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The probability that nuclear emission of an alpha- or beta-
particle causes ionization of a J or L electron of the atom is cal-
culated by time-dependent perturbation theory using nonrela-
tivistic Coulomb wave functions. Bets-emission (electron or
positron) causes an ionization probability of 0.64/Z' and 2.1/Z'
per beta in the ft and I, shells, respectively. (The E shell result
agrees with Migdal and Feinberg; the L shell result disagrees
with Migdal. ) The use of nonrelativistic wave functions causes an
appreciable underestimate in the ionization probability for E
electrons of heavy atoms. Screening corrections for the use of
Coulomb wave functions would increase the ionization prob-
abilities by a factor of 1.4 for E electrons and by a factor of 3 or
4 for L electrons. Migdal's result for dipole electronic transitions
caused by nuclear alpha-decay are reduced by a factor 25 (for the
case of Po" ) because of nuclear recoil. Quadrupole matrix ele-

ments such as (r ') &,,„sare evaluated by a new method developed
by H. A. Bethe. This method uses the Sommerfeld integral
representation for the continuum n'd wave function. Quadrupole
transitions are negligible for E electrons, but are the predominant
eÃect for L electrons. The calculated ionization probabilities for
Po"' are 10 ~ and 1.1)&10 ' per alpha in the E and L shells,
respectively. For alpha-decay, screening corrections and higher
multipole transitions would both increase the ionization prob-
ability for L electrons. Madansky and Rasetti's measurements of
photons from RaE are consistent with our calculations, but
Bruner's measurements on Sc44 are not. Grace's interpretation of E
x-rays from Po"' is consistent with the calculation of this paper,
while Barber and Helm's interpretation is not. Rubinson and
Bernstein find 8 times the L x-ray yield from Po"~ we have cal-
culated for Coulomb wave functions.

I. INTRODUCTION

~

~

~

HEX a radioactive nucleus disintegrates by
emission of an alpha- or beta-particle, the radio-

active disintegration perturbs the electrons of that
atom, and may cause electronic excitation to an unoc-
cupied discrete level, : or ionization to the continuum.
A hole in an inner electronic shell produced in this
manner will be filled either by the emission of a charac-
teristic x-rays, or by the emission of an Auger electron.
Similar processes may be caused by other types of
nuclear disintegrations: E-capture, neutron emission

(or nuclear recoil due to neutron scattering), or fission.
The probability of electronic excitation or ionization
can be calculated by time-dependent perturbation
theory. In this paper we shall calculate the probability
of ionization for E or L electrons, for the cases of
nuclear beta-decay (electrons or positrons) and nuclear
alpha-decay.

We shall not concern ourselves here with calculations
of nuclear decay processes involving interaction with
the electromagnetic field, such as internal conversion
or emission of inner bremsstrahlung. Frequently internal
conversion masks the processes that we wish to discuss
in this paper, since it may occur with very much higher
probability. The emission of inner bremsstrahlung
makes more dificult the detection of characteristic
x-rays produced in beta-decay.

Recently Madansky and Rasetti' and Novey' have '

studied electromagnetic radiation emitted in P" and in

RaE beta-d. ecay. The characteristic sulfur x-ray fol-

lowing P" beta-decay is of too low an energy to be
detected in this experiment. The RaE measurements
show that characteristic E x-rays of Po are less frequent

' L. Madansky and F. Rasetti, Phys. Rev. 83, 187 (1951);and
Phys. Rev. 89, 679 (1953).' T. B. Novey, Phys. Rev. 86, 619 (1952) and Phys. Rev. 89,
672 (i953).

than inner breInsstrahlung: the upper limit for K x-rays
is about one photon per 104 betas. However, Bruner'
finds a very much larger yield of negative electrons
associated with the positron and E-capture activity of
Sc44, in contradiction to the very low negative electron
yield found by Porter and Hotz' for Fe" (E-capture).

Characteristic lead E, L, and M x-rays associated
with the alpha-decay of Po"' have been studied by
Curie and Joliot, ' Rubinson and Bernstein, ' Grace
et al. ,' Barber and Helm, ' and Riou. ' The observed
yields of photons per alpha are: about 10 ' for the.E
shell, ' about 3X10 ' for the L shell, ' ' ' and con-
siderably higher for the M shell. ' On the other hand,
Macklin and Knight" found a very much higher yield
of L x-rays associated with the alpha-decay of U"4.

Calculations of the probability of ionization of E,
I, and 3f electrons in beta- and alpha-decay were 6rst
made by Migdal. " Migdal treats beta-decay as an
example of a sudden perturbation, and alpha-decay as
an example of an adiabatic perturbation. Independently
Feinberg" calculated the eGect of beta-decay on E
electrons obtaining agreement with Migdal's results
based on the sudden change of the nuclear charge.
The present author also considered these questions
independently some years later, "and agreed with the
common Migdal-Feinberg result for ionization of E
electrons in beta-decay; but there were numerical

s J.A. Bruner, Phys. Rev. 84, 282 (1951).
4 F. T. Porter and H. P. Hotz, Phys. Rev. 89, 903A, 1953.
s L Curie and F. Joliot, J. phys. et radium 2, 20 (1931)
%. Rubinson and W. Bernstein, Phys. Rev. 86, 545 (1952).' Grace, Allen, West, and Halban, Proc. Phys. Soc. (London)

A64, 493 (1951).
8 W. C. Barber and R. H. Helm, Phys. Rev. 86, 275 (1952&.
'M. Riou, J. phys. et radium 13, 244 (1952).
'0 R. L. Macklin and G. B.Knight, Phys. Rev. 72, 435 (1947}."A. Migdal, J. Phys. (U.S.S.R.) 4, 449 (1941)."E.L. Feinberg, J. Phys. (U.S.S.R.) 4, 424 (1941)."J.S. Levinger, Ph. D. thesis, Cornell University, 1948 (un-

published) ~
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disagreements for the L shell. The ionization prob-
ability due to beta-decay has been considered recently
by Schwartz, " Winther, " and Serber and Snyder. "
Schwartz's numerical results for the L shell ionization
probability agree with those given in this paper; he has
also extended the calculations to the M shell. Winther
calculates the charge distribution of I i' recoils from He'
beta-decay, using helium and lithium atomic wave
functions. His results are the same order of magnitude
as those of this paper, which apply to hydrogen-like
wave functions for inner electron of heavier atoms.
Serber and Snyder calculate the average energy ex-
pended in ionizing the atom as the change in the electro-
static energy of the nucleus at the center of the electronic
charge cloud. Their result of about 100 ev for positron
or beta-decay in heavy atoms is larger than the energy
expended in ionizing E and L electrons as calculated
in this paper. We use their result of excitation energy 2

Rydbergs (27.2 ev) per closed shell to check our calcu-
lations of the ionization and excitation for the E shell.
Recently Primakoff and Porter" have calculated the
electron ionization due to E capture.

There was a basic diagreement between the methods
used by Migdal and by the present author" (the latter
being incorrect) in the calculations on effects of alpha-
decay. Our present methods for alpha-decay represent a
modification and extension of Migdal's work. The dipole
transition probability is greatly reduced due to nuclear
recoil. The quadrupole transition probability is of great
significance for the L shell. Our theoretical results are
in order of magnitude agreement with the experimental
yields of x-rays.

In Sec. II we discuss the case where the perturbation
due to the nuclear decay takes place in a time small
compared to the periods of the atomic electrons con-
sidered. This is represented in nature by beta-decay.
In Sec. III we consider screening corrections to the
results of Sec. II, which are based on hydrogenic wave
functions. In Sec. IV we discuss the case where the
perturbation takes place slowly, i.e., adiabatically, as
compared to the periods of the atomic electrons being
considered. This case is represented in nature by the
alpha-decay of Po, if we consider the K or L electrons,
Quadrupole matrix elements such as (r ')i, , „qare
calculated by a new method developed by H. A. Bethe.
In Sec. V we estimate the accuracy of our approxima-
tions for alpha-decay. In the last section we shall
compare our calculations with experimental data.

II. SUDDEN PERTURBATION: BETA-DECAY

When a nucleus of atomic number Z decays by
emission of a beta-particle, which has a velocity very
much larger than that associated with the orbital
electrons, the orbital electrons suddenly Gnd themselves

'4 H. M. Schwartz, J. Chem. Phys. 21, 45 (1953)."A. Winther, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 27, 3 (1952)."R.Serber and H. S. Snyder, Phys. Rev. 87, 152 (1952).' H. Primakoff and E. T. Porter, Phys, Rev. 89, 903A (1953).

Here we explicitly write the atomic number of the
nucleus to designate the wave functions before and
after the beta-decay.

This formulation was erst proposed by Migdal. "
Feinberg" discusses the eGects of beta-decay on the
orbital electrons in some detail and 6nds that the
"shaking term" corresponding to Eq. (1), is in general
much larger than the term for direct collisions. (The
latter is analogous to the ionization of an atom by an
external fast electron. ) He also shows that relativistic
sects and exchange effects are small. We shall discuss
the approximations in Sec. V; in this section-we shall
evaluate Eq. (1) using nonrelativistic wave functions
for a Coulomb Geld. In this evaluation we shall repeat
some of Migdal's and Feinberg's work, as their papers
are not suKciently well known.

First, let us 5nd an upper limit for the sum of the
probability of excitation to all discrete states, and of
ionization to the continuum. We shall 6nd the prob-
ability Ppp ——~app~' that the electron remain in the
initial state. The difference 1—Ppp represents the prob-
ability of excitation to all discrete states, together with
ionization to continuum states. It therefore over-
estimates the probability of losing an electron from
state 0, since some transitions to discrete states are
forbidden by the Pauli exclusion principle. Still, it gives
us an upper limit which is the right order of magnitude.
Also it is the starting point for our calculations of
screening e6'ects.

