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constant is not much sounder than a similar assumption
for the Green's function. However, the fact that the
partial S matrix here obtained is unitary makes us feel
that this covariant calculation presents some progress
over the Born approximation applied to this term.

APPENDIX

In this section we evaluate the integral appearing in

Eq. (9),

and

Pro. 2. Path of integration for the variable z.
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The integration is carried out in the reference frame in
which the spatial components of P, are zero and the
dimensionless quantities cr = l4/222 and c=Fp/m are
introduced. The real part of 8M is obtained by straight-
forward integration with absolute value signs placed on
the argument of the logarithm:

Re 5M = (3g2/162r2) m( —1+2n2+ (1+3422 2c24-
+ (422—1)/e') in~+ ccp (2422—7) (4—c22)
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Here

B(e) = (1—2 (]+cr2)/e2+ (1—422)'/e4)& (A.1a)

u= (c'—1+cr2)/2e2+ 2B2(-e) (A.2)

and that it is negative between these roots. The values

of the logarithm appropriate to the three segments of
the interval may be inferred from the path of integration

shown in Fig. 2, which follows from the choice of Green's

functions for outgoing waves. The imaginary part of
the mass operator is therefore

ImbM = —(3g2/162r) 2N

X(-1+-;v..L1+(1--')/.j)B(.). (A.3)

The numerical value of cr '=M/ =i46.70 may be used

to simplify the expressions in Eqs. (A.1) and (A.3) to

3g 8$
bM = (—2.998+1.862/e' —-'B (e) lnF (e)

16m'

+ypeL1.504+0.531/e' —0.910/c4

+ '(1+-0 9778./e')B(e) lnF (e)$

+22rf 1+22'—pe(1+0 9778/e2.)JB(e)} (A.4).

To obtain the imaginary part of 5M, we note that the
polynomial. cr (1 u)—+u cu—(1—u) which appears in

the numerator of the logarithm in Eq. (9) has two

roots in the region of integration 0~& I~& 1,
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A relativistic meson-nucleon two-body equation is derived in a form suitable for carrying out renormaliza-

tion. Methods for determining the interaction kernel and classifying its terms are discussed. A reduction

of the equation to three dimensions is carried out and the approximations involved in this procedure are

examined. The resulting equation agrees with a corresponding one derived by Tamm-Danco6 methods.

INTRODUCTION

S EVERAL investigations' have been undertaken
recently with the aim of improving the Born

approximation results for pion-nucleon scattering. It is
the purpose of this note to point out that such a boson-

*National Science Foundation Predoctoral Fellow.
'Dyson, Schweber, and Visscher, Phys. Rev. 90, 372 (1953).

fermion system may be described to advantage by
means of a covariant two-body equation akin to the
one employed in the two-nucleon problem. 2 4 %e shall

derive such an equation for the pion-nucleon Green's

' J. Schvringer, Proc. Natl. Acad. Sci. U.S. 37, 452 (1951);also
unpublished lectures at Harvard.' H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).

4 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
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(o) (5)
Fn. 1. The lowest order "Compton" interactions.

function, the latter being defined in a manner analogous
to the two-nucleon Green's function. A symbolic
equation for the interaction kernel of this problem
yields on iteration all the irreducible' terms of the kernel
to any desired order. Approximations to the meson-
nucleon (M.N. ) equation may be based on approxi-
mations to this interaction kernel. For a given kernel,
the M.N. equation may be reduced to three-dimensional
form' 7 with the aid of certain assumptions. In par-
ticul'ar, it is possible to reduce the equation for the
M.N. Green's function with the interaction corre-
sponding to the two simplest "Compton" terms (Fig. 1).
The equation obtained is the same as one previously
derived using a Fock space representation. '

malization, like those of I'5 and G+, must be carried out
when these terms occur in IMN. A further complication
arises due to the dual role of the meson as particle and
virtual field quantum; that is, after IM~ has been
renormalized, its iterates may still diverge. In that case,
the divergences arising in the "ladder" process must be
renormalized as well. It is only with such a prescription
that the meson-nucleon equation yields finite solutions.

