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A covariant description is given of the properties, relative to an
arbitrary secondary frame, of an element of anisotropic continuum
composed of a single chemical species. These properties are
measured by an observer in a primary reference frame relative to
which the motion of the secondary frame is constant. This is a
generalization of an earlier formalism in which the secondary
frame coincided with the rest frame of the element. The equation
of continuity of mass in the classical sense is formulated, and
Gauss' theorem for transformation of volume integrals of space
divergences into surface integrals is stated for the secondary
reference frame. If the equation of motion relative to the secondary
frame is assumed given by the statement that the divergence in
the secondary frame of the energy-momentum tensor vanishes,
then the equation for the first law of thermodynamics, the equa-
tion of continuity of energy, the dynamical equations of motion
including the force equation and the kinetic energy equation, and
the equation of continuity of momentum result; each equation
is formulated for motion of an element of continuum relative to
an arbitrary secondary frame as measured by a primary observer.
The divergence in the secondary frame of the entropy tensor is

assumed to be a time vector whose projection upon the four-
vector velocity of the element relative to the primary frame is
non-negative; this is shown to imply the second law of thermo-
dynamics relative to the secondary frame, and, in the reversible
case, an equation of continuity of entropy. The equation defining
the reversible stress in the element of continuum is introduced.
The chemical potential function which appears in this equation
has the properties of the specific Helmholtz free energy in the
thermodynamic consequences of this equation and the properties
of the specific Gibbs free energy in the dynamical consequences,
a circumstance which obviates the necessity of formulating a
Gibbs free energy for anisotropic media. The conditions for rever-
sibility of a process in the continuum are found to be independent
of the secondary reference frame chosen for description of the

'

process. Finally, a covariant theory of transport processes is
given for a one-component, anisotropic medium. It is shown that
in the theory of diffusion and thermal conduction the motion of
every element of the continuum must satisfy a special transport
condition relative to a secondary frame; in the theory of viscosity
this condition need not be met,

A. MATHEMATICAL FORMALISM
" 'N a preceding paper, ' a formalism was developed for

& ~ resolving four-dimensional tensors into space and
time components by means of the unit space tensor 8„
and unit time vector u, . We consider the case of two
reference frames, one attached momentarily to the
physical system whose properties are to be measured,
the rest frame, and the other a frame relative to which
the rest frame has a four-velocity N, =cu, where c is
the speed of light. Ke call the latter frame a primary
frame. A'ny four-vector whose components in the rest
frame are P,' will have conponents in the primary
frame,

P =L,P','.

L„is the general Lorentz transformation.
The transformation L„may be expressed as

L„=A.„/„„A,y'.

If the velocity in space of the rest frame relative to the
primary frame is represented by the three-vector v,
then the matrices on the right side of Eq. (2) have the
following meanings: A,„' is an orthogonal space rotation
with Euler angles tto, P', P which transforms a coor-
dinate system in the rest frame whose Z' axis is parallel
to v into an arbitrarily oriented coordinate system in
the rest frame; 2 „ is a similar rotation with'Euler
angles tt, p, P which transforms a coordinate system in
the prgnary frame whose Z axis is parallel to v into an
arbitrarily oriented coordinate system in the primary

' B.Leaf, Phys. Rev. 84, 345 (1951) (referred to in the following
as Paper I).

frame; /, „ is a simple I.orentz transformation from a
coordinate system in the rest frame whose Z' axis is
parallel to v to a coordinate system in the primary
frame whose Z axis is parallel to v. Accordingly, L,
transforms one arbitrarily oriented coordinate system
in the rest frame into another arbitrarily oriented
coordinate system in the primary frame.

In Paper I, we used the Hermitian matrix a„of
Abraham and Becker in place of L„. It may be ob-
tained as a special case of L, by letting 8=8', P=qP,
p=P. However, tt„does not possess the group property
under conditions general enough for our purposes. In
fact, if a,' and a„*represent successive transformations
associated with relative velocities v and v~, their
product cannot be written as a single transformation g,„
associated with a velocity v unless the velocities v', y*
and v are parallel. The generality of a„over the simple
Lorentz transformation l, consists only in the fact that
whereas the direction of v', v*, and v in the former case
is unspecified, in the latter case it must coincide with the
common direction of the Z axes of the three reference
frames involved. In addition, in either case, as is well
known, the magnitude of v must be obtained from that
of v' and v* by the Einstein addition law.

The requirement that the general I.orentz matrix L,
possess the- group property imposes the following con-
ditions on the velocities: Let P' be the magnitude of
the velocity v' of the first reference frame relative to a
second frame, P* be the magnitude of the velocity v* of
the second frame relative to a third frame, and p be the
magnitude of the resultant velocity v of the 6rst frame
relative to the third frame, all magnitudes measured in

i090
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units of the speed of light. Then,

(1) P/(1 —P') 2 = (P*'+P"+2PP' cos82
Pz2P&2 sjn28 )$/(1 Poo)2(1 P&2)2

Here 02 is the angle between v' and v* as measured by
an observer in the second frame. If 0~=0, this equation
reduces to the Einstein addition law. This relation is
the relativistic form of the trigonometric law of cosines,
to which it reduces for small velocities.

(2) 8.(1 P')—:/P=-' 8 (1 P*'—) :/P') -:/P-
= —sin8 (1—P")*/P'.

Here 81 is the angle between v and v' as measured by
an observer in the 6rst frame; 03 is the angle between v
and v* as measured by an observer in the third frame.
This relation is the relativistic form of the law of sines.

(3) We also have the relationships:

cos8o ——cos8i cos8o+ sin8i sin8, /(1 —P') o,

sin8z/(1 —P ') *'= —cos8i sin8o+sin8i cos8o/(1 P') ',—
sin8z/(1 —P")'=cos8z sin8i —sin8o cos8i/(1 —P') '*,

which reduces for small velocities to well-known trigo-
nometric equations for 8,=8,+8,.
(4) As in the classical case, the vector v must be co-
planar with v' and v*.

In Paper I the group property was not essentially
employed so that the results appearing there are not

significantly affected by the use of the Abraham and
Seeker transformation c, in place of L„. Only Eqs.
(23) and (24) of Paper I depend on the particular trans-
formation matrix used, and must be modified for the
general case. In the present paper we shall utilize the
group property in an essential way and will, therefore,
require L,. The transformation L, is orthogonal but
not, in general, Hermitian. Its determinant equals
unity.

Let us return to the case of two reference frames, the
rest frame and the primary frame. Introducing the unit
vectors in the rest frame,

z.o= (1, 0, 0, 0) j.'= (0, 1, 0, 0),
k.o=(O, O, 1, O), ~.o=(O, O, O, z),

into Eq. (1), we find their values in the primary frame,

Since
8„P,= z,Pio+j Pzo+k, Po' L——.&PIo,

we see that the space component of I', is the value of
(Pio, Pzo, Poo, 0) after Lorentz transformation; it is the
space component of I', relative to the rest frame as
measured by a primary observer. Similarly, since

the time component of P, is the value of (0, 0, 0, P4')
after Lorentz transformation; it is the time' component
of I', relative to the rest frame as measured by a
primary observer.