For a E electron we have, using hydrogenic wave
functions,

a„=4Z&(Z+1)& I exp( —Zr) exp[ —(Z+1)r]r'dr
Jp

= {L(Z+p)' —-'3/(Z+ p)')'=1 —3/gZ' (2)

(The angular integra, tions give unity. Throughout this
paper we use Hartree atomic units, " e.g. , we measure
distances in units of the Bohr radius. ) The upper limit
for loss of an electron from the is state is

1- (app~'=3/4Z'. (3)

We have neglected unity in comparison with Z, so Eq.
(3) holds for either beta or positron emission. To find

' H. A. Bethe, Handbuch der I'hyszk (J. Springer, Berlin, 1933),
Vol. 24/1, Introduction.

in the 6eld of a nucleus of charge Z+1. (For positron
decay the change is from Z to Z —1.) To simplify our
formulas we shall limit ourselves to the case of Z much
larger than one, in which case beta and positron
emission give very nearly the same result, and will be
considered together. The amplitude for an orbital
electron initially in state 0 to end in state e due to a
sudden perturbation is

ap„= t P„(Z+1,r)gp(Z, r)d'r.
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the probability that a hole is produced in the E shell,
one considers the perturbation acting separately on
each of the two E electrons, and multiplies the above
result by 2. (See Feinberg for a detailed justification. )

We have made analogous calculations for the 2s and
2p electrons of the 1. shell: we find an upper limit of
2.25/Z' per 2s electron, and 1.25/Z' per 2P electron.

I et us now calculate the probability that a E electron
end up in a continuum state. This will be a lower limit
for the production of holes in the E state; and should
be a good approximation to it, as the more likely
transitions to discrete states are forbidden by the Pauli
principle. This calculation can be done in several dif-
ferent equivalent ways; we shall follow the method used
by Feinberg. "We use an integral representation for the
hydrogenic continuum wave functions" for an s elec-
tron (the angular integrations give the selection rule
d i= 0):

Rs = —2Z'*(2kr) '(1—e 2nn) 2(227)

~
—2ikrg & —in' —1 & in' —ld 4

The integral over $ is taken around a contour that
encloses the branch points at g= 2 and g= —2.

This wave function is normalized per unit energy.
Here

n' = Z/k = (Ex/W) **

The contour for the $-integration is transformed to
infinity enclosing the pole at p=0. The result is 227

times the residue at the double pole at P=O, or
g = in'/2+i/2k.

~=(2k) 'f(P 4—) '((5 2—)/(5+2) j'"'
X (Sn 2$) }2 in'=/2+i/2k

= 2k '(n"+1)—' exp( —2n' cot—'n').

(Note that we check the orthogonality of fp(Z) and
P„*(Z)if we put /=in'/2 in the (in' —2$) term. How-
ever, we can use this approximation for g in the other
terms, and we shall also put Z+1=Z in the term X.)
We combine this value for J with the normalization
factor of Eq. (9), and square the amplitude, in order to
find the transition probability in terms of the energy TV

of the continuum electron'.

P(n')dW=2'Z '(1—e 'n"') 'n"(n"+1) '
)& exp( —4n' cot 'n')dW, (14)

where the variable n' is given by Eq. (5). The emitted
electron is likely to have a value around e'= j., or con-
tinuum energy 8'=binding energy Ez, as is shown in
Fig. 1 where we plot P(W) es W. The probability of
ionization to all continuum states is found by numerical
integration of Eq. (14), using dW= —Z'dn'/n'2 )see
Eq (7)j. We find

The binding energy of a E electron is, in atomic units
(e2/p, = 2/. 2 ev),

E(n') dW =0.32/Z'. (15)

E~———.,'Z'.

The positive energy 8' of the continuum electron is
given by

W 1k2 1Z2/n&2

where k is the wave number.
We use the continuum wave function of Eq. (4) in

Eq. (1) for the transition amplitude. [For convenience
we use $2(Z+1, r), and f„*(Z,r).J

QQ~r IVJp

(120 ')1 +1~1

p7 2$Z2(1 e—2m') —$

(16)

(17)

The probability of ionization as a function of e', and
its integral for the ionization probability per E electron
per P-decay, is in agreement with the calculations of
Migdal and of Feinberg.

The calculations for ionization of Lz electrons and
Lzz or Lzzz' electrons is performed in an analogous
manner. For Lz electrons the amplitude is

iY = 4Z(1 e-""') 2, —-(9)
Jl——(227) '(2k) ' e r"7L1 z(Z+1)r]rdr—J—227

—1 e
—(2+1)re—2ikr)(2kr) —1

g ((+1)—in' —l(g 2)in' ld+2dr (10)—
The double integral J is evaluated as was done by
Somrrierfeld in calculations of the atomic photoe6ect, 20

i.e., we erst perform the r integration,

e errdr = 1/P2, —

y = 2ik(& in/4 i/4k)— — (19)

The r integration gives a double pole, and a triple pole;
the P-integration is done by evaluating the residues at
these poles. We 6nd for the probability of the transition
2s to continuum:

where
P = 2ik(g —in'/2 —i/2k). (12)

Pl(n') dW= 2"Z-'(1—e
—'n"') —'n"(3n"+4)'(n"+4)—'

&(expL —4n' cot '(2n') fdW. (20)
"Reference j.8, Eq. {4.22). Note that we have corrected a

misprint by multiplying by 2 . See Feinberg, reference 42.
"Reference 18, Sec. 47; also see reference 12.

The ionization probability of 0.47/Z is found from Eq.
(20) by numerical integration.
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shell.
present results and extend the calculat' t th Mion o e

Another type of sudden perturbation is the sudden
change of the nuclear velocity: the nucleus suddenly re-
coils with velocity V in the s direction, owing to neutron
emission, or owing to elastic scattering of a neutron.
(There is of course a nuclear recoil in beta-decay; but

The nuclear recoil in the case of alpha-decay is con-
sidered in the next section. )

Initially the electron has a wave function No. After
the nucleus recoils, an electron with wave function I„
re ative to the nucleus has a wave function e'~'0„ in
the laboratory system, where E=reV/I'5 is the wave
number of an electron with the nuclear recoil velocity V.

he amplitude for a transition from state 0 to state e' is

(5,„=u„*e'x'u()dsr = — u„.*iEzu d'r (25)

W/E„
FIG. 1. Calculated energy spectrum for X electrons ionized by

beta- or alpha-decay /see Zq. (14) and Eq. (45)g. W is the
positive energy of the emitted electron; E~ is the Ebinding ener
The vertical scale is arbitrary.

For Lzz or Lzzz electrons the amplitude for a transi-
tion to the continuum is

Pi, =0.28E'/Z',

Ps„——0.69Es/Zs

Ps„=0.48E'/Z'

Ps.——0 90E'/Z' .

for m=0,
for m= ~1.

(26)

where in the last expression we have expanded the
exponential for E small. "
to th

The probability I'0„for a transition is pro o t' lpor iona
o e square of the dipole moment. This quantit has

air cady been summed over all continuum states. "iy as

sing these sums, and the appropriate factors for the
angular integrations" (-, for transitions from s states to
p states), we have for the probabilities summed over aH

continuum states:

rI'he wave number E is expressed in atomic units. It is
numerically equal to the nuclear recoil velocity V
divided by the characteristic electron velocity e'/ji.

In the ease of beta-decay, E is very much less than
unity, so the yield of vacancies in the E or L shells due
to nuclear recoil is very much less than the yield of
about 1/Z' due to the nuclear change of charge. Nuclear

(21)

(22)

[Note that here we use a p wave function for the con-
tinuum electron. y is defined by Eq. (19).j Th b-
abilit f

epro-
a i ity or a transition from Lzz or Lzzz to continuum is

P, (ri&)dna 2153—1Z—4(1 e 2«n') ir4&10(u—&'2+ 1)—

X (r5"+4)—' exp[ —4N' cot '(-,'15') )dN~. (24)

The ionization probability of 0.21/Z' is found from
Eq. (24) by numerical integration.

rShe results of our calculations for ionization, prob-
ability by beta or positron decay are collected in Table I
where we have neglected unity in comparison with Z.
As noted above, we agree with Migdal and Feinberg for
the E electron but obtain smaller values than Migdal's
for the ionization probability of L electrons. In our
thesis" we obtained a diferent result for the Lz elec-
trons. Schwartz's results'4 are in agreement with our

TABLE I. Ionization probability in beta-decay. '

Migdal's
calculationOur calculationUpper limit

0.326/Z'
0.65/Z
0.47/Z"
0.21/Z'
2.1/Z4

0.32/Z~
0.64/Z'
1.9/Z'
0.5/Z'
6.8/Z'

' 0.75/Z
1.5/Z
2:2S/Z
1.25/Z2
12/Z'

X electron
X shellI r electron
Lrr «LrrrI shell

a The upper limit for ionization of orbital ele r
i i b E . (3) dfollo i . Th Iq g. be results of our calculations are given

, an 24), respectively. See reference 11 for Migdal's

pp e problem of nuclear recoil was suggested~' This a roach to th
y . P. Feynman.
~ Reference 18, Table XV.
~' Reference 18, Kq. (39.7}.

((5o«)s=»s Js,

»2 ——Z'6 l(1—e '«"') I(1+u"&I

I (2 ) '(») 'f~ =~ ""4~(4+') '" '(( ')' '44-'—"'

(23)
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recoil is of importance in the cases of neutron or alpha
emission.