Two alternative methods may be used to determine
IMN. The erst employs the fact that given the Green's
function for one nucleon in an external meson field, it is
possible to determine the one-nucleon e-meson Green's
function the second method is closer to that employed
in the two nucleon problem and treats the particles on
a more equal footing.

In the first method, we note that the M.N. Green's
function is related to that of one nucleon in an external
meson field by

GMN(»', t,t,) =~+(t„t,)G+(~, *')

1 5sG~(x, x')
(3)

i 5E(gg)BE(gs) x s

where E is the external meson source, set equal to zero
after differentiation. This follows immediately from Eq.
(1) and the identities

DERIVATION OF FOUR-DIMENSIONAL EQUATION

Q'e shall employ the notation and results of
Schwinger' as modified for pseudoscalar meson theory, '
but including the isotopic spin matrix in the ys($) or
rs($) vertex operators. The M.N. Green's function is
defined by

GMN(», bb)=(~b~G N~~gs)
=-((u(.)a(*')~(l)~(~)).).(*-"). (1)

The desired form for the M.N. equation is

(FE—IMN) GM
= L(VP+~) (&'+~'+ JJ) —IMN]GMN 1 (2)

where M is the nucleon mass operator and II the meson
polarization operator. It is apparent from this equation
that renorrnalization of the separate particle propaga-
tion functions may be carried out in the usual manner;
this leaves only the finite parts of the 3I and II operators
which we shall neglect hereafter. The extra renormaliza-
tion needed in pseudoscalar theory, that of direct meson-
meson scattering, is to be included in the renormaliza-
tion of h~ and offers no special difhculty. This renor-

' E. K. Salpeter, Phys. Rev. 87, 328 (1952).
s M. M. Levy, Phys. Rev. 88, 72, 725 (1952).
~ A. Klein, Phys. Rev. 90, 1090 (1953).

S. F. Edwards, Phys. Rev. 90, 284 (1953).

Dy((lq $2) = z(($((l)4 ($2))+) $($($1))(4($2)). (5)

The variational derivative may be evaluated sym-
bolically:

~&(6)5&(6) x-o

=g G,~, (6, P')r, (t)G,r, (g")~,(t", h)G,

+Gi~ (k 8')r (5')G+r (Y')~+(t" h)G+

5r.(e)
+G. ~.Y, ~)G.

5g&(~)
, ».(~', ~)

+G+r, ((') G+ . (6)
~glt (6)

Matrix notation has been employed in the above for
only the nucleon coordinates, and a summation con-

'The possibility of treating Compton scattering by use of
variational derivatives of the one fermion Green's function has
also been noted by R. Utiyama et ul. , Progr. Theoret. Phys.
(Japan) 8, 77 (1952).
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vention has been introduced for the meson coordinates
including isotopic spin indices. The last term in Eq. (6)
may be seen to vanish since ((~p)+)z p arid (@)x=p
are zero, In the former case this is on account of a
generalized Furry theorem for pseudoscalar symmetric
theory. Thus GMN may be obtained formally in closed
form in terms of G+, A+, F0, and BF0/BE; unfortunately,
these quantities themselves are known only in series
expansion. IMN also may be obtained in closed form by
substituting Eq. (6) into Eq. (2). Here again, only
expansion is practicable, but a given approximation to
IMN may be inserted into Eq. (2) to yield a solution for
GMN which is not a power series approximation to GMN.

