (57)

We consider finally corrections of relative order p/M
to the leading three-pair terms computed in part B.
The terms which contribute are as follows: corrections
arise from the expansion of energy denominators of the
leading three-pair terms. These are first the velocity-
dependent terms supplied by the energy denominators
for intermediate states without pairs. In accordance
with previous results (see Sec. IV, C) these will not be
given further consideration here since they must be
regarded in connection with still higher order three-
body forces. There are, however, the terms provided
by pair denominators. In exact analogy to the situation
which obtains in the case of fourth-order two-particle
forces, these are canceled by the leading contribution
from the three-pair terms which involve two pairs at
a time.

There remains the leading two-pair terms. One easily
enumerates twelve matrix elements for each Feynman
diagram. A typical contribution is illustrated in Fig.
7 (b). Calculation shows .the result to be spin and charge
independent and of the form

g2 3 ~ 4

(44r) E 2M)

expf- & ( I
ri r21+ I ri —ra I+ I
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I I ri —r3
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X

I
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ri r211ri ——r, l
~ pfri r~f&—

x
I

1+ I+1~2+1~3 . (sg)
J

VII. CONCLUDING REMARKS

We have confined ourselves in this paper so far to
the purely formal task of deriving static potentials with
no radiative corrections. It is our opinion that Levy's
treatment of such corrections, aside possibly from ques-
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tions of detail is qualitatively accurate. Quantitatively,
one can say little more than that there is no a priori
justification for equating the coupling constants associ-
ated with the second- and fourth-order potentials. "The
relative values of the constants can only be adjusted by
experiment. The result of Levy that one obtains good
agreement with experience by equatirig the two con-
stants in no sense constitutes a proof of uniqueness. It
is, in fact, almost self-evident that if one can obtain
agreement by the use of two parameters only (coupling
constant and cut-off radius), one should, within the
present accuracy of experiment, be able to obtain as
good or better agreement by the addition of an extra
coupling parameter. In short, one must expect a range
of acceptable relative values of the coupling constants.

Now, however, we must consider the alteration of the
picture by the results of this paper. In particular, for
equal values of the coupling constant the eKcacy of
the central force has been severely suppressed relative
to the tensor force. Assuming a three-parameter scheme,
there is again every reason to expect that there will be
an arc of parameter space which gives agreement with
experiment. Whether this arc passes through the plane
determined by equating the values of the two coupling
constants is a question that only detailed calculation
can answer.

Another problem which requires further clarification
is the exact nature of the role of the repulsive core.
This problem has two facets. First, there is the field-
theoretical task of 'establishing that the pseudoscalar
theory actually predicts a hard core. The present
methods of field theory are certainly not adequate to
yield a definitive answer to this question and as Levy
himself is the first to admit, his arguments are only of
the plausibility variety. Second, however, assuming the
hard core as a useful ad hoc hypothesis, the question
then arises as to the sensitivity of the results to the
detailed form of the asymptotic potential. One is in-
clined to suspect that the answer, at least within the
framework of a three-parameter theory, is that they
are not very sensitive. One can quote in support of this
contention the numerical results of Taketani ei a/. '4 for
the low energy neutron-proton system using the second
plus fourth potential of the ps —pp theory and a cut-
off'. They find reasonable agreement with experiment
(using only two parameters) for a theory in which for
triplet even states the central force is repulsive and the
tensor force much more strongly attractive than the
tensor force of the second-order potential. There obvi-

"We wish to make clear that there is no claim of originality
for the observations of this section. Several of the ideas were
brought to the author's attention during a series of discussions
at the Cambridge meeting of the American Physical Society. The
observation of the nonuniqueness of the numerical results of Levy
was variously attributed to R. Jastrow and J. Blatt.

~ Taketani, Machida, and Onuma, Progr. Theoret. Phys. 7, 45
{1952).It has also been brought to the author's attention that
R. Jastrow has shown that using the Levy potential, . one can re-
duce V4 by a factor of 4 and still obtain a decent fit with the n —p
data with a choice of g'/4nr= 15.

ously remains then much work to be done before one
can speak of a successful meson-theoretical model of
nuclear forces. )Vote added il proof: N—umerical calcula-
tions show that the potential obtained in the paper does
not agree with experiment. Further work, to be pub-
lished, indicates moreover, that the perturbation theory
doesn't even converge.

iexp[ik
,

r icp~xp~ j—
A(x) = dk.