P=1—&oo—Q Po (27)

hile the sum over discrete states e should go to
infinity, we find that for Hartree functions we can break
oR the sum after several terms.

Instead of calculating the matrix element ap by

ape= Pe'(Z+1, r)go(Z, r)d'r,

we express it in another form:

ap„—(E„—Ep)
—' P„*(Z,r) DHPp(Z, r) d'r, (29)

aJ

where d H= e'/r is the change of the Hamiltonian due to
the sudden beta-decay. "Ep and E„arethe single electron
energies estimated ising Slater's eRective Z." The

P'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).

e' J. C. Sister, Quarttuue Theory of Matter (McGraw-Hill Book
-Company, Inc., New York, 1951), Appendix 13."D. Bohtn, Quauturrt Theory (Prentice-Hall, Inc. , New York,
1951), Sec. 20.6.

~' Then the energy difference is appreciably greater than that
calculated using Coulomb wave functions. If we used the atomic
energies for the two diBerent electron states, the energy difference
would be appreciably less than that for Coulomb functions, due

III. APPROXIMATIONS FOR BETA-DECAY

The calculations in the previous section are approxi-
mate in three respects: (1) the use of Coulomb wave
functions; (2) neglect of relativistic effects, and (3)
treatment of beta-decay as a sudden perturbation. In
this section we shall correct the first approximation by
calculating the screening corrections for Hartree wave
functions" for Hg. (These functions do not include
relativistic effects, or exchange effects. ) We shall
estimate the errors introduced by the other approxi-
mations. %e shall also check our calculations by com-
parison with the average excitation energy calculated
by Serber and Snyder. "

The probability Ppp that an electron remain in its
initial state when the nuclear charge changes suddenly
by one is given in Table I. The results given there are
based on Coulomb wave functions, but for K and I.
electrons they should be reasonably accurate for
Hartree wave functions. (For the 1s and 2P states of
Hg there is excellent agreement between Hartree and
Coulomb wave functions, provided we use Slater's
screening constants to obtain the eRective charge" for
the latter. )

%e shall calculate the probability that due to the
sudden change of charge the electron be excited from
its initial state 0 to some discrete state N. (We are con-
sidering a hypothetical atom where the states m are unoc-
cupied, so that the Pauli principle has no effect. ) The
probability P of ionization to the continuum states is
then

TABLE II. Screening corrections in P-decay for Hg, 1—Poo is
the upper limit for the ionization probability, while Pop, Po2, etc.,
are the probabilities of excitation to discrete levels. The ionization
probability P=1—Poo —Po1— ~ —Po5. The screening correction
is the ratio of P for Hartree functions to P for Couloznb functions.

K electrons
Coulomb Hartree

Lr Lrr or I-rrr
Coulomb Hartree Coulomb Hartree

0.75
~ ~ ~

0.312
0.059
0.022

1—Zoo
Pol
Po2
Poa
P04
P05
P 0.326

Screening corr. 2.4

0.75

0.24
0.038
0.007

2.25
0.312

~ ~

1.08
0.207

0.46 0.47
3.1

~2.25
0.28
~ ~ ~

0.47
0.060

1.25 1.25

~ ~

0.783 0.37
0.137 0.050

0.006
0.820.21

3.9

results of numerical integrations evaluating Eq. (29)
for Hartree wave functions for Hg are given in Table -II
and compared with the matrix elements calculated
using Coulomb functions. The first row 1—Ppp gives
the results of Table I for Coulomb functions, which
should be a good approximation for Hartree functions.
The last row I' (ionization probability to the con-
tinuum) is copied from Table I for Coulomb wave
functions. For Hartree functions it is estimated as
P= 1—Ppp —Pp2 —Ppa —Pp4 —Pp5. The screening cor-
rection is the ratio of P for Hartree and Coulomb wave
functions. The factor 1/Z' (or 1/ZL, ' for L electrons) is
omitted in Table I. Only the principal quantum number
is given in the subscript and 0 means the initial state,
e.g. , Pp3 means P~, , 3, or P... ~, or P2„,~ for K, I.z or
Lrr (or Lnr) electrons, respectively.

This calculation shows that for heavy atoms the
screening eRects cause an appreciable increase in the
ionization probability following P decay: for E electrons
the factor is 1.4, while it is 3 or 4 for I electrons. "

Screening corrections have been calculated by Reitz"
for the beta-decay spectrum and for internal conversion
coefficients using relativistic wave functions for the
atomic field. He did not go to low enough energies to
compare in detail with our results above. Thus, for Po
he calculated only down to energies of 25 kev, or W/Ez.
=0.3. At this energy screening e6ects amounted to
only 5 percent. Presumably the appreciable fraction of
emitted electrons which have a continuum energy less
than 0.3 of the E binding energy (see Fig. 1) have quite
large screening corrections, so that the screening cor-
rection averaged over the electron energy distribution
of Fig. 1 amounts to an increase of 40 percent for K
electrons of mercury. The large increase in the screening

to the change in the screening of all the other electrons by the one
electron making the transition. Pote added in proof:—We now

'

believe that the above was a poor choice for the energy difference,
and gives too large screening corrections.' The Po5 term is omitted for K and Lz electrons. .

2' Screening effects are presumably of great importance in other
problems involving the overlap integral of the wave function of an
inner electron with that of an electron of low positive energy,
e.g., ionization due to alpha-emission (Sec. V); calculation of
absorption edges in the atomic photoeffect; or calculation of the
stopping power of L electrons.

'o J. R. Reits, Phys. Rev. 77, 10 (1950).
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correction for low continuum energies is substantiated
by the much larger screening correction for I. electrons
(3.1 and 3.9) which have in general much lower con-
tinuum energy than the electrons emitted from the E
shell.

Serber and Snyder's (S.S.) calculation" of the average
excitation energy of the atom for beta-decay pro-
vides a valuable check on our calculations. They cal-
culate the excitation energy of the whole atom as
68=22.85Z'~'=132 ev for Hg, using a Fermi-Thomas
charge distribution. They also calculate an average
excitation energy of 2 Ry= 27.2 ev per closed electronic
shell, assuming hydrogenic wave functions. These
results are reached both by calculating the change of
the nuclear electric potential energy due to the elec-
tronic cloud; and by a direct calculation using sum
rules.

Their result of 2 Ry can be checked directly against
the average excitation energy for E hydrogenic wave
functions, calculated from the second column of Table
II. We also need the average positive energy given to a
continuum electron: this is determined as 1.03Z' Ry,
by numerical integration using Eq. (14) for their energy
spectrum. (Also see Fig. 1.) The average excitation
energy AE for the E shell is

hE = 2Z' Ry[0.312Z—'(0 75)+0 59Z—'(0 889)
+0.022Z '(0 938)+0.031Z—'(0.97)

+0.326Z '(2.03))=1.998 Ry. . (30)

'I'he numbers in the bracket give the probability times
the energy expenditure (factor of Z' Ry taken outside)
for final states 2s, 3s, 4s, ns (n)4), and continuum s,
respectively. The agreement with S.S. is within the
accuracy of our numerical integration.

Now this calculation neglected the exclusion of tran-
sitions to occupied discrete states. The Pauli exclusion
principle forbids, for example, a 1s to 2s transition in
which the atom gains energy from the nuclear decay,
but it also forbids a 2s to 1s transition in which the
atomic system loses energy to the nuclear decay. The
energies involved are exactly equal in magnitude. Thus
the excitation energy for the entire atom is unaffected by
the Pauli principle. However, the Pauli principle causes
a smaller excitation energy than 2 Ry for the E shell,
and a correspondingly larger excitation energy for the
higher shells. " (For hydrogen wave functions the excita-
.tion energy for the E shell of Hg would be 1.38 Ry.)

Since we have not yet calculated the energy spectrum
of continuum electrons for Hartree Hg wave functions,
we cannot make a precise comparison between our AE
and that of S.S. There will in general be a change of the
excitation energy of the K shell due to the use of atomic
wave functions. This change in wave functions corre-
sponds to a change in the S.S. treatment for closed

3' This is analogous to the shift of oscillator strength from one
shell to another in dipole transitions in x-ray spectra. See A. H.
Compton and S. K. Allison, X-Ruys in Theory ced Experiment
(D. Van Nostrand Company, Inc. , New York, 1935), p. 551.

p'(x) =d'(x!)/Cx'; (33)

also n=e'/Ac. The numerical result in Eq. (30) is given
for lead, Z= 82, y =0.80. Comparing with 1—Zoo
=0.75/Z' for nonrelativistic Coulomb functions [Eq.
(3)$, we see that for K electrons of lead relativistic cor-
rections might lead to an appreciable increase of the
ionization probability. Our work is still preliminary, as
we have not yet calculated the probability P of ioniza-
tion to the continuum. We have shown that relativistic
corrections give an upper limit for the ionization prob-
ability of 1.12/0.46=2.4 times that found in Table II
for nonrelativistic Hartree wave functions.

In applying the sudden approximation to the case of
beta decay, there will be a correction term of order
(v,/vb)2, where n, is the velocity of the orbital electron
and bb that of the beta-particle. (See Feinberg's dis-
cussion" of the relatively low ionization produced by
"direct collisions" ). The coefficient of this correction
term depends on the form of the time rate of change of
the Hamiltonian CH/Ct ['see Eq. (37) in Sec. IV), and
this in turn depends on the values of the electron coor-
dinates. For instance, if CH/Ch always has the same sign

(say positive) we can show that

(cH/ct) e'"tct
on "o

(CH/Ch)Ck . (34)

The right side is proportional to the amplitude for
ionization of the e' state for a sudden perturbation.
Thus for this case the ionization probability found for
the sudden perturbation case sets an upper limit for
the ionization probability. But if CH/Ct changes sign
as t increases (as it does for s positive) it appears that
there will be a maximum in the ionization probability
as a function of (v,/vb) for the velocity of the emitted
particle comparable to the velocity of the orbital elec-
trons. Since we then integrate over s, we cannot be
sure that Eq. (34) applies.