In the second method, the equa, tion for IMN is recast
into a form more in correspondence with the two
nucleon problem. From the definition of GMN and the
equation of motion for the operator I", it will be seen
that

5GMN= (vp+~ —gvp(4)+zgvpBIB&)GMN
=&.+(~)Q), (~)

and that therefore

~8™= I~~~~)(e) (g)

Comparing Eq. (8) with the desired form, Eq. (2), and
using BGMN/BE as obtained by differentiating Eq. (2),
we find a symbolic equation for IMN of the form

(IMNGMN) (6, kp)

zgvp(g)G+ (IMNGMN) (gr~ (0)
BX(g)

B&(h 5')
+zgv (5) G (5', 5 )+&(b 5)(4(5))(4(b)) (~)

BZ(t)

This equation may be iterated to obtain IMN~N to
any desired order by substituting the last two terms of
the right-hand side into igVp($)G+(B/—BE($))IMNGMN.
Indefinite repetition of this procedure generates two
distinct groups of terms: the 6rst series, arising from
E(p)(@) consists of generalized "Compton" terms, in
which at least one of the real mesons interacts directly
with the nucleon; the other series, typi6ed by Fig. 2,
contains "indirect" types of interaction in which the
real mesons and nucleon affect each other only through
the nucleon's virtual meson cloud. This latter sequence
results from the middle term on the right hand side of
Eq. (9). Had we derived the interaction using Eq. (6)
we would have found this series of processes along with
some of those of the 6rst series included in the expansion
of BI"/BE.

It is easy to verify that the lowest order nonvanishing
terms in the Compton and indirect series are, respec-
tively '0

I.&" u, n= —'g Lv (S)G.&"v.(e)+v (e)G."'v u)&,
(10a)

A superscript zero is used to denote the propagation function
of a noninteracting Geld.

(or explicitly,

Ic&"(x, x';$;, $ )
z—g'L& ~B(x E—)G+"'(x x')v ~ B(*' —e)
+vpv, B(x—$')G+&" (x, x')vpv, B(x'—$)j, (10b))

and

I. u', ~.) =-'g" (")A. (~,.)v.(e)A, (e,.)
XT.Lv, (g,)G,~o&„(,)G, ~ ~v, (,)G, ~ &v.(gG, ~ ~

+vp(6)G+ vp(1)G+"'vp(b)G+"'vp(I')G+"'
+v p(h) G+"'vp( I)G+"'vp( I')G+"'v p(b) G+"'3

+ terms with $r and (0 interchanged. (11)

As in the two-nucleon problem, 4 only irreducible.
terms contribute to IMN. Since radiative corrections to
the nucleon propagation function and to vp($') yield
reducible graphs, the terms from Fig. 1(a) will take the
form vp($)G+&0&vp($') in higher order approximations.

REDUCTION TO THREE DIMENSIONS

By adaptation of now standard techniques, ' ' the
four-dimensional Eq. (2) may be reduced to three-
dimensional form with an interaction operator correct
to any order. Equation (2) may be written in mo-
mentum space in terms of the total four-momentum E
and one-half the diGerence of the nucleon and meson
momenta, p,

(V(z&+P)+~)((p~ P)'+I"')GM—N(P P' &)

X IMN(p, p"; I )&p"GMN (p", p', I )+B(p p'). (12)—

The erst step in the derivation employs the adiabatic
approximation; we assume that the three-dimensional
Green's function,

G(y, y', ~)=, dPoG(P, y'; ~)
(2K) ' ~

1
~ppdpp GMN(p p ~) (1~)

2x ~

is related to G(p, y'; P) by

G(p, y', E)= (2~) IiQ(p, E)2cvpL(P0 —Ep —or p)A~(y)
+ (~0+&p+~&)A (y)]~(y, y'; &),-(14)

where, in the reference frame in which P= 0,

A+(y) = I:&.~(~ y+P~)3/2&p,
E0= (y'+~')'*, ~0= (y'+I")',

FIG. 2. A typical lowest order indirect interaction.
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~(p, P) =r- p+~M-(-:P.+P.)&- L-, —(-:P.-p.) r-

-+s sPp pp +y+ sP0+ pp-

x +- . (»)
2~s-ooo —sPo+po res+ sPo —po-

Inserting Eq. (14) into Eq. (12), we obtain

G(y p Po) (2rrs)
J ~(p Po)~povol(p P Pp)vodp

XQ(p", Po)G(p", p', Po)