Let us consider some examples of space and time
components. If x, is the position vector of an element of
the physical system along its trajectory as measured
by a primary observer, then

x,—x, (0)=L„x,'= z,x +ioj,xoo+ k,xoo—iu, x4', (5)

where x (0) is the initial position of the origin of the
coordinate system in the rest frame as measured by the
primary observer, and x ' is the position vector of the
element relative to a coordinate system in the rest
frame. The time component of x,—x, (0) is —.ig, x4o

=u,t', the sPace comPonent, z,xi'+j xz'+k, xoo. 1t
may be observed that the whole trajectory is plotted
by the primary observer who uses a single coordinate
system in the primary frame, but not by the succession
of rest observers each of whom records only one position
of the element along the trajectory. The coordinate
systems which the rest observers employ need have no
relation to each other either in point of origin or in
orientation in space. Any vector having components
I' ' in such an arbitrary coordinate system of a rest
frame will have components I' as measured by a
primary observer when the -appropriate value of L,
is used in Eq. (1).

Despite the arbitrary variability of x, along the
trajectory according to the rest observers' choices of
origin and orientation of coordinate systems, the change
in x,o as the physical system moves relatively to any
one such coordinate system may be defined. This is the
change in position along the tangent at a point on the
trajectory as measured by a rest observer at that point
using a single coordinate system. Thus

Zo Lzrl) j~=L.2, k =L,3, u =iL,4. dxI,'=0 for k=1, 2, 3; dx4' ——icdt'.

Accordingly, N, =icL,4, and we find, on using the values
of L,& given by Eq. (2), that

ui ——vo(1 —v'/c')
**for 4= 1, 2, 3, and u4 ic(1 v'/c') l—— —

(3)

In terms of unit vectors, the Kronecker delta 8, and
the unit space tensor 8, become

8„=L,—u,u„8.,=z,z,+j,j,+k k, . (4)

In Paper I, we defined the space component of a
vector I' as 8,„I",an the time component as —4 N,P, .

The corresponding change in dx, along the tangent,
measured by the primary observer, is obtained by dif-
ferentiating Eq. (5). We find

dx =N,dt'.

The "proper" time interval dt' is read on a clock fixed
in the rest frame. Since dx4 ——icdt, we see that

dt = —zu4dto (1—v'/co) ~dto

Consequently, dx& ——u&(1 —v'/c') '*dt for k = 1, 2, 3. Com-
parison with Eq. (3) gives v& dx&/dt. The time inte——rval
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dt is measured as the difference in readings of two
synchronized clocks fixed in the primary frame, one at
the initial point, the other at the final point of the dis-
placement dx&. Accordingly, dt is an interval associated
with the trajectory.

The four-vector velocity u =dx /dt' is itself a time
vector since 6„N,=O. The space component of velocity
of an object relative to its own rest frame is zero when
measured by any primary observer. The four-vector
acceleration du, /dt' is a space vector, since u.du, /dt'= 0
The time component of acceleration of an object relative
to its own rest frame is zero when measured by any
primary observer.

The symbol 8, represents the g'radient operator,
whose time and space components are —8,A, 8, and
b„8,. The factor N, B, in the time component is the
operator, d/dP=u, 8, This .operator was designated as
d/dr in Paper I, but we shall reserve this symbol for
a more general operator defined in Eq. (20) of which
this is a special case.

In Paper I, any symmetric, second-order tensor P„
was resolved as follows

P„=—(1/c') (x„u.u, +u,Q,+u,Q.)+y.„(8)
where the combinations of space and time components
for each tensor index are

—u,Q./c' = 8,„(—P,4.)P„„,
—u~Q~/c = —O~up8~„lgpp,

ypp4, 4,= (—A,u„) (—4,6„)f„„.

Here, if we identify P„as the energy-momentum
tensor, we find that Q, and P„are the components of
heat Aux and stress relative to the rest frame as meas-
ured by a primary observer, whereas xpp is the scalar
invariant energy density relative to the rest frame,
(i.e., nonkinetic energy) which will appear the same to
any primary observer.

In all the resolutions of vectors and tensors into
space and time components which we have performed
up to this point, we have in every case obtained the
components. relative to the rest frame as measured by
the primary observer. But in many physical experi-
ments the primary observer does not measure the
properties of an element of continuum relative to the
rest frame of the element, but relative to some other
arbitrary frame. We call such a frame a secondary frame.
Let the secondary frame have a three-vector velocity v*
relative to the primary frame as measured by a primary
observer; and let the rest frame have a three-vector
velocity v' relative to the secondary frame as measured
by a secondary observer. Then, subject to the condi-
tions stated previously on the magnitude and direction
of the resultant velocity v of the rest frame relative to
the primary frame, we may write the group property
of the I,orentz transformation L, of Eq. (2) as

LO'T LO'p Lpg ~

The transformation P,'=L,'P', ' gives the values P,'
of measurements made upon the rest frame by a
secondary observer and P,=L„*P,' gives the values P
of measurements made upon the rest frame by a
primary observer. Also

PQ J QPP

—u.*u,*P,= —iu.*P4'——L.,*P4'.

Thus 8.,*P, is the value of the space component,
(P,', P2', P3', 0), relative to the secondary frame as
measured by a primary observer, and —u*A,*P, is
the time component, (0, 0, 0, P4'), relative to the
secondary frame as measured by the primary observer.
If the secondary frame and the momentary rest frame
are at rest relative to each other, then we revert to the
case considered previously, with 8„*P,=8„P, and
—6.*A,*P,= —A.4,P,. On the other hand, if the
secondary frame is at rest relative to the primary frame,
then the primary observer is measuring the properties
of the physical system relative to his own coordinate
system in the primary frame. In this case, L,„*becomes
a mere space rotation in the primary frame, so that

b„*P,= (Pi, P2, P3, 0), —i1,*i1,*P,= (0, 0, 0, P4).

For example, let P =Np, the velocity vector. Then
the relative space component, b,*l„equals zero when
the secondary frame coincides with the rest frame, but
it equals (ui, u2, u3, 0) when the secondary frame coin-
cides with the primary. At the same time, the relative
time component, —8,*6„*N„equals I, in the 6rst case,
and (0, 0, 0, u4) in the latter.