We should note that since ~& always remains smaller
than c, the parameter v,/vb Z/137n is——not very much
smaller than unity for E electrons of heavy atoms; so

~E. Jahnke and F. Kmde, Table of Fttnctiols {Dover Pub-
lications, New York, 1945), p. 17.

shells, since they use the virial theorem for a Coulomb
field to find the potential energy from the binding
energy.

Relativistic sects will be of most importance for K
electro'ns of heavy atoms. We have calculated with
relativistic Coulomb wave functions the probability Zoo
that an electron remain in the 1s state for a change of
one in the nuclear charge. The result for the upper limtt
for the ionization probability is, for Z&)1,

1—PM =Z '[(2y+1)/4+ n'Z'+P'(2y) cr4Z'j

=Z '(0.70+0.36+0.06) =1.12Z ', (31)
where

(32)
and"
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the sudden perturbation treatment will not be very
accurate for this case.

In summary, our approximations have in general
underestimated the transition probabilities. For K
electrons the principal approximation was the use of
nonrelativistic wave functions, which may lead to an
underestimate of the ionization probability by a factor
of 2. For E electrons the screening corrections for the
use of Coulomb wave functions lead to an increase of
40 percent in the transition probability. For I. electrons
screening corrections for Hg give an increase by a
factor 3.5. The sudden perturbation calculation should
be a fair approximation for the case of beta-decay but
becomes poorer for high Z.

IV. ADIABATIC PERTURBATION: ALPHA-DECAY

The alpha-particles from radioactive nuclei travel
with a velocity rather smaller than that of the inner
orbital electrons (e.g. , for Po"' the ratio v,/v, =0.087
for K electrons). The electron velocity w, =Z/e atomic
units for ~VR Coulomb wave functions, with principal
quantum number m; ~ is the velocity of the alpha-
particle. Now the alpha-particle is so heavy that it has
an extremely small wavelength, so it can be considered
as moving through the atom classically, producing a
perturbation on the atomic electrons that varies slowly
compared with their motions. From the adiabatic
theorem we know that a slowly varying perturbation
produces very small eRects, so we expect to find a very
small ionization probability for the E electrons. How-
ever, the 1.electrons have a smaller velocity, so that the
perturbation is not so adiabatic, and the transition
probability is much larger.

Migdal" starts from the formulation of time de-
pendent perturbation theory with perturbation V(r, t)
giving an amplitude for the state n' at infinite time, for
the system initially in state 0,

a„.=(ih) '

= (ih) '[(ice) 'e'"'V ~g" (o 'e'"'dV/dt~g"—

—(i~)—ie'"'Ci V/Cti
~

o~ ~ ~ ~ j. (35)

The last expression is obtained by successive integra-
tions by parts. This type of expansion is useful for a
potential which varies slowly with time, so that the
higher time derivatives are small. Migdal omits the
term (i~) 'e'"'V, without a detailed explanation. This
omission is clearer if we use another formulation of
time dependent perturbation theory" for a Hamiltonian
H which is a function of time:

C. =P„(ii./h~. .) exp~ i ~..dh'
~

(yH/Ct). . (36)
0~o )

~ L. I. Schift, QNaltum 3fechulics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), Eq. (31.8).

This equation is exact. If the perturbation is small, we
can take a„(t)=8„0and we can take a& „(t')and the
wave functions N„(t)and N„(t)all as time independent.
This gives the amplitude after infinite time for the
state e'

a. = (her)-' e'"'(dH/Ct) o„.dt

V=2e'[x'+y'+(s —i t)']-: t&0.

For the dipole term he finds

(38)

(ih) '~ 'e'"d—V/Ch
~

-0"-
= —(ih(a') '2e'v, r 'Pi(cosg). (39)

Here the alpha-particle moves with velocity v, along
the positive s axis, starting at t=0. I'~ is a Legendre
polynomial. Since we use the total IIamiltonian II' for
a nucleus initially of atomic number Z, recoiling with
velocity v„:
H=2e'Lx'+y'+(s —e t)'j i

+(Z—2)Lx'+y'+(s+i„t)']", t&0,-(40)
we find for the dipole dH/Ch term in Eq. (37):

(h(u) '(ia)) 'e'"dH/—Ch
~

0"-
= (ihoP) 'L(Z —2) e'i —2e'v, ]Pi(coso). (41)

The matrix elements of the expression in Eq. (39) or
Eq. (41) can be evaluated easily by a trick used by
Migdal based on potential energy V = Ze'/r, and Ehren-
fest's relations:

Lr 'Pi(cos~)lo- =(s/r') o- = [—~/»(r ') jo-
= m(e) o. /Ze'= (maP/Ze') (s)p„. (42)

The probability-of ionization clue to alpha-decay is
then, according to Migdal,

Pg= P„~u„'
~

'= (4v.'-/Z') P„~so„~'. (43)

%e are using Hartree atomic units, so v is the alpha-
particle velocity in atomic units, and 5 and m are equal
to unity. Now this same sum over continuum states of

' The physical reason for omitting this term is that it corre-
sponds exactly to a sudden change of the Hamiltonian, which
does not occur in this case. This term was erroneously included
in our calculation for alpha-decay in reference 13.

= (ha))-'L(ia&) —'e'"'dH/dt ~,
"

—(ice) 'e'"d'lX/dt'~ 0" . j. (37)

This expression automatically omits the term in-
volving V (or the change of H), justifying Migdal's
omission of this term. '4

The significant diRerence between our present calcu-
lation and that of Migdal's is that he takes V as the
perturbation on the orbital electrons due to the alpha-
particle, while we take the Hamiltonian II, which
includes both the eRect of the alpha-particle and the
eRect of the nucleus. Migdal uses
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the squared dipole moment was met above in calcu-
lations by sudden perturbation theory of the ionization
due to nuclear recoil; and the results for these prob-
abilities, copied from Bethe's Handbuch article, are
tabulated in Eq. (26). They are also tabulated in
Migdal's Table II, where he includes the factor of 4 for
the squared charge of the alpha particle, and also
multiplies by the number of 1s, 2s, and 2p electrons, re-
spectively. To show the relation to the adiabatic
theorem, he uses the electron velocity v, =Z atomic
units, so that the ionization probability for dipole
transitions per is electron can be written

Pe ——4(u./v, )'(0.28/Z'), (44)

with the coeKcients for 2s and 2p electrons to replace
the 0.28 being given in Eq. (26).

However, we use Eq. (41) for dH/dt, and obtain for
the ionization probability, 3'

Z.= (L(Z—2)e„-2..3 /Z )g„,i.,„,I, (45)

to replace Migdal's result of Eq. (43). This suggests the
definition

(46)Zs, = (Z—2)s.—2e.,

so that Eq. (45) can be rewritten in a form analogous to
Eq. (26), the ionization probability I', for 1s electrons:

Pe=v,sg„is()„.i'=0.28v,s/Z'. (47)

The physical interpretation of the last two equations
is that e„asdefined in Eq. (46), is the velocity of the
center of charge of the system composed of alpha-

FIG. 2. Contour. for Eq. (56). Path A surrounds the branch points
at $= &-,'; path B has the large radius ~ '.

"The shape of the energy spectrum for the emitted electrons
is the same as that given by Migdal. It is plotted in Fig. 1, with
an arbitrary scale for the ordinate. We see that the emitted E
electrons are likely to have a positive energy the order of the E'
binding energy; but that there are fewer high energy electrons
accompanying alpha-decay than beta-decay. Migdal shows that
asymptotically the E electrons from alpha-decay fall off as E 'I;
while the E electrons from beta-decay fall oG as E 'I'.

particle with velocity v and recoiling nucleus with
charge Z—2 and velocity e in the opposite direction.
Further, for the dipole transitions which we are here
considering, only the motion of the center of charge is of
significance. "At time 0, the atomic electrons begin to
feel the per'turbation of the alpha-particle traveling
one way, and the remainder of the charge recoiling in
the other direction. Since the electron velocities are
large compared to the velocity of separation of alpha
and nucleus, the electrons to a first approximation (i.e.,
the dipole approximation) average out in their motion
the fields of alpha and recoiling nucleus, and experience
only the sudden change from no motion of the center
of charge to motion of the center of charge with velocity
tt„thus Eq. (26) is applicable.

If the alpha-particle and recoiling nucleus had iden-
tical charge-to-mass ratios, the center of charge of
the system would remain at rest, since the center of
mass must do so. Using conservation of momentum, and
the definition Eq. (46) we have in the general case:

Zv, =2@,(A —2Z)/(A —4) =2m. (0.203). (48)

The numerical value 0.203 is for the case Po"'; for
U"' the numerical coeKcient is 0.232. Since Ze, replaces
2e, used by Migdal i Eqs. (43) and (45)], and these
quantities enter squared in calculating the ionization
probability, we And for this term an ionization prob-
ability of (A —2Z)'/(A —4)'=0.04 that found by
Migdal, where the number 0.04 applies to Po"'. For E
electrons of Po"' Migdal finds a probability of 2.5)(10—'
per alpha, while we find an ionization probability of
only 10 ' per alpha. (These numbers come from Eq.
(47) or (43), using s,/s, =0.087, as given above. ) Since
e,/e, «1, Migdal calculated only the dipole term.