(2~)P~ 207
(A.2)

Finally by f++(x) we mean the wave function which is
the coordinate space transform of the wave function
of Eq. (15) of the text,

d'pe'"( 2w')-'f( 'W—+p, E)--t—4++(x) =
(2w)'~

1 f

+8~—Po —&.) 'j0++(p) = dp
(2w)'&

Xexp[ip r—z(E„——',W) ~x,
~ jp~ +(p). (A.3)

We insert Eqs. (A.2) and (A.3) into the r.h.s. of (A.1).
For the l.h.s., we introduce the Fourier transform of
4 (x),

1
d'p'"*0(p) (A.4)4(x)=

(2w)'~

project with respect to positive energies, and then inte-
grate both sides with respect to pp in the manner al-

APPENDIX A

The procedure'e described in Sec. III for reducing the
R..E. to a three-dimensional equation, following closely
the work of previous authors, depends on carrying out
a sequence of integrations over energy variables. How-
ever, the interpretation of the resulting matrix ele-
ments is indissolubly tied to their representation by
time-ordered Feynman diagrams. It makes more physi-
cal sense, therefore, and also renders the derivation
more concise, if we reserve for last the sequence of time
integrations. By appropriately breaking up the latter
into a sum of terms defined by integrations over mu-

tually exclusive subregioris of time, we divide a given
Feynman diagram automatically into the time-ordered
regions corresponding to three-dimensional matrix
elements.

We illustrate erst by deriving the g' approximation
in this manner, starting from the equation (for relative
motion in center-of-mass system)

Lp~+Pp —&t(p) jLplf' —
Pp

—Bp(p)3 (*)
= —ig'F, "'I"@6(x)P (x). (A.1)

Here p, pp will refer to momentum operators or mo-
menta according to context, x„=xt„—xp„, h(x), the
meson propagation function, will be represented by its
three-dimensional Fourier transform
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ready explained several times in the text. We thus ob- sequence of operations described prior to Eq. (A.3),
tain the equation the additional term in (A.5) contributed by (A.S) has

1 i the form
(W 2E.—)0++(p) = «g'—

(27r)' (2«r) 5

XA ")(p)A (2) (p)p;")p;(2) drdxodkdp'dp,

i q' 1

& (22r) 5) (2«r) 4

1 1 1X—
2co 2W+. Po E„—-,'W —Po —E~.

ei J«O &O~ir [k—(P—P ) )

X I d xd x d X dpodkldkodpldp2dp

x exp[ —«I » I (~+E' 2w) 3—4++(P')

( )(p)A ( ) (p)1', ( )P, ( )

(2~)5
"

xexp[ —«IxoI(~+E.+E 5
—w)74++(P —k) (A&)

The final step in the derivation is to break up the
integral over xp into two regions defined by xp) 0 and
xp+0, and to use the relation

~oo p

e '"'dx = I e l*dx = «rc) (X)—iP (1/X), (A.6)

g
—ipx

4colco2 -', W+ po —E„,'W pc) -E,— —
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Xo—Xo'

+2 I
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I
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I ]exp[«p2 (R—R'
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I ]
X I I', (H (pl)+ El l sgn(X() —X()'+-,' (x()—xo') )I';](')

noting that in application to Eq. (A.S) (and in all sub-
sequent applications of the appendix) the delta-function
does not contribute since its argument can never vanish.
We finally obtain therefore, the equation

(W—2En)4++(p) =~A+"'(p)A+"'(p)1''"'I''"'

2
dk 4++(p —k), (A &)

2o) (W E„E„5 co)— — —

which is just the Tamm-Danco6 approximation.
We turn next to the more complicated case of the

diagram of Fig. 1(b). We add to the r.h.s. of Eq. (A.1)
the term

(—i g')' J'd'x'd'X' exp[iW(Xo —Xo')76(X—X'
——', (x+x') )A(X—X'+ —', (x+x') )[I',G(X—X'
+-, (x—x'))„&,]()[r,G(X—X'

—-', (x—x') )2-,/57(2))P„+ (x'). (A.S)

In Fq. (A.S), in addition to c.m. coordinates for the
points xI, x2, we have introduced similar coordinates for
xo, x4. To transform Eq. (A.S), we require, in addition
to Eqs. (A.2) and (A.3), the representation

1
P'l(H(P2)+E~2 sgn(Xo —Xo'

2Epg
1—

2 (»—xo'))F']"' exp[«p' r' —«I xo'I
2Eg 2

X (E, ——,'W)]y++(p'). (A.10)