We now define the four-vector e.,

v.=u./( —6,4,*). (12)

The invariant quantity —6,4,* will appear frequently
in the following and will be represented by O'. We 6nd

k'= —i44' ——L44' ——(1—P") &

The relative space component of e is 8,*e =L.~*vI,',
which when measured by a secondary observer is equal

gives the values P,* of measurements made by the
primary observer upon physical systems at rest in the
secondary frame. Introducing the unit vectors in the
secondary frame, s,', j,', k,', 4,0, into Eq. (10) we
find their values in the primary frame, f*=L &*,

j.*=L.2*, A; *=L.3*,I,*=iL.4*. The four-vector veloc-
ities I ' and I * are related to the corresponding three-
vector velocities v' and v* by equations similar to Eq.
(3). We may now write the Kronecker delta 6„and a
unit relative space tensor 8„*as

8.,= L,*—4.*4,*, L,*=. S,*i,*+j,*j,*+k.*k,*, (11)

and define the relative space component of P as 6„*P,
and the relative time component as —A,*A,*P,. We
readily find that



CONTI NUUM I N SPECIAL RELATIVITY 1093

to (vi', v2', v3', 0) in which the three space components
constitute the three-vector velocity v' of the rest frame
relative to the secondary frame. The relative time com-
ponent of e is —u *8,*v,=u *, which when measured
measured by a secondary observer is equal to (0, 0, O, ic).
The vector v differs quantitatively from I, only by the
factor 1/k'. But a fundamental qualitative difference
appears between them. In the case of I, it will be noted
that I ' is the value measured by a secondary observer
of the vector u '= (0, 0, 0, ic) associated with the rest
frame. But in the case of v there is no property of the
rest frame which when measured by the secondary ob-
server yields v.'= (v&', e&', ~&', ic). When the primary
observer, therefore, measures m =L„~~,' he is m'easuring
a property of the secondary frame, This is particularly
evident in the expression for the relative time com-
ponent of ~„—N,*Q,*n,=I,*.

We conclude this section with a result which we shaH

find very useful. If A, is a space vector and 8 a time
vector, then

01

—4,*6„*8„*( 8,*6—,*pu,) = —5 „*8„*(8„*pu,),

Bpk, /BT = hap Bp pug) (16)

where we have written

Consider erst the equation of continuity of mass.
This equation was stated in Paper I as B,pl. =0, where
p is the scalar invariant density of rest mass per unit
volume in the rest frame. We now consider instead, the
equation,

8 *pl,=0.

We shall see that this equation describes conservation
of rest mass in motion relative to the secondary frame
as measured by any primary observer. It includes the
earlier formulation as a special case when the secondary
frame coincides with the rest frame.

Resolving the vectors u, and 8 * in Eq. (15) into
'

relative space and time components and using Eq. (14),
we find that

(8,p*A p) (8„*B,)+(—u,*4p*Ap) (—4 *u,*B,)=0, 8/Br*= u,*B,* (17)

so that

ol
A p8p* 8,p*A pB,/——B,4,*,

Apl'*= —6 p*Apv .

B. EQUATION OF CONTINUITY AND GAUSS'
THEOREM

The secondary frames used in physical experiments
have certain special properties which we now formulate,
While the velocity I of the rest frame relative to the
primary may vary in space because of the di8ering
velocities of the various elements of the physical system
relative to the primary, and may vary in time because
of the acceleration of these elements, this is not the
case for a secondary frame. The velocity n,* of the
secondary frame relative to the primary must have the
same value throughout space; that is, the secondary
frame is a rigid reference frame. A necessary condition
for the uniformity in space of I,* is 8„*8,*N.*=O. We
shall require also that the secondary frame be unac-
celerated, so that 4,*8,~m *=0. These two conditions
imply. that

B„*N,*=0 and 8,*8„*=0.

The gradient operator 8, indicates partial differentia-
tion with respect to x,*.

A formalism was presented in Paper I according to
which the basic equations of dynamics and thermo-
dynamics for an element of continuum appear, respec-
tively, as space and time components of the same tensor
relationships. However, the space and time components
were in every case the values relative to the rest frame
of the element. We shall now reformulate these equa-
tions in order to obtain the laws of dynamics and
thermodynamics for an element relative to a secondary
fr arne.

d/dr =u.8.*=k'd/dr*. (20)

This definition supersedes that given in Paper I where
d/dr was identified with d/dt =u, 8„, and includes it as
a special case when the secondary frame coincides with
the momentary rest frame.

It is important to understand the four operators,
d/dr*, d/dr, d/dt', and d/dt'. We shall see that the two
latter ones are special cases of the two former. Writing

e,B,*=v,'8, = lim d,x,'8 '/At',
ht' =0

u.B,*=u. '8.0= lim tt.x.'B,o/tt t',
ato =0

we Qnd that d/dr* expresses rate of change relative to
the secondary frame along the trajectory per unit of

Comparison with the operator uB, = /dd'tshows that
8/Br* gives the rate of change with respect to time
as read on a clock fixed in the secondary frame. Evi-
dently, I 8, and n,*B,* are the same invariant operator
according to the primary observer, which implies that
the rate of Bow of time is the same in every reference
frame when measured by a clock at rest in that frame.

From Eq. (15) we also obtain

Q,B, p= —pB~ I,.
The left side of this equation can be written as

u.B.*p= k'(Bp/Br*+ b,„*v„B.*p)

It is evident that the operator,

d/dr*= 8/Br*+ 8,„*v„B,*=v,8,*,

is the usual hydrodynamic "mobile" time differentiation
operator which follows the motion of the physical
element relative to the secondary frame. %e now define
the operator,
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Accordingly, cf/Ch' gives rate of change relative to the
rest frame along the trajectory per unit of At'; and d/dP,
rate of change relative to the rest frame along the tra-
jectory per unit of At'. Obviously d/dr* and d/dr reduce
to d/dt' and d/dP, respectively, in the special case that
the secondary frame coincides with the rest frame.

The rate of dilatation of an element of continuum as
it moves relatively to the secondary frame is
—d lnpk'/de* which, according to Eqs. (16) and (19),
equals b„*8*v,. The quantity pk' is the density of rest
mass per unit volume 6xed on the secondary frame.
The factor k' appears because of the I,orentz contraction
of volume in motion relative to the observer. If pk'

is constant, then the dilatation rate vanishes, and
8,*8,*v,=o. However, this does not describe the case
of an incompressible material. For this case, p is con-
stant which, according to Eq. (18), requires B,*N,=O;
dilatation occurs at the rate —d ink'/dr*.

Volume integrals of space divergences of the form
6,*8 *P, may be transformed by Gauss' theorem into
integrals over the surface enclosing the volume. In
covariant form, Gauss' theorem is

where de *=b„*dr&,* is a space vector having the direc-
tion of the normal drawn outwardly to the boundary
surface Z* and magnitude equal to an element of area
of Z*. The invariance of —i44*dV* follows according
to the argument given in Paper I, Eq. (72); it represents
the diGerential volume of a region at rest in the second-
ary frame. The conditions of Eq. (14) upon the second-
ary frame are essential for this formulation; for this
reason, the theorem is not applicable to an integral of
a space divergence b„8 I', in the rest frame.

Forming the volume integral of Eq. (16) over a region
fixed in the .secondary frame and applying Gauss'
theorem, we have

Bm/Br*= —
~

pk'n. dm, *, (22)

where m= J'pk'( —i84*)dV~. Equation (22) is the
statement of the classical law of conservation of rest
mass contained in a region V* fixed in the secondary

time interval At'; and d/dr, rate of change relative to
the secondary frame along the trajectory per unit of
time interval Dt'. The proper time interval Dt' is read
on a clock Axed in the rest frame, whereas At'=k'At'
is the diBerence in readings of two synchronized clocks
fixed in the secondary frame, one having the same posi-
tion as the rest clock at the beginning at Dt'; the other,
the same position as the rest clock at the end of dP.
We may write similarly

d/Ch'= lim Ax'cj '/LU'; d/dt = lim Ag'8'/At'

kame. A similar integration shows that the integral
over the region V* of the dilatation rate is equal to the
surface integral J'v.de.*.