We have found that the dipole dH/dt term is greatly
reduced due to the nuclear recoil. However, the quad-
rupole d'H/dt' term of Eq. (37) is changed very little.
From Eq. (40),

d'H/dP
i
s"———2e'Ps(cos0) r [2'.'+ (Z—-2)s„'). (49)

Here, since the small velocity v„appears squared, the
nuclear recoil term can be neglected.

Since the dipole -term is made unusually small by the
eGect of the nuclear recoil, while the quadrupole term
is almost unaGected, we see that the type of series Eq.
(35) or (37) has the special property that both the
dipole and quadrupole terms need to be calculated, but
that one can hope to neglect higher multipoles. It turns
out that the quadrupole term contains numerical coef-
ficients markedly diGerent from unity, so that it is very
small compared to the dipole term for E electrons; but
large compared. to the dipole term for L electrons.
Equation (35) or (37) are actually semiconvergent
series, with the general term for the amp1itude a„for

'6 For an analogous use of the concept of the center of charge
in the nuclear photoeffect see H. A. Bethe, Revs. Modern Phys,
9, 71 (1937), Secs. 87 to 90. Dr. Bethe suggested use of the concept
"center of charge" in our present problem.
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the 2~ pole transition being

a„=2e'L()rio)) I(u /io))I'r " Ip!I'~(cos8))()„. (50)

Successive terms decrease rapidly for the case of E
electrons of Po"'; but much less rapidly for' the I.
electrons. In this section we shall calculate the quad-
rupole term for E and 1. electrons. %e discuss the
englect of higher terms in the next section.

Migdal's trick of Eq. (42) does not work for the
quadrupole term of Eq. (49). Professor Bethe has
developed a method to use the same integral represen-
tation of the continuum wave functions that we use
above" for our present matrix element which involves
negative powers of r. (The angular integration for
Ps(coso) gives the usual quadrupole selection rules for
the angular momentum change, and for allowed transi-
tions gives numerical factors which will be included in
our final result. ) For E electrons we have transitions to
continuum states, with the matrix element

(r-'), . ..s = ~Vs';„

FIG. 3. Contour for Eq. (58).Path A surrounds the branch points
at $= &&,' path 8 is at infinity except for the portion ABCD sur-
rounding the branch point at $=-',in'.

asymptotic expression for Ei(x):
)Vs= 4Z"—(n'"+-1).*'(n"+4)&(1 e'—"')- 4„

J,,=(2k) —'(24r) ' e»"r 4dr(&+ sI) '"'- (52)

(—PIs/6)) e»'r I(Ir

X(g——,')'"'-'4, (53) = (—PI'/6) (lnPI+ lne+ constant). (57)

p, = 24k(] sn'/2)— (54)

The integration over r is performed first; and since i.t
diverges at the lower limit, we replace this limit by a
small number e, and integrate by parts several times:

e~ "f 4dr = e se e&'/3 —
& sPIe e&'/6

+» 'P 'e e"/6 —(PIs/6) e»"r 'dr. (55)-

The terms with in& and constant vanish on integration
over f by the same argument as above for I. The lnPI
term does not, since it has a branch point at Pi ——0,
or $= siin'. The contour integral must be deformed as
shown in Fig. 3 in changing from path A to path 8,
since we must not cross any singularities. Since lnPI
differs by 2m' on the two linear portions AB' and CD,
and since the remainder of the contour (at infinity and
on the small circle) gives zero, the integral over $
becomes

Consider any one of the first three terms on the right
side, such as s ' exp( —P(e)/3. For this term the in-
tegral over j is

Is=(2k) ss (p 4/6) (g+. 1) in' 3(q 1)in' S—dp— —

pCOt

(COtX n')' Sin—4Xe 'n'*dh

The contour integral is to be taken over the path A of
Fig. 2, which surrounds the branch points at $=-', and
$= ——,'. This path can be distorted to path B of very
large radius without changing the value of the contour
integral I. On path B, let $= e 'e', so that exp( —Pie)
becomes exp( —2ike"+kn'e) which is finite. The terms
(P+-,I) '"'-'($—Is)'"' ' give a factor of e', so that I is
proportional to e' times an integral of a finite quantity
over a path of length 2xe ', i.e., I is proportional to c'-

a'nd therefore vanishes as we take the limit e to 0.
Similarly the integrals over path 8 vanish for the
second and third terms on the right of Eq. (55). We
are then left with the last term, for which we use the

= L1—9 exp( —2n' cot—'n')]/12(n" +4).

%e obtain the second integral on the right using the
substitution $=-';i cotx.

%e note that Bethe's method of finding the matrix
element for negative powers of r for Coulomb wave
functions has been checked by calculating the matrix
element of r 'cos8 and comparing with Eq. (42) for
the relation to the matrix element of r cos8.

To And the amplitude for transitions to the e'd state,
we combine the matrix element (r ') I,, d.=IVsIs )with
Ãs given by Eq. (52) and Is by Eq. (58)$ with the
factor 5 & from the angular integration of I's(case)
between s and d states, and with the factor 4e'u, 2/ko)'
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of Eq. (50). Here it is convenient to use

rM=P. +w=-'z+-'k =-'z'~'- (~"+1). (59)

We square the amplitude, multiply by dR = Z'd—n'/e"
a,nd integrate to And the ionization probability for the
quadrupole term for E electrons

P,=(2"/45)(v. /v)4Z '

e"L9 exp( —2m' cot 'zz') —1$'

X (~/2+ 1)
—6(~&2+4)—1/1 v

—2wn'j —
zgzz

=0.22(v,/v, )'Z '. (60)

The final result is obtained by numerical integration.
Vfe note that the integrand has a sharp peak at n'—1,
or continuum energy 5"—binding energy E~.

It is of interest to compare the ionization probability
by the quadrupole term with that found for the dipole
term in Eq. (47).

We will express our final result in terms of the velocity
el, of the I. electron, dehned as

vq= -,'ZO' atomic units. (65)

Second, for 2p electrons we obtain different results
for the angular integrations for the two cases m= 0 and
m=1, which must be weighted appropriately.

The quadrupole contribution to ionization proba-
bility per Iz electron is

P2 (2"/4——504) (v./vz, ) 'Z —'
n"LA (n')+ B(N') j'dn'

X
(e"+4/0)'(e" +4) (I"+1)(1—e—'~"')

= (86/Z')(v, /vz, )' for 8=0.75. (66)

For Po, 8=0.75 for Lz and Ezz electrons, and 0=0.63
for Lzzz electrons. In place of Eq. (59) for E electrons
we have then

A~=P.,+W=OZ/8+ zi-'=(SZ/8)~' '-(~"+4/S) .(64)

Pd, (0 203)'4——v '(0 28/Z') (61) Here

andTABLE III. Ionization probabilities for Po" alpha-decay. ' A (e') =8'"—9N'+4,

Electron
Equations Numerical results

Dipole Quadrupole Dipole Quadrupole

J 0.28 (Zv, /vs)' 0.22 (v,/vx)' 0.00034 0.000013
LI 0.90 (Zv, /v~)' 86 (v /vt, z)' 0.0011 0.17
LII 0.55 (Zv. /vx) (15+4)(v,/vzzz)' 00007 0037
LIII 0.55 (Zv, /vs)2 (21+6)(v /vt, zzz)4 0.0007 0.075

a Here e~, el.z, eL,zz, and vJ.zzz are the velocities of the K, Lz, Lzz and
Lzzz electrons, respectively, v& is the alpha-particle velocity; while vz is
the velocity of the center of cha~ge of the system of alpha-particle and
recoiling nucleus: see Eq. (46). The table gives probabilities of ionization
per electron; and the factor (1/Z') is omitted throughout the table.

The ratio

P,/Pg ——0.196(v /v, )'/(0. 203)'= 0.036. (62)

Ez,= OZ'/8. (63)

The use of (0.203)' applies to the case of Po'", as does
the final result using v,/v, =0.087. We see that. for E
electrons the quadrupole term is very much smaller
than the dipole term, even though the dipole term is
reduced by a factor 25 due to nuclear recoil, while the
quadrupole term is unchanged by nuclear recoil. The
small numerical factor 0.22/4(0. 28)=0.196 is of sig-
nificance in reaching this conclusion; the corresponding
numerical factor turns out to be large for the case of
ionization of I. electrons, and the quadrupole term
predominates.

The calculation for the ionization probability of I.
electrons is carried through in a manner completely
analogous to the calculation above for the E electrons,
so we will give few details. There are two changes. First
putting the binding energy Ez, z2Z'/zz', for e=——2-is a
poor approximation, even if we use an effective Zz, as
given by Slater. %e introduce an empirical parameter
0 to 6t the experimental data, de6ned as

B(n') = (—24zz "+153e"+196zz'4+ 648m"
—1308N"+144m'+576) (zz"+4)—'

Xexp( —2zz' cot '-', zz').

+le note that the integrand has a maximum at e'—6,
corresponding to a continuum energy of only 0.15EL,.*

Quadrupole transitions for 2p electrons can be either
to n'p or to n'f continuum states. Also, as noted above,
we have diAerent results for the angular integrations
depending on the value of m for the 2p electron, and
we have diGerent values of the parameter 0 for Lzz and
Lzzz electrons. The probability of a transition to an n'p
state for m=0 is

P3 (2"/7504) (v./vz)'Z ——'

I
"e"zL1+3exp( —2n' cot '-'n']'diaz'

X . (67)J 0 (zz12+4/l7)6(~'2+ 1)(1 e 2wn')—

For Izz electrons we have P3 (15/Z )(v,/vz. zz)4, whi——le
for Lzzz electrons P3' (21/Z') (v,/vz, zzz—)—4.