As the next stage in the development, we record the
result of performing the integrations with respect to
po, r, r', R', pl, p2, p'. It.is also useful to introduce
the Variable Xo"=Xoo —Xoo= Xo—Xo'—2 (Xo+Xo') Equa-
tion (A.10) now takes the somewhat simplified form

)dk, dk2PP«~, dxodxo dxo exp(iW[xo"+ 2l(xo+xo )7
4coicog ~

—«(E,—2W) IxoI —«co)I x()"
I

—ico2Ixo"+ x()+ xc)'I

«Emlxo"+xo
I «E»I xo"+xo'I «(En' 2W)

I

xo'I )

LH(p )+E»gn(xo"+xo)7
X F,

2Eg g

[H(P2)+E» sgn(xo"+xo')]
X F,

2Ep2

G(x)= dpexp[ip r iE„IxoI]—
(2«r) 2~

H p E~ sgnxo yo where it is understood that

XP+ p(p'), (A.11)

where sgnxp means the sign of xp. Incorporating Eqs.
(A.2), (A.3), and (A.9) into (A.S) and carrying out the

Pl P k2) p2 P+ klan p p kl k2. (A.12)

The final step in the derivation of the twenty-four
matrix elements contained in Eq. (A.11) consists in
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dxp "dxpdxp' (ti)——t2) ts) t4)

+ (tl) t2) t4) t3)+ (t2) tl) tp) t4)+ (t2) t4)'tl) tp)

+ (t2) tl) t4) ts)+ (tl) tp) t2) t4) ~ (A. 13)

The l.h.s. of Eq. (A.13) gives the ranges of integration
variables corresponding to the matrix elements defined

by the time orderings on the r.h.s. It is easily verified
that the removal of the absolute value signs for the
combinations of time variables found in Eq. (A.11) is

well defined for each of the matrix elements in (A. 13).
The remaining matrix elements may be similarly de-
rived. The same technique applies also to the ladder
diagram.

The procedure described above appears to be the
most concise means for extracting some small subset
of desired matrix elements from higher order diagrams
where the derivation of all matrix elements contained
therein would be prohibitively laborious. In most of the
applications in this paper, however, we have merely
recorded the known results of such a derivation.

APPENDIX B

We wish to point out here that the existence of
velocity-dependent corrections to the two-pair matrix
elements of the same order of magnitude as the no-pair
terms and in particular that one obtains from these

dividing the regions of integration with respect to xp,
xp', xp" into appropriate subregions, each corresponding
to a single three-dimensional matrix element. Content-
ing ourselves here with a sample indication, one easily
verifies that the no-pair terms, six in all, are given by
the six integrals

oo p

terms a spin-orbit coupling. This follows from a more
detailed consideration of the spin matrix element

1 (E„+M)(E;+M)
(p IA+"(p.—"k')

I p.') =-
28„ I, 28„2E~.

g (r) .y ~(r) .p
~

X &,-&+M+ (&,—s—M)
E„+M E~+M
((r(r) .p &) (r(r) .p

+(r("' (p„—e„k') + (r(') (p„—e,k')
Z„+M X~+M

—)1+(2M) 2[(r(r) (p„—e„k')(r(r) p, '+(r(r) p„(r(r)

~ (p,—srk') ]~1+(2M) 2(r(r) ~ (ki+ k2) xp. (B.1)

The successive simplifications indicated by the arrows
consist at the first stage of discarding all terms beyond
the leading one which do not contribute a spin-orbit
coupling and at the second stage more of the same
accompanied by substitution P„'=P„—e, (k&+02). The
result (B.i) is seen to depend on the particular particle
involved only through its spin. Consequently, when we
multiply the spin matrix elements for the two particles,
the cross-term leads to an interaction that depends on
the total spin of the system and is, in fact, of the spin-
orbit type. If one inserts the latter into the leading
two-pair terms, one finds easily an interaction,

~ "= —«'~4~)'(t'»M)'(t'") '(»~r)
x [Ei(2t4r)/r2JL S, (8.2)

with
L=rxp, S= i

(0 o)+(r(2))

Since E&(x) is a monotonically decreasing function of
its argument, the quantity multiplying L S in Eq.
(B.2) is positive. This is the sign required for the
Case and Pais" interpretation of the p —p scattering
data at high energies. It is therefore of the wrong sign
for application to the shell model of heavy nuclei. In
the latter instance, however, there are many other'
mechanisms that can produce the desired result.

44 K. M. Case and A. Pais, Phys. Rev. 80, 203 (1950).