The symbol p can also be interpreted as the quantity
of electrical charge per unit volume of the rest frame,
in which case Eq. (15) represents the equation of con-
tinuity of charge. In a molecular theory the equation
of continuity expresses conservation of number of par-
ticles rather than of rest mass or charge; conservation
of the latter results from the Axed quantity of rest
mass or charge per particle. It is obvious that Eq. (15)
applies only when a single chemical species is considered
and chemical reaction excluded, since in the course of
chemical transformation the number of particles of a
species is not conserved.

The tensor f„is the energy-momentum tensor of Eq.
(8) so that, accordingly,

B.*L(x„u.+Q.)N,/c'j= B.*Q.,—u.Q,/c'). (24)

Four equations can be obtained from Eq. (23) by
equating to zero the time components and the space
components of B,*P, relative to the rest frame and the
secondary frame. We consider these in turn.

Multiplying Eq. (24) by —N„we obtain the time
component equation relative to the rest frame,

~ *(x»N +Q.)=4-~ *I (Q /c')(dl —/d~) (25)

Resolving the gradient operator into space and time
components, and using Eq. (13), we And

(~/~~*)( x»k+ L* Q~. /c)+ L'~-*( x„N+ Q)
= (1/c') (8.,*v,y., k'Q, ) (Bu,/8—7~)

+Q„—k'Q, v./c')L, *B,*N,. (25')

Neglecting terms which vanish in the classical limit,
c—+00, we recognize the first law of thermodynamics
relative to a secondary frame. On the left side appear
the rate of increase of energy density x»k' which is the
rest energy per unit volume in the secondary frame, and
the space divergence of the Rux of heat and convected
rest energy, Q,+x»u, . On integration over a volume
fixed in the secondary frame, the integral of the space
divergence term can be transformed by Gauss' theorem
into the surface integral, J(Q +x»k'e, )dn, ~ On the.
right side appears the rate at which thermodynamic
work is performed on unit volume of the secondary
frame.

Multiplying Eq (24) by —. I,*, we obtain the time
component equation relative to the secondary frame,

~.'Lk'(x-~. +Q.)j= ~.*L(@-—N-Q./c') 4*~.j, (26)

C. EQUATIONS OF MOTION

The basic dynamical and thermodynamic hypothesis
of Paper I, 8,$,=0, is replaced here by the more
general assumption,

8 *$,=0.
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which may be written as

(it/Br*)pk'(7f, pk'+L, *Q.s,/c') j+L,*ci,*Lk'(Xp,u, +Q,))
= (1/c') (8/8 *)LQ.,s,b.,*—k'Q, )h,„es„j

+L.*~.*L(4"—.Q./ ')~.;*,j (26')

Equation (26) has the form of a continuity equation for
energy relative to a secondary frame. In the classical
limit, there appear on the left side of Eq. (26') the rate
of increase of energy density, 7fppk'/(1 —P")'* which
includes the kinetic energy density relative to the
secondary frame, and the space divergence of heat and
convected energy Qux, also augmented by the factor
k'=(1 —P") & as compared to the flux in the corre-
sponding term of Eq. (25'). On the right side appears
the rate at which total. work, both thermodynamic and
dynamical, is performed on unit volume. Equation:(26)
is equivalent to

B.*g,u,*)=8.'(saP.4') =0 (26")

Thus in Eq. (26') the operator 8/Br* djfferentiates
f44 — f„fl,, gl,—.

4'44 = x kp"p+28„*Q, /uc pe&8&p vp8~p sp/c'

It is because of Eq. (26") that it is customary to inter-
pr«$44' as the total energy density and icp 4' as the
three-vector of total energy Aux relative to the second-
aly f1anle.

Multiplying Eq. (24) by 8 „we obtain the space
component equation relative to the rest frame,

(1/c') (7f„du /dr+Q, B *u )=E, (27)

where E is a Minkowski force density,

E =B.,B.*Q.,—u,Q,/c'). (28)

Obviously, E is a space vector, so that E I =0 and,
according to Eq. (13), —u *E =8 p*E sfr. Equation
(27) is the basic equation of dynamics relative to a
secondary frame. It may be resolved in turn into two
equations. Multiplication by 8 p gives the relative
space component equation,

(1/c')(7fppdu o p*/dr+Q, B *u o p*)= o seE, (29)

which is the force equation; multiplication by —I *
gives the relative time component equation,

x»dk'/dr+Q B,*k'= o s*E s~, (30)

which is the kinetic energy equation. Thus, the product
of the space component of force relative to the secondary
frame, 6 p*E, by the relative space component of
velocity, bpp*e„gives the rate of performance of dy-
namical work, 8 s*E ss, which according to Eq. (30)
equals the rate of increase of kinetic energy. We may
readily show that

& 0 E &p=rl L(@ u Q /c)~ i

—k' Q.,—u.Q,/c') B.*u„
2 See, for example, R. Tolman, Ee4tieity, Thermodynamics and

Cosmology (Oxford University Press, London, 1934), p. 73.

D. ENTROPY TENSOR AND SECOND LAW OF
THERMODYNAMICS

As in Paper I we write the entropy tensor,

S„=—(1/c') (Sp,u.u,+S.u,+S,u.), (32)

where Spp is the scalar entropy density in the rest frame
and 5, is the entropy Qux vector given by the heat Qux
vector divided by the scalar temperature T.

S.=Q./T. (33)

so that, according to Eqs. (25) and (26), the rate of
performance of dynamical work per unit volume in the
secondary frame is equal to the excess of the rate of
performance of total work over that of thermodynamic
work per unit volume.

Multiplying Eq. (24) by 8,*, we obtain the space
component equation relative to the secondary frame

B.*t (Xppu. +Q.)u, b,*/c'j
= ci *L(4'- u Q /c')~ .*j (31)

This is the equation of continuity of momentum relative
to the secondary frame. It is equivalent to

8 *(P,b,*)=8 of, '=0, mrs=1, 2, 3. (31')

Here we have the basis for the usual interpretation of
ia/i4 ' as the total momentum density three-vector and
11'

' as the total stress three-tensor relative to the
secondary frame.

Just as Eqs. (25) and (26) yielded Eqs. (25') and
(26'), respectively, when the gradient operator was
resolved into its space and time components, similarly
each of Eqs. (27) to (31), inclusive, may be written in

more detail. These equations will not be given here.
However, an important case arises, the condition of the
steady state, the covariant requirement for which is
that the. application of operator 8/Br* to any quantity
characterizing the continuum produce a derivative
whose value is zero. Since the operator 8/Br*, as we
have seen, is equal to d/dt', the steady-state condition
does not depend on the choice of secondary frame to
which the motion of the physical medium is referred.
For example, the kinetic energy equation, Eq. (30),
gives for the steady state

xppk'8, *v B,*k'+8„*Q,B,*k'= L,~E,s„
where the terms in the expression for E„Eq. (28),
which contain 8/Br* also vanish.