+ (2~) ' &Pofl(p, Po)soil(y —p') (16)

as the equation for the Green's function. "In scattering
problems, the quantities of interests are matrix elements
of G between free particle states at times prior and sub-
sequent to the interaction. At these times, we require
that one nucleon and one meson be present, the meson
having positive frequencies. This means that we need
only be concerned with that part of the Green's function
which has nonvanishing matrix elements between such
states, and desire an equation for this part alone. We
denote it by+6+ where the plus sign on either side
indicates the restriction of 6 to those matrix elements
on that side which satisfy the above criteria. In other
words, +G+=A+(p)op+(p)G(p, p'; P)A+(p')~+(y'), where
the co+ operators select that part of GMN which contains
the proper meson frequencies. With these restrictions,
Eq. (16) becomes

that are thereby excluded may be reinserted to any
desired extent through the use of more complex e6'ective
interaction operators (which are reducible in a four-
dimensional sense). These are obtained by iteration
processes described elsewhere and are of higher order
than the covariant kernel from which they arise; hence
this procedure has been carried out'7 together with the
inclusion of irreducible interaction terms of comparable
order in g'. Clearly, at any stage of the three-dimen-
sional procedure, only part of the initial kernel will be
included so that the three-dimensional effective inter-
action of a given order will in some sense contain less
than the four-dimensional kernel to that order. This is
not to say that there is mathematical justi6cation for
preferring the latter, since for neither approximation is
the error involved known.

Since it is not our aim to solve Eq. (17) in any ap-
proximation, we shall not dwell on the more involved
aspects of this procedure. We merely illustrate it by
reduction of Eq. (12) with the lowest order interaction,
Eq. (10), and with the approximation I+ ++I+." I—n
the coordinate system of Eq. (12), this interaction is

Io"'(P O'Po)=

fg 7'~
vs +, vs (18)

(2s.)' —ypPp+M y(p+ p')+M

Insertion of Eq. (18) into the+I+ version of Eq. (17)
and integration over the relative energy variables yields

(Po—Es—ops)G;s(p, y'; Pp)

—g'
t

(1 yo) r, r; —(1+yo) rrj'
(2s)s & 2 (Pp —M) 2(Pp+M)

r
+G+(p, y'; Po) = (2 s)-' (P-, lP po)—- A-(y+y")r r' /r+(y+ y")r;r;

X &+ (p) (2(ao)
—

'(res —
s Pp+ pp)

—'d ps

x&o1(p P 'Po)&o~p "(P Po)G+(P p 'P)
+(2 .') '~ (p).o~(p —p')W(y') (17)

It is clear that this argument cannot be used to
eliminate the factors

and
(Z,-+ ',P,+p,") '/ (p")--

( .-+lPo Po") '—
occurring in Q(p") on the right-hand side of Eq. (17).
However as long as we have 0+ and not +6+ on the
right-hand side of Eq. (17), the reduction made in going
from Eq. (16) to Eq. (17) does not suflice for our pur-
pose. The simplest assumption, rigorous only when
there is no interaction, is to replace 6+ by +6+, or
equivalently, to replace I+ by +I+. The portions of I

««In contrast to the result in the two-nucleon problem, this
equation is an equation for G and not for certain Dirac spinor
components of G.

+Q EIy+y'r CVy GOy~~ IQ Ey+yrl Ey Eyrl

dp
X =,,(y", y; P.)+(2,')- ~(p—p')&, . (19)

2' y

In wave function form, this equation is the same as
that obtained by a Tamm-Dancoff procedure pre-
viously. ' The "uncrossed" term is troublesome in this
three-dimensional formulation on account of its contact
nature; however, precisely for this reason, the M.N.
equation containing only this term has been solved
directly in four dimensions. " For charge and spin —,

states, only the "crossed" term contributes and the con-
tact term may be dropped in the three-dimensional
investigations.

We are grateful to Professor R. Karplus, Professor
J. Schwinger, and Dr. A. Klein for illuminating conver-
sations and constructive criticism.

"This approximation implies that no more than three nucleons
may be present at a given time and restricts the number of per-
mitted meson states.

"Karplns, Kivelson, and Martin, following paper fphys. Rev.
90, 1072 (1953)g.