The probability of a quadrupole transitions from a 2p
state, with m=0, to an I'f state is given by

P4= (2zz/758')(v, /vz, )'Z '

e"z(A i(n')+ Bi(zz') )'dn'
X

(~"+4/0)'(e"+ 1)(e"+4)(~'+ 9)(1—-~-
)

(68)
*

emote added in proof: —We have found an error in this calcula-
tion, with the help of J. Scandrett. We should have A(n') =n'~+4
and change the sixth-order polynomial in B(n') to read
{—45n'6 —396n"—1008n' —576). The number 86 in the result is
changed to 0.044. This lowers the quadrupole yield for Lz elec-
trons to 8.7X10 ~/Z' (Table III) and lowers the L shell yield to
0.6X10 4 (Table IV).
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A, (n') = —3n"—12,

Bg(n') = (225n"+ 2500n"+38 348n "+3264)
X (n"+4) ' exp( —2n' cot—'-'n').

For L» electrons P4 (3.——6/Z')(~, /vr. »)' while for L»x
electrons, P4'=(6. 2/Z')(v, /v~»~)'. The peak of the
integrands in Eqs. (67) and (68) are at n' about 3, or
a continuum energy 8'—0.6EL,.

These results for the dipole and quadrupole con-
tributions to the ionization probability are collected in
Table III, together with a numerical evaluation for the
case of Po"'. We have averaged over the results for
nz=0 and m=1 cases for the 2p electrons. The prob-
abilities are all given omitting the factor 1/Z'. The two
numbers given for quadrupole transitions for Lzz and
Lzzz electrons are the contributions from transitions to
n'p and n'f states, respectively.

In the numerical evaluation we used: the ratio of
alpha-velocity to velocity of the E electron, v, /w&
=0.087 for Po"', the ratio of alpha-velocity to that of
the Lq or L» electron, w /e~. q=n /vq»=0. 21; the ratio
of alpha-velocity to that of the L»& electron v, /n&»&
=0.23. v, is the velocity of the center of charge of
alpha and recoiling nucleus; from Eq. (48), Zv, /w„
=0.406.

In calculating the ionization probabilities we combine
the dipole and quadrupole terms; we use the effective
charges Z~= Z—0.3, and Z~ ——Z —4; and we also
multiply by the number of the electrons in each shell.
The resulting ionization probabilities for the different
shells are given in Table IV.

As stated above, the very large ratio between ioniza-
tion yields for L electrons and E electrons is due both
to the adiabatic theorem, and to the very different
numerical factors in the probabilities for quadrupole
transitions: e.g. , 15 for 2p electrons as compared with
0.22 for 1s electrons. The quadrupole transition prob-
ability for the L shell is about 100 times the dipole
transition probability. While a factor of 25 is accounted
for by the decrease of the dipole transition probability
due to nuclear recoil, the remaining factor of 4 indicates
that the semiconvergent expansion of Eq. (37) may
not give accurate results for the value v,/v~=0r. 2 for
Po"'. The problem of the accuracy of our semicon-
vergent expansion is discussed further in the next
section.

In the above work we have assumed that the alpha-
particle was moving along a radius vector from the
nucleus: that is, that we were dealing with an s alpha-
particle. The imperfect analogy with the internal con-
version effect suggests a strong dependence of ionization
probability on the alpha-particle angular momentum.
This question is considered in some detail in reference
13, where we have shown that the alpha-particle angular
momentum has a negligible effect on the ionization
probability. Two possible effects are considered: (1) that
the classical path of an alpha-particle depends appre-

Flectron shell

E
LI

LIII
L shells

Ionization probability
per alpha

0.98X10 '
0.53X10 "
0.12X10 4

0.47X10-4
1.I X10 '

from the nucleus is to internal Compton scattering,
rather than to internal conversion. )

V. APPROXIMATIONS IN AI,PHA-DECAY

The approximations made in our treatment of the
ionization probability of E and J electrons due to
alpha-decay are similar to our approximations in the
beta-decay treatment. (See Sec. III.) We shall calculate
the screening correction for dipole transitions, and esti-
mate the screening correction for quadrupole transi-
tions. We shall also estimate the accuracy of our non-
relativistic approximation, and of our semiconvergent
expansion.

The screening corrections for dipole transitions can
be calculated in a manner rather similar to that of Sec.
III. We calculate the dipole matrix elements to discrete
states, using Hartree wave functions" for Hg. The sum
of the squares of all dipole matrix elements r0 can be
found from the sum rule,

n ~0n ~ 00' (69)

where 0 is the initial state, and the sum goes over both
discrete and continuum states. The ionization prob-
ability is then proportional to (r')00 minus the sum
over the discrete states of the squared dipole matrix
elements.

ciably on its angular momentum relative to the nucleus;
and (2) that an alpha-particle of high angular mo-
mentum can penetrate the centrifugal barrier more
easily if it first gives up some angular momentum to an
electron, by ionizing it. The 6rst effect. is found to be
extremely small. The second effect is also extremely
small, since the loss of energy by the alpha-particle in
ionizirig the electron greatly decreases its rate of pene-
tration through the Coulomb barrier. (This illustrates
the difference between internal conversion and the
present process of "internal ionization. " In internal
conversion emission of an electron is a complete sub-
stitute for emission of a nuclear gamma, since the
emitted electron takes off both the energy difference
and the angular momentum difference between the
nuclear states. However, in alpha-particle emission, an
alpha-particle must still be emitted to change the
nuclear Z and 2, irregardless of whether an orbital
electron is also emitted. The cases of beta or positron
emission, or E capture, are similar to that of alpha-
emission. The correct analogy for these processes in
which particles (alpha, beta, or positron) are emitted

TABLE IV. Ionization probability for electron shells for
Po"' alpha-decay.
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TAsLE V. Screening corrections for dipole transitions
of E electrons. '

Matrix
element

Coulomb
functions

Hartree
for Hg

Hartree-Fock
for Cu for A

(r') i*, i*
(&I'.2u)'
(~Is, ap)'
(~1., 4u)'
(ri., s,)'

continuum
probability

screening
correction

3.000
1.666
0.267
0.093
0.044

0.849

2.980
1.525
0.204
0.044
0.008

1.19

1.4

1.5

1.8

~3.0
1.186
0.067

~2 0

a The squared matrix elements are given in units of ao~/Z~. The values
for Cu and A were calculated by Tuan (reference 37). The value of the
continuum probability —i.e., sum of the squared matrix elements over all
COntinuum StateS—iS CalCulated aS (r2)ls, gs —(Pls, my)~- ~ ~ ~ -(res, S&)~. The
screening correction is the ratio of continuum probability for atomic wave
functions to that for Coulomb wave functions.

We have made this calculation only for the E elec-
trons, as dipole transitions were found in Sec. IV to be
unimportant for higher shells. The results are given in
column 3 of Table V. We also include in columns 4 and
5 results for Cu and A, using dipole matrix elements
calculated by Tuan'7 for Hartree-Fock wave functions.
Column 2 gives the result for Coulomb wave functions. "

The screening correction, calculated as the ratio of
the ionization probability for atomic wave functions to
that. for Coulomb wave functions, is 1.4 for Hg, and
about 2 for Cu and A. The screening correction for
dipole transitions of Hg E electrons is the same as that
found in Sec. III for the screening correction in the
beta-decay case for the same electrons.

These screening corrections cannot be applied exactly
to our calculation of dipole transitions due to alpha-
decay, since we originally [Eq. (41)j had the matrix
element of r 'cos0 which Migdal transformed to a
matrix element of r cos8, using relations based on there
being a Coulomb potential. For the atomic potential
the transformation will no longer be exact, but it
should be in error by an amount much less than the
screening correction of 40 percent.

This method of calculation of screening corrections
cannot be applied to quadrupole transitions (which are
of interest for the L shell) since we have no sum rule
for this case. We can estimate that the screening cor-
rections for quadrupole transitions of L electrons will be
somewhat greater than the factor of 3 to 4 found for L
electrons in Sec. III for the beta-decay case. Screening
corrections became larger for lower energycontinuum
electrons (e.g., comparison of E and L shells in Sec.
III); and the electrons emitted from the L shell in
quadrupole transitions [Eqs. (66), (67) and (68)j have
somewhat lower energy than those emitted from the L
shell in beta-decay [Eqs. (20) and (24)j.t

"T. F. Tuan, M.S. thesis, Louisiana State University, 1952
(unpublished).

$ Note added ee Proof: Preliminary calcu—lations for quadrupole
transitions using the atomic wave functions of Ramberg and of
Reitz show only a small screening eGect, contradicting our esti-
mate above.

We can make only a tentative estimate on the mag-
nitude of relativistic corrections. Analogies with other
processes (ionization by beta-decay, Auger transition
rate) suggest a possible increase in the ionization prob-
ability of a factor of 2 for E electrons of heavy elements,
and a much smaller correction for L electrons.

The accuracy of the adiabatic approximation of ex-
pansion into dipole, quadrupole, and higher electric
multipole terms is dificult to estimate, since this is a
semiconvergent expansion, as noted above. From Kq.
(50) the order of magnitude of the ratio of the amplitude
for the 2~+' pole to 2~ pole transition is, in the general
case)

a„+,/u„=(p+ 1)v./cur=(p+ 1)r./v, (.70)

For Po"" and L electrons, this gives as/a2 about 0.6;
which may be changed quite significantly by numerical
factors that occur in calculating matrix elements.
[These are omitted in our crude expression Eq. (70).)
In an attempt to estimate the accuracy of our semicon-
vergent expansion we have calculated one of the two
octupole transitions for 2p electrons, namely 2p to rt'd.