The equations of this section all stem from Eq. (23),
which we have seen implies, among other things, the
expression for the first law of thermodynamics. They
will appear more familiar as a description of the con-
tinuum after being modi6ed by the statement of the
second law and the equation for the stress in the system.
They will be employed in the following discussion only
in considering the case of a continuum composed of a
single chemical species in the absence of chemical
reaction.



It was shown in Paper I that S» and T have the proper-
ties, respectively, of the Clausius entropy and Kelvin
temperature. We shall now require that the vector
B,*S„bea time vector. Accordingly,

which permits interpretation of S44' as the total entropy
density and 5 4' as the three-vector of total entropy
fiux relative to the secondary frame.

Similarly, if B,*S„is multiplied- by 6, *, we have

8„8,*5„=0.

Furthermore, we require

8.*(S.,B,.*)= —( u, 8,.*/ c') (u, B.*S.,),
which is equivalent to

(39)

u, B *S„&0. (35) 8.'S.„'= —(u„'/c') (u, B.*S.,) for- m = 1, 2, 3. (39')

8.*(S„u.+S,)+ (S,/c') (du, /d, ) & 0, (35')

or, in more detail,

(8/Br*) (S„k'+S.v,8.,%')+8.,*8.*(cpu,+S,)
+ (S,/c') (du, /dr) &0. (35")

Apart from terms which vanish in the classical limit,
c—+~, these equations state that the local entropy
production rate per unit volume in the secondary frame
is non-negative. A process occurring in the continuum
for which the equality in Eq. (35) holds at every point
will be called a reversible process relative to the
secondary frame.

Equation (34) may be written

Sppdu /dr+S. B.*u = — ,88(S, u). (34')

From this equation two component equations may be
derived. Multiplying by —I *gives the time component
equation,

S»dk'/dr+S, B *k'= —8 p*vp8, 8,*(S,u ), (36)

or multiplying by 6 p* gives the space component
equation,

S»du 6 p*/dr+S, B *(u 8 p*)= —b, *p8, ,8*( ,Su). (37)

These equations describe a sort of entropy dynamics, a
consequence of Eq. (34).

If 8,*5, is multiplied by u,*, we find that

8 *(S„u,*)=k'u, B,*S„&0, (38)

since k is non-negative. This may also be written as

B.*gk'(S»+uS.+8 p*S vpv. / )j)c0. (38')

In a reversible process for which the equality holds, we
And a continuity equation for entropy relative to a
secondary frame. This result cannot be obtained from
the second law, Eq. (35), alone without the use of Eq.
(34). Equation (38) is equivalent to

'8(ic 4S') & 0, (38")

Equation (35) is a generalization of Eq. (55) of Paper I,
but Eq. (34) is a new condition, of a dynamical rather
than thermodynamic nature, which completes the speci-
fication of 8 *So,.

Equation (35) is the statement of the second law of
thermodynamics relative to a secondary frame. It may
be written

Letting
pA =

gpss
—TSpp —pc', (43)

where A is the speci6c Helmholtz free energy, as in
Paper I, and using the equation of continuity, Eq. (15),
we have

—(p/c') d(A+c') u,/dr
= —TB *S„S.,B.*T——B.*g., (44)

Equation (44) is an alternative formulation of Eq.
(24) and yields equivalent thermodynamic and dy-
namical consequences when the time component and
space component equations relative to the rest frame
and the secondary frame are obtained. We shall list
these in turn, each combined with the appropriate
component equation derived from Eqs. (34) and (35).

Multiplying Eq. (44) by u, and using Eq. (35) gives

pdA/dr & S»dT/dr S,B,*T+—(f „B,*u,. —(45)

Multiplying Eq. (44) by u,* and using Eq. (38) gives

pd (A+ c')k'/dr & —k'(S»u. +S.)B.*T
—(S,v,b.,*/c') (dT/dr)+8. *(y „v„8,„*). (46)

Multiplying Eq. (44) by —B., and using Eq. (34) gives

p(1+A/c')du. /dr = —(S,/c')(dT/dr)+8. ,8,*@„(47).
Equation (47), when multiplied by —u,*, gives the
kinetic energy equation,

p(A+c )dk'dr =—(S,ep8, p*/c )(dT/dr)+wpB, p*8„8,*$„,
(48)

or, when multiplied by 8 p*, gives the force equation,

p(1+A/c')du 8 p*/dr

S.(B.p*/c')(dT/dr)+—B.PB.,B.*q., (49)

The right side vanishes in a reversible process, so that
an additional continuity equation appears in this case,

8 *((S»u u, +S u, +S,u )B, *5=0 . (40)

These equations which have been obtained from Eqs.
(34) and (35) may be combined with those of the pre-
ceding section obtained from Eq. (23). We write, using
Eq. (33),

(1/c') (—&» i'S»)u—.u,+TS.,+y.„(41)
so that

—(1/c')B.*I (y,„—TS,„)u,u.j '

TB *S, —S„B,*T —8,*$„. (—42)
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E. THE STRESS IN THE SYSTEM AND
REVERSIBILITY

I.et us now introduce the equations defining the
reversible stress in the system. This is the stress deter-
mined by the properties of the element of continuum
at a point in the physical system. It was denoted by
p„' and defined by Eq; (38) or Eq. (46) in Paper I.
We will denote it here by g„"and replace Eq. (46) of
Paper I by a more general form,

cj.*L(—1/c') p (A+ c')u,u.+y.,']
= (pu. /c') Lcj.*(A+c')u.

B.*(A+c—')u,] S„B,*T —(51).
With the help of the equation of continuity Eq. (15),
we may reduce this equation to

pBg A Spp8g T= Bg Q« . (51')

Consequences of this equation are obtained in the
usual manner. Multiplying Eq. (51') by —u, gives

pdA/dr+S»dT/d7 =P«'8, u, .

Multiplying Eq. (51') by —u,* gives

pBA/8'r +S»BT/BT = Bg ($«vp8g~ ).

(52)

(53)

Finally, multiplying Eq. (44) by —8,* and using Eq.
(39) gives

(p/c') d(A+c')u, 8«*/dr
= ~-*(4-&-*)—(~-*/c') L(S-u.+S.) (dT/d )

+u,S B,*Tj—T(u, 8, */c')(u, cj,*S„), (50)

in which the last term on the right side vanishes in a
reversible process. These equations describe the thermo-
dynamics and dynamics of an element of continuum
composed' of a single, chemically inert species, and
conform to the requirements of the first and second
laws of thermodynamics.

in the isotropic case,

pb, B,~A = S»—8„,ci,*T 8.—8,*p (p/—c') (du /dr)
(54')

But in the classical limit, c—+~, the right side is just
the expression which would be expected to equal
pb „B,*F, where Ii is the specific Gibbs free energy,
rather than pb, B,*A, where A is the specific Helmholtz
free energy. We see, therefore, that B,*A in Eq. (51')
has the property that in its time component or thermo-
dynamic aspect, A plays the role of the Helmholtz free
energy, but in its space component or dynamical aspect,
A has the nature of the Gibbs free energy. It will be
seen in the following that the Helmholtz free energy
will appear in our dynamical equations whereas in the
corresponding classical equations for the isotropic case
the Gibbs free energy would appear. This is particularly
fortunate since it enables us to formulate equations
for anisotropic media which cannot be written classi-
cally, because of the inability of classical theory to
define an adequate Gibbs free energy for anisotropic
media; we use the Helmholz function. In the following
we shall refer to 3 as simply the chemical potential.

Similar remarks, of course, apply to the behavior of
x»/p in the equation,

I ~.'(x-/—I ) = T~~.*(S„—/u)+ ~-*0-" (56)

In the time component of 8,*(x»/p) this quantity
appears as the specific thermodynamic energy, whereas
in the space component it appears as the specific
enthalpy. Classical theory is likewise unable to define
an enthalpy function for anisotropic media.

Since the change in 2 in a physical process depends
only on the end points of the process and not on the
path, therefore, in the reversible case described by the
equality in Eq. (45), the expression for pdA/dr in Eqs.
(45) and (52) must be identical. This is the case if we
take as conditions for reversibility,

Multiplying Eq. (51') by b, gives S,=O and (57)

—p8,8,*A —S8», cTj=8,8.*&.,". (54)

Multiplying Eq. (51') by 8,* gives

—p5,*8,*A —S5»,*8,*T= 8,"Q,"8,*). (55)

In Eq. (52), dA/dr expresses the rate of change of
specific Helmholz free energy, a point function of the
variables specifying the properties of the element of
continuum. In the special case that these properties
are isotropic, p," reduces to the hydrostatic pressure,—pL, . We find with the aid of Eq. (18) in this case
the usual thermodynamic formula,

pdA/dr = S„dT/d7 ppd(1/p)/d—r, (52')—

expressing A as a function of T and specific volume, 1/p.
Equation (54) takes a particularly interesting form S B,*T+(p, —P,")B,*u, & 0, (58)

Following Paper I, Eq. (6'7), we could have chosen the
condition 8.,8,*T=0 instead of S,=0, oGering Fourier's
law of heat conduction as evidence that the two condi-
tions are equivalent. However, Fourier's law, as we shal)
see in the discussion of transport processes which con-
cludes this paper, does not possess the degree of
generality which has been assumed in our formulation
to this point. It seems preferab]. e to take S =0 as the
condition of reversibility with 5,8, 2 =0 as equivalent
to it when the motion of the medium conforms to the
requirements of the theory of transport processes. It is
important to note that the conditions stated in Eq. (57)
are independent of the choice of secondary reference
frame to which the motion of the continuum is referred.

Equations (45) and (52) give, in the general case,
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p (1+A/c') dg. h.p*/dr+ (S.h p~/c') (dT/dr)
= —Spp5 p*b,B,*T—pb„p*8„,8,*A

+h.p*h.,~.*(~.,-~., ). (60)

On the right-hand side, the following force densities
may be recognized:

In the classical limit, c—+~, only the space divergence
term remains on the right. On integration over a volume
fixed in the secondary frame, the integral of this space
divergence can be converted into a surface integr'al,

J Q, —P, ')h„p*dn, *, proportional to the area of the
boundary surface. This force density corresponds to the
classical surface force density of hydrodynamics.

(2) —php *h,B,*A is a body force density arising
from the gradient of chemical potential. As we know,
other forces such as electromagnetic forces and gravita-
tional forces are included among the possible body
forces of classical hydrodynamics. The absence of such
forces in Eq. (60) indicates the limitation of our present
treatnient to a single-component chemical system with-
out external body forces. Equation (59) may be written
in the form

pdl /dr+(S /c')(dT/d7)
= (pu, /c)(8 *AN, —B.*A4 )

S„h.,a,*T+h..a.*(y.,—y.;). (59')—
The term containing the skew-symmetric tensor,
8 *AA,—B,*Ail, suggests the electromagnetic I.orentz
force, (pm, /c) (8 *A, B,*A ), where—A, is a four-vector
potential. Inclusion of such 'an electromagnetic force
would be accomplished by simply replacing the chemical
four-vector potential A 8 by the electrochemical poten-
tial A6,+A, . A general investigation of electrical
processes in continuous media will no doubt reveal such
quantities, but this will not be undertaken here.

(3) —S»hp *h,B,*T is the force density arising from
the presence of entropy in a temperature gradient. This

which is the dissipation equation corresponding to Eq.
(57) of Paper I, while Eq. (45) itself corresponds to
Eq. (58) of Paper I.

In the remainder of this section we shall consider the
dynamical consequences of Eq. (51'), appearing in the
space component equation, Eq. (54). If we combine the
dynamical equation, Eq. (47), with Eq. (54), we find

p(1+A/c2)dl /dr+ (S /c2) (dT/dr)

Staph—,B,*T pL,—B,*A —h, B *(@, $—,"), (59)

corresponding to Eq. (78) of Paper I, the difference
arising from our present assumption of Eq. (34). On
multiplying by 5 p* we obtain the force equation,

force is exerted on the matter with which the entropy
is associated.

The sum of these three force densities constitutes the
single force density hp *h,8,*&„on the right-hand side
of Eq. (49), the total force density exerted on an element
of continuum relative to the secondary reference frame.

On multiplying Eq. (59) by —u * we obtain the
kinetic energy equation,

p(A+c2)dk'/dr+mph p*S dT/dr
Sppvp5ap ~ar Br T—pvp~ap ~ar ~r A

+ phltp hEXT~&P (CIST g~ljT )' (61)

Each term on the right, representing a rate of per-
formance of work per unit volume, is simply the product
of the corresponding force density term of Eq. (59)
by the relative space velocity vp8pp* The last term on
the right, attributable to surface forces, may be written
as

&phap*har~a (4 err far") = &u [(g4a Pea") hap*&p7

—k'(y, —y.,")a.*N, . (61')

Each term on the right side of this equation has an
interpretation in the classical limit. The first yields a
space divergence which gives the total rate of per-
formance of work by the stress at the surface of the
element in excess of that which the element can support.
The other is the rate of dissipation accompanying the
action of this excess stress. It is of interest that dis-
sipative eGects are associated with surfaces stresses,
not with body forces.

For reversible processes the dynamical equations, Eqs.
(47) and (59), give

p(1+A/c')dl. /dr = h, cj.*y.,'
Sh„B,*T —ph, B,*A, —(62)

OI'

pdl /dr= S»h„B,~T+(pN, /c—)(8 *Ad,—B,*AO ).
(62')

According to Eq. (62'), in the absence of a temperature
gradient an element of continuum moves in a reversible
process like a particle of rest mass density p in a field
whose four-vector potential is A4, . As a special case of
reversible process we have the condition of unac-
celerated motion relative to the secondary frame, for
which dl /dr vanishes. Equation (62) shows that in
this case h, 8,*$„"=0.Since the operator d/dr =u,8,*
depends on the choice of secondary frame, the vanishing
of dN /dr in one secondary frame does not guarantee
its vanishing in al) others, unless the secondary frame
in which dl /dr vanishes is also a rest frame.