We 6nd a transition probability, summed over all con-
tinuum states, of (95/Z') (e„/ol.~n)', which should be
compared with the probability for 2p to rt'p quadrupole
(Table III) of (21/Z') (s,/vl. qn) '. The ratio 4.5
(o~/elan)'=0. 24 for the case of Po"'. Our expansion

appears to be quite good for Po"' and E electrons; and

may be satisfactory within 50 percent accuracy for Po"'
and L electrons. It seems probable that higher multipole
terms, such as the octupole, will increase the transition
probability over that calculated for dipole and quad-
rupole terms alone.

Our summary of corrections to the calculations of
ionization probability in alpha-decay is similar to that
of Sec. III for the beta-decay case. For E elect.rons of
Po, corrections will increase the probability perhaps by
a factor of 2; screening corrections give a 40 percent
increase. The expansion of the adiabatic approximation
holds quite well. For L electrons of Po, relativistic cor-
rections are small; screening corrections lead to an
increase in the ionization probability of somewhat more
than a factor of 4; and the expansion of the adiabatic
approximation is of uncertain validity.

VI. EXPERIMENTAL RESULTS

Experiments might measure any of three different
effects of the ionization of inner electrons due to beta-
(or positron) or alpha-decay of the nucleus: (1) the
emitted orbital electrons; (2) the characteristic x-rays
emitted in 6lling the holes in the E or L shells; (3) the
Auger electrons emitted in competition with the x-ray
emission. Very thin, or appropriately diluted sources,
must be used to make certain that the eGects due to
beta- or alpha-decay occur in the same atom, rather
than in neighboring atoms. Further, internal conversion
of nuclear gammas or emission of inner bremsstrahlung
(in beta-decay) may mask or confuse the effects calcu-



EFFECTS OF DISINTEGRATIONS ON INNER ELECTRONS

lated in this paper. The confusion with internal con-
version can best be avoided by choosing sources which
emit no nuclear gammas. Also, the line spectrum of
electrons from internal conversion could in principle be
distinguished from the eRects discussed in this paper.
The emission of inner bremsstrahlung in beta-decay has
been treated carefully theoretically, and recently con-
firmed in detail by experiment' ' so that this eRect can
be subtracted out.

The erst eRect listed above has been studied by
Bruner' for the isotope Sc44 which emits positrons, and
nuclear gammas and also undergoes E-capture. He used
two diRerent magnetic beta-spectrometers to measure
the energy spectrum of electrons of energy from 30 to
150 kev emitted from Sc'4, and found consistent spectra
giving a ratio of electrons/positrons of 4 percent. This
high ratio cannot be reconciled with the low yields for
the eRects calculated in this paper. The yield of A.

electrons ionized by the sudden perturbation is only
0.64/Z' (increased by perhaps a factor of 2 by screening
corrections), and almost all of these are of much smaller

energy than that of the electrons measured by Bruiser.
(See Fig. 1.) He suggests a mechanism of internal con-
version of inner bremsstrahlung. This process is very
much less probable than Bruner supposes, since the
analogy between the internal conversion of nuclear
gammas and that of inner bremsstrahlung is poor. "

Recently Porter and Hotz' have made a cloud-
chamber study of electrons from 30 kev to 205 kev
accompanying the E capture activity of Fe".They find
an upper limit of 0.6X10 ' electron ejected per E
capture, in sharp disagreement with Bruner's yield of
about 4 percent. Porter and Hotz quote a theoretical
prediction' of about 10 ' for the probability of ejection
of an electron in this energy range. This figure is con-
sistent with the work of Migdal, " Feinberg" and the
present author" for the eRects of beta-decay: the
probability of ionization is 0.32/Z; but only 0.4 percent
of the ejected electrons from iron have an energy
greater than 4.3 times the binding energy, or 30 kev
[see Eq. (14) and. Fig. 1]. We would then have an
ionization probability of 2&&10 per E electron, for
beta-decay of Fe. If we treat E capture as another
example of a sudden perturbation, the ionization yield
per E electron is about half that for beta-decay, since
the change in the eRective nuclear charge is 1—0.35
=0.65 for E capture instead of one as for beta-decay, and
this change enters squared. %e then 6nd a yield also
about 10 ' E electron ejected with energy greater than 30
kev per E capture in Fe~, in agreement with PrimakoG
and Porter, '~ and not inconsistent with the experiments
of Porter and Hotz. f

"See the end of Sec. IV for a discussion of the failure of this
analogy. Ke hazard the guess that Bruner's sources, prepared by
evaporation of an aqueous solution, exhibited "clumping"; and
that the electrons are principally due to positron-electron scat-
tering in the source.

f Pote added zn proof:—Primakoff and Porter include a factor
for the correlation of the two E electrons, and also correct a mis-

Madansky and Rasetti' con6rmed the theoretical
formulas for the spectrum of inner bremsstrahlung from
P"and RaE in the 50- to 200-kev range, using a scintilla-
tion spectrometer. Their measurement at 90 kev for the
RaE case lies above the smooth theoretical curve for
inner bremsstrahlung by three experimental errors. If
we interpret this deviation as due to E x-. rays from Po
(the product atom), we find that the E x-rays are
roughly 5 percent as abundant as the inner brems-
strahlung of energy greater than 90 kev. Using their
figure of 1.6X 10 s photon (E&90 kev) per beta for the
inner bremsstrahlung we Gnd an x-ray yield of roughly
8)& 10 ' per beta, with an error of at least a factor of 2.
Novey obtains a similar x-ray yield for RaE. This
number is in fortuitously good agreement with the
theoretical yield 0.64/Z'=9X10 ' (see Table &). (The
theoretical yield would be increased by a factor of 2 or
more by screening and relativistic corrections. ) f

Gray" has set an upper limit of 10 ' I.x-ray per beta
by absorption measurements on the photons from RaE.
This is consistent with our calculated 3X10 ' vacancies
in the I. shell per beta-emission (see Table I). The I
x-ray yield will be somewhat smaller since here the
fluorescent yield is appreciably less than unity; but
screening eRects will more than compensate for this,
giving 5X10—4 x-ray per beta.

In measurements on characteristic x-rays from beta-
or positron-emitters use of a detector with good re-
solving power is essential to separate the x-rays from
the continuous spectrum of inner bremsstrahlung,
Ordinary absorption measurements are not good
enough and the scintillation spectrometer is just about
adequate. Critical absorption techniques or crystal
dMraction should prove successful.

Thus for the case of beta- or positron decay, the
first two of our three eRects have been studied. Hruner's
result on the 6rst eRect for Sc44 is much larger than
theoretical results, while Madansky and Rasetti's arid
Gray's results for the second eRect on RaK are not
inconsistent with the theoretical calculations.

Many workers have studied the E and I x-rays
associated with the alpha-activity of Po"'. This isotope
emits one nuclear gamma of energy 800 kev and inten-
sity about 1.5&10 ' photon per alpha' —' which is in
coincidence with a correspondingly lower energy alpha. "
Even a gamma-ray of this low intensity confuses the
interpretation of the E x-rays, since some may be due
to ionization caused by the alpha-particle, and some due
to internal conversion of the nuclear gamma. Since the
gamma has much lower intensity than the experimental

take in our calculation that 0.4 percent of the ejected electrons
have an energy greater than 30 kev.

)Pote added in proof: —lowland and Rubinson {private com-
munication) and Boehm and Ku {Bull.Am. Phys. Soc. 28, No. 1,
40 (1953)) have both measured the yield of characteristic x-rays
associated with S~ beta-decay; and the latter group have also
observed x-rays from RaK»0 and Pm'4'. The measurements are
in good agreement with the calculations of this paper."J.A. Gray, Phys. Rev. 55, 586 (1939).

'0 S. De Benedetti and G. H. Minton, Phys. Rev. 85, 944 (1952).
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yield of L x-rays, and its internal conversion coeKcient
is much less than unity, the L x-rays are due almost
entirely to ionization by the alpha-particle.

Curie and Joliots observed L and M x-rays from Po,
but did not detect E x-rays, 'due to their low intensity.
Zajac et at. 4' observed both the 800-kev gammas and
x-rays of energy 84&4 kev. Recently Grace et al. ,

'
Barber and Helm' and Riou' have identified these
x-rays as characteristic E x-rays of lead (En of 73 kev):
the first group used critical absorption techniques, and
the second group used energy measurements by a
scintillation spectrometer. The E x-rays have an inten-
sity of 1.7)(1.0 ' photon per alpha, averaging the
results of the last three papers. Correcting for the
fluorescent yield, the vacancies in the K shell are 10
percent greater, or 1.9)&10 per alpha. Grace et al'.

believe that the vacancies in the E shell are produced
mainly by internal conversion of the 800-kev gamma,
while Barber and Helm believe that internal conversion
produces only one-third of the E shell vacancies, the
remainder or 1.3)&10 ' per alpha being produced by
alpha-particle ionization.