Equations (52) and (62) can be used as a starting
point for the formulation of the theory of elasticity.
The stress which according to Hooke's law is propor-
tional to the symmetric strain is @„".The theory is
essentially a theory of reversible strains. For example,
in the derivation of the Laplace formula for the velocity
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of sound in a gas, the equations for reversible, adiabatic
compressions are employed.

F. TRANSPORT PROCESSES IN A ONE-COMPONENT
MEDIUM

In the description of the transport processes of con-
duction and diffusion the motion of every element of
the continuum is referred to the same secondary frame.
It is necessary to find a secondary frame relative to
which the continuum everywhere satisfies a special
condition, which may be formulated as

8.*5Q., y.,")—„8,„*j= fi h„8,*$., (63)

It is evident that the fact that Eq. (63) characterizes
the motion relative to one secondary frame does not
imply that a similar relation will hold for all other
secondary frames. This, however, does not vitiate the
covariance of Eq. (63) since this expression is the same
for a)l primary observers; any primary observer record-
ing the motion of the continuum relative to the special
secondary frame will find that Eq. (63) is satisfied, if
the motion is amenable to description by the theories of
diffusion or conduction.

According to Eq. (63), the rate at which total work
is performed upon each element of continuum by the
excess of stress in its surroundings over that in the
element is equal to the rate of dynamical work which
increases the kinetic energy. Equation (48) gives

~.*L(e- 0-")A~'"*j—=) (A+~')d&'/dr
+(S-~pf-p*/")dT/~' (64)

On the other hand, Eqs. (61') and (54) give

&'(4», 4)~.*»—~,= itp&»p*~», &.*4.r"
pep' p—*5,B,*A —Sppvp5 p*8,8„*T, (65)

so that the rate of dissipation k'Q, —p,„")B,*u„is main-
tained by a jowering of potential levels in the element.
If this last equation is combined with Eq. (52), the
rate of thermodynamic work performed by the sur-

roundings upon the element is found to be

k'&„B,*u,=pBA/cir*+SppBT/Br*; (66)

whereas combination with Eq. (58) gives the dissipation
equation,

—Spp~pb p*b,B,*T—k'S.B *T

pvp5 p*= —a p*bp, B,*A—5 p*5p, (9,*T,
S„apl p*+O'Sp(6 p*—v, b „*i.b .%')

—b p*bp, B,*A —c p*bp, B,*T,
(68)

where, according to onsager's reciprocal relations, 4 the
tensors u p*, b p*, c p* are symmetric. These tensors are
pure space tensors in the secondary reference frame.
For example,

f *Sp~u&i'+f, *jp*a»'+z *kp*a»'

a p*= +y *zp*a2iP+y *)p*u220+g *kp*ags'

.+k» zp 83i +k» Jp 8 +k k 8

L'am Ipn ~mn )

where six coefFicients, independent of the velocity com-
ponents e1', v2', n8' of the continuum relative to the
secondary frame, appear. In an isotropic medium we
should have

~ap ~~ap

Substituting Eq. (68) into Eq. (67') gives

a p*b .B.*A8p,B,*A+2b p*8,8.*A bp, B,*T
+c p*fi,8 *T8p,B,*T &0. (69)

Since this relation must be valid for any choice of
8,8,*A and B,B,*T, the determinant

~11 ) ~12 ) ~18 ) ~11 )

~21 ) ~22 ) ~23 ) ~21 )

~31 ) ~32 ) ~33 ) ~81 )

~11 ) b12 ) ~18 ) C11 )

b21 ) ~22 ) 523 ) C21

~12 ) ~18

&23'

b82',

C22 )

&83'
)0,

C18

C28

(70)

it were rigid. "' Equation (67) differs from the corre-
sponding nonrelativistic equation in that the latter is
limited to isotropic media since it employs the specific
Gibbs free energy to represent the chemical potential.
The theory developed here will describe transport
processes in an anisotropic, one-component chemical
continuum in the absence of external body forces. We
follow the method used in the nonrelativistic theory.

Equation (67) can be written

(Sp—pnp5 p*+O'Sp(8 p* v, 8p—p*n.8 */c')]8,B,*T,
—pvp5 p*8,8,*A & 0. (67')

We assume the linear relationships,

&pBp»p8, 8,* A) 0. (67) 63]. ) b82 ) 533 ) C81 ) C32 ) C88

Equation (67) will serve as starting point for a covariant
theory of transport processes.

It is interesting that the alternative form of the
transport condition appearing in Eq. (64) gives, in. the
classical limit, exactly the same equation as that which
must be assumed in a nonrelativistic transport theory,
the equation expressing the assumption that "the
entire acceleration of any Quid element is produced
by viscous forces alone, acting on the element as though

and each of its principal minors must be non-negative.
The conditions of reversibility of transport processes,
under which the equality holds in Eq. (69), appear as

8,8,*T=0 and 8,8,*A =0, (71)

which may be compared to the more general conditions
of Eq. (57). According to Eqs. (68) and (62), we must

' B. Leaf, Phys. Rev. 70, 752 (1946), Eq. (42).
4 L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 {1931).
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also have
vpb p*=0, du /dr=0, S =0, (72)

so that in this case the secondary frame to which the
transport is referred is the rest frame for the entire
continuum. The continuum is static throughout a
reversible transport process, which is, therefore, a
quasi-static process.

Let us write

so that

0 0 0
~esn Omk &kn ~ (73)

7cmn = T(cmn &mjc crjcj ajn )

Solving Eq. (73) for cr q' we find

cr x'=b 'Aj. '/~a;; ~,

(75)

where AI, ' is the cofactor of ai,„' in the determinant
~
a,;~.Therefore,

[ aij j lj'mn /T
~
aij

~
cmn bmj A1cj bkn

812 )
0

0C» )

b1 '
0

0

0 0
&mn

0

which is a minor of the determinant of Eq. (70). Ac-
cordingly, X»', X»', X»' are all non-negative. Clearly,
X „' is a symmetric tensor.

Equations (68) and (73) give

pvpb p* —— ap*(bp, B,*A+app*8p, B,*—T).

Therefore,

hap*= Lam*Lpn*~mI, 0+I ~0

= (Leam Ivvtc Crmk ) (Icvj Icpn ajn ) = Crav avp

Then, according to Eq. (68),

k'Sp(5 p*—vpbpp*v. 8 .*/c')
= —(a „* Sppb ./—p)a„p*bp, B,*A

—(c p* Sppb p*/—p)8p, B,*T
= (paap Spp ap )vp' (cap Pap apv avp )BprBr T.

Therefore,

O'Qp(B p* vpbpp*v—,b .%')=T(pap* Sppv p*)v-p-
Xp*bp, B,—*T, (74)

which, for vpb p*——0, gives in the classical limit Fourier s
law of heat conduction. Here X p*——L *Lp„*A. „',where

is the heat conductivity tensor for an anisotropic
medium.

S.B,T+ Q.,—P.,—")B.u, & 0, (58')

according to Eq. (58). It should be noted that, although
in the reversible case the dissipation relative to every
secondary frame vanishes, in an irreversible process the
magnitude of the dissipation given in Eq. (58) depends
on the choice of secondary frame. (The equation is
nevertheless relativistically covariant since for a given
secondary frame its form is the same for all primary
observers. )

The theory of viscosity differs in method from the
transport theories of diffusion and conduction. In the
theory of viscosity the motion of each element of con-
tinuum is referred to its own rest frame. The transport
condition of Eq. (63) need not be satisfied and no special
secondary frame is employed. The dissipation rate is
given by Eq. (58 ). The linear relations assumed in this
theory were stated in Paper I, Eq. (66), as

These equations describe the transport processes in
terms of the symmetric resistivity tensor r „'. The
quantity r p*(pv )(pvp) is the analog of the Joule elec-
trical dissipation rate in an anisotropic medium per
unit volume in the secondary frame. Both determinants,
~r „'~ and ~X „'~, and their principal minors are non-
negative.

The condition for a transport process given in Eq.
(63) requires that a secondary reference frame exist
such that when the motion of every element of the
continuum is referred to this same frame the condition
should hold. All the equations for transport processes
are formulated for motion relative to this frame.
If this frame shou]d coincide with the momentary
rest frame of some element of the continuum, then
vpb p*=0; the transport process in that element would
consist merely of heat conduction. According to Eqs.
(67) and (78), for such an element the dissipation is
given by

—S.B,T= P p/T)("v .B.T)(bp, B,T) )0,
and, according to Eq. (65), (P,—p, ')B,u, =0. If the
special secondary frame should coincide with the rest
frame of every element of the continuum, then the
entire transport process would consist only of heat
conduction throughout the continuum and these equa-
tions would be valid everywhere. But consider some
element whose motion satis6es the transport condition
relative to a special secondary frame which does not
coincide with its rest frame. Its dissipation will be given
by Eqs. (58), (67'), (69), or (78). Its dissipation is also
given relative to its rest frame as

where
Bpp bprBr A++pp BprBr T rap pva c

rap I am lpn rcnn v rmn Amn /t aij
~

~

(76)

(77)

Par 94r"= rjrrpv&pvv

Zp„=2~bp B„p(B up+Bpu ),

(79)

(80)

Substitution of Eq. (76) into Eq. (67 ) gives, with the
help of Eq. (74),

r *(pv )(p )+(X */T)(B,B *T)(b,B,*T) &0. (78)

where the coe%cients of viscosity p „„relate the excess
stress tensor to the symmetric part Z„„of the tensor
which represents rate of strain relative to the rest
frame. Every index of the viscosity tensor is a space
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index; all time components vanish in the rest frame.
Substitution of Eq. (79) into Eq. (58') gives

S.r—f.T+rf.,„„Z.,Z„. & 0, (81)

where —,q,„„Z,Z„„is the Rayleigh dissipation rate for an
anisotropic medium. In the case of a transport process
consisting only of heat conduction this viscous dissi-
pation must vanish, since as we have seen, the entire
dissipation in this case is —5 B,T & 0. Accordingly, in

this case Z„, must vanish, and P„=P.,". everywhere.
Because of the symmetry of the stress and rate-of-
strain tensors in Eqs. (79) and (81), only 21 independent
viscosity coe%cients exist in the general anisotropic
case. In the isotropic case, in which the excess stress and
the rate-of-strain tensors can be diagonalized simul-
taneously, the number is reduced to 2, according to the
usual arguments; here p„"=—pL„where p is the
hydrostatic pressure.
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The Tamm-Dancoff Formalism and the Symmetric Pseudoscalar Theory
of Nuclear Forces
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The general method of deducing the Tamm-Dancoff equal-
times formalism, as generalized by Levy, from the relativistic
two-body equation of Bethe-Salpeter and Schwinger is given.
Only processes which are finite ab initio are considered. The es-
sence of the procedure is the relation between a set of conven-
tional matrix elements of the Tamm-Dancoff formalism and the
Feynman diagram which summarizes them; this relationship
provides a convenient guide for enumerating all matrix elements
of a specified type and precludes the possibility of omission of any
members of the set. Rules are also given for writing down any
matrix element. The method is then applied to the derivation
of the fourth-, sixth-, and eighth-order adiabatic potentials on the
symmetrical pseudoscalar-pseudoscalar theory. Some discrep-
ancies with the results of Levy are noted: In connection with the

fourth-order potential these are first, that a more careful treat-
ment of the energy denominators of the leading two-pair terms
brings to light contributions that cancel with all other two-pair
matrix elements that are of relative order p/3II compared to the
leading ones; second, that the one-pair terms do not vanish but
yield a repulsive interaction which substantially alters the quali-
tative picture of the fourth-order potential; third, that for the
no-pair terms the result should agree with the previously calcu-
lated fourth-order potential for the pseudoscalar-pseudovector
theory. The sixth- and eighth-order results are also in disagree-
ment with Levy. Finally, an analysis of the problem of many-
particle forces is given and explicit results obtained for the leading
terms of the three- and four-particle forces as well as for certain
smaller contributions to the three-particle interaction.

I. INTRODUCTION
' 'N a pair of extremely interesting papers recently
~- published Levy' has derived a three-dimensional
equation for the relative motion of two particles with
an interaction kernel that, in principle, can be com-
puted to any order in the coupling constant; he has
used his formalism, for the most thorough examination
of the nuclear forces predicted by weak coupling theory
so far attempted and from the results has give a plau-
sible account of the low energy properties of the
deuteron.

Levy's approach is a hybrid one. It consists, 6rst of
all, in an extension of the Pock space method of Tamm'
and Banco'' to include higher order processes involving
multiple meson exchange and pair creation, with the
proviso, however, that all infinite matrix elements
associated with "radiative" corrections be omitted. It
is then possible to eliminate all amplitudes except that
for the two bound nucleons and to obtain an equation

*Junior Fellow, Society of Fellows.
' M. M. Levy, Phys. Rev. 88, 72, 725 (1952);hereafter referred

to as L1 and L2, respectively.'I. Tamm, J. Phys. U.S.S.R. 9, 449 (1945).
3 S. M. Dancoff, Phys. Rev. 78, 382 (1950).

for the latter, which is interpreted as the wave function
of the two-particle system in momentum space. To in-
corporate radiative corrections Levy turns to the rela-
tivistic two-body equation' ' (henceforth called R.E.).
He shows that by an appropriate iteration suggested
by the solution for an instantaneous interaction the
6nite terms of the R.K. can be placed in a one-to-one
correspondence with those of the T.D. (Tamm-Dan-
coff) formalism. It is then possible to carry out all
required renormahzations before the reduction to equal
times for the two particles is eGected, and the hnite
residues can be incorporated into the three-dimensional
interaction kernel.

The present work, begun after the author's reading
of Li, was motivated by the belief that the demonstra-
tion given there of the equivalence between the T.D.
formalism and the appropriately reduced R.K., though
undoubtedly concerned with a true result, lacked co-
gency in certain details and completeness. It was felt,
moreover, that since the R.E. was required for the

4 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951).
~ E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951), re-

ferred to as S.B.' M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).