These arguments depend critically on the interna&
conversion coeKcient of the 800-kev gammas. Grace
et al. measure a conversion coefFicient of 0.067&0.017,
by counting the number of conversion electrons and
the number of gamma-rays. This would assign the
majority of the E. x-rays to the internal conversion
process. Alburger and Friedlander4' obtained a rough
measurement of the internal conversion coefficient by
observing with a magnetic beta-spectrometer both the
internal conversion electrons and the photoelectrons
from ari external converter: their result was 0.01 to 0.05.
The angular correlation measurements for alpha and
gamma of DeBenedetti and Minton" show that the
800-kev gamma is electric quadrupole radiation, which
according to Rose et a/. 43 has a calculated internal con-
version coefficient in the E shell of 0.01.

In comparison with the above results, we have cal-
culated here 0.10)&10—' electron vacancy per alpha,
with perhaps a factor of two or three increase for rela-
tivistic and screening effects. Migdal's result" is 25
times as large as ours, since he does not include the
reduction of the dipole transition probability due to
nuclear recoil. Grace's results (a small fraction of
1.9X10 ') could agree with our calculation, but Barber
and Helm's result of 1.3)&10~ is much larger.

An unambiguous separation of the eRects of alpha-
emission and internal conversion of the nuclear gamma
on the E electrons seems quite difficult at the present
time. Measurements of electrons in the 50- to 150-kev
region, should clarify this issue. 44 One should observe

I

4'Zajac, Broda, and Feather, Proc. Phys. Soc. (London) A60,
501 (1948).

'2 D. K. Alburger and S. Friedlander, Phys. Rev. 81, 523 (1951).
"Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79

(1951).
~ Also H. Halban (private communication) suggests measure-

ments of coincidences between X x-rays and low energy electrons.

weak lines corresponding to the Auger electrons; and
one should also observe a continuous distribution due
to the sects of alpha-particle emission. This spectrum
could be compared both in intensity and in shape with
the theoretical result (Fig. 1).

As noted above, measurements on the L x-rays are
not confused by internal conversions of the nuclear
gamma" of Po"'; however, an accurate knowledge of
the fluorescent yield for the L shell is necessary for their
interpretation. Curie and Joliots measured the L x-rays
with an electroscope and determined their energy by
absorption measurements. They found a yield of about
4X10 ' L x-ray per alpha. Rubinson and Bernstein'
have recently studied the L x-rays with a proportional
counter. They identify them by careful energy measure-
ments as L x-.rays and determine the yield as: Ln,
1.67X10 4; IP 1.06X10 4; Ly 0.20X10 4; or a total
of 2.93&10 4 photon per alpha, with an experimental
uncertainty of 15 percent. They compare a concentrated
and a dilute source to show that the L x-rays are not
produced in neighboring atoms. This yield is much
greater than our calculated yield of 1.1X10 4 L vacancy
per alpha using Coulomb wave functions. The calculated
yield of L x-rays is appreciably less than this. If, fol-
lowing Rubinson and Bernstein, we use Kinsey's
values" for the fluorescent yields in the L shell, 1.1
X10 ' L vacancy distributed among the L&, Lzi, and
L&i& shells as shown in Table IV gives an L x-ray yield
of 0.35X10 4, or only 12 percent of Rubinson and
Bernstein's experimental value. ' Also see Riou' who
confirms these experimental results. This large dif-
ference between calculations and experiment should be
attributed to screening corrections and to our use of the
semiconvergent expansion into multipoles. As discussed
in the previous section, screening corrections increase
the calculated yield by at least a factor of 3.5 and higher
multipole transitions might also lead to an appreciable
increase of the ionization probability for the L electrons.

Macklin and Knight" observed x-rays from U' ' with
a yield of roughly one photon per alpha-particle. The
photons were identified as L x-rays (of thorium or
uranium) by absorption measurements. This x-ray
yield is several orders of magnitude greater than the
experimental x-ray yield for Po"' and is also several
orders of magnitude greater than the calculated L x-ray
yield due to alpha-emission. Goldhaber and McKeown"

45 But one could make an ad hoc assumption of another nuclear
gamma of energy between the E and L binding energies, which
is strongly converted in the L shell. One could make a similar
assumption to explain the high yield of X x-rays."B.B.Kinsey, Can. J. Research A26, 404 (1948).

4' By coincidence, this calculated yield is almost identical with
that quoted by Rubinson and Bernstein, based on Migdal's
calculations. (Incidentally, we believe Rubinson and Bernstein
have misinterpreted Migdal's formula in using s, =Ze'/Pin, rather
than as Ze /k. ) A'otes added in proof:—(1) Correction of our error
in the 2s-n'd calculation lowers the calculated yield to 7 percent
of the experimental value. (2) Rubinson (private communication)
is now convinced of our interpretation of Migdal's formula.
(3) Screening corrections appear to be rather small.

4 G. Schar8-Goldhaber and M. McKeown, Phys. Rev. 82, 123
(1951).
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studied the radiation from U'" with a proportional
counter, and identified the 17-kev gammas as L x-rays
of thorium. They interpret Teillac's photographic plate
measurements" of internal conversion electrons (about
0.3 per alpha) as showing the presence of strongly con-
verted gamma-rays of energies from 50 to 90 kev."
Recently Bell et at."have observed 55-kev gammas from
U"4, using a scintillation spectrometer. This confirms
Goldhaber's interpretation of the L x-ray yield from
U'234

In summary, experiments on RaE are consistent with
the E x-ray yield for beta-emission calculated in this
paper, but do not verify it. Bruner's experiment on Sc44

is inconsistent with our calculations. Graces inter-
pretation that the E x-rays of Po"' are mainly due to
internal conversion of the 800-kev nuclear gamma is
consistent with the calculations of this paper. Barber
and Helm's interpretation of 1.3)&10 ' E vacancy per
alpha as due to alpha-emission, is much higher than the

"J.Teillac, Compt. rend. 239, 1056 (1950).' Also see reference 13, p. 35.
"Bell, Davis, Francis, and Cassidy, Oak Ridge National

Laboratory Progress Report ORNL 1164, 1951 (unpublished).

yield for iVR Coulomb wave functions of 0.1)&10 '.
Rubinson and Bernstein and Riou's measurements of
L x-rays from Po give a yield about 8 times that cal-
culated for Coulomb wave functions, much of the dis-

crepancy being attributed to screening eRects. The
high x-ray yield from U"4 is due to internal conversion
of a nuclear gamma. The theoretical yields will be in-

creased appreciably by three different corrections:
relativistic corrections for the E shell; screening cor-
rections and (for the case of alpha-emission) failure of
the adiabatic approximation for the L shell. Due to the
provisional nature of some of the present experiments,
and the approximate nature of the present calculation,
good agreement is not to be expected as yet.

The author is grateful to P. Morrison for his direction
of our thesis research on this problem and his continued
interest in the problem after that time. He also acknowl-
edges the assistance given by H. A. Bethe, W. Rubinson,
D. Bohm, M. Goodrich, H. Halban, L. Madansky.
H. M. Schwartz, and J. Wendel in discussions of various
aspects of this problem. Much of this work was done at
Cornell University; some of the work on screening cor-
rections was done at the University of Wisconsin.

P II VSI CAL REVIEW VOLUME. 90, NUMBER 1 APRIL 1, 1953

The Alpha-Particle Induced Phosphorescence of Silver-Activated Sodium Chloride*

C. E. MANDEVILLE AND H. O. ALBRKCHT
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Using as primary excitants ultraviolet light and polonium alpha-particles, the phosphorescent afterglow
of the double banded phosphor, silver-activated sodium chloride, has been measured as a function of the
time with photosensitive Geiger counters and photomultiplier tubes. The decay curves of the phosphorescent
intensity of the two bands can be represented by appreciably different power laws. Decay slopes greater in
absolute magnitude than two on a logI —logt plot have been frequently observed.

INTRODUCTIO N

' 'N several previous communications, " the writers
- - have discussed the fluorescence and phosphores-
cence of NaCl-Ag irradiated by nuclear particles. The
earlier reports' ' constitute mainly an account of how
first phosphorescent emission, and later Quorescent
pulses, were detected in photosensitive Geiger counters.
In the course of qualitative studies of the phosphores-
cence of the far ultraviolet band as detected with photo-

. sensitive Geiger counters, a marked stimulation of the
ultraviolet band by long wave light was noted. The soft
radiations from the red and green pilot lights on the
control panel of the scaling circuit gave rise to a dis-
tinct stimulation of the phosphorescent emission. It

*Assisted by the joint program of the U. S. OfEce of Naval
Research and the U. S. Atomic Energy Commission.' C. E. Mandeville and H. O. Albrecht, Phys. Rev. 79, 1010
(1950); 80, 11.7, 299, and 300 (1950).

'H. O. Albrecht and C. E. Mandeville, Phys. Rev. 81, 163
(1951);Rev. Sci. Instr. 22, 855 (1951).

was immediately suggested' that NaCl-Ag might serve
as a dosimeter for nuclear radiation, the phosphorescent
yield under photostimulation being a measure of dosage
received much earlier. However, the present discussion
will concern itself mainly with a study of the normal
unstimulated phosphorescence induced in samples of
NaCl-Ag by alpha-particles and ultraviolet light.

Since the time of the first reports by the writers, ' '
the study of th'e phosphorescence of NaC1-Ag has been
extended by Furst and Kallmann4 and' by Bittman,
Furst, and Kallmann. ' The light emission has been
shown to occur in two bands' 4 centered, respectively, at
2500A and 4000A. It has also been known for some
time that these two bands are emitted when ultraviolet

3 C. E. Mandeville, privately circulated memorandum (Sep-
tember 26, 1950).

4 M. Furst and H. Ka,llmann, Phys. Rev. 82, 964 (1951); 83,
674 (1951).

5 Bittman, Furst, and Kallmann, Phys. Rev. 87, 83 (1952).


