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tude A, we have from Eq. 3, reference 5, I,xI,
where [ is the counting rate of the omnidirectional
detector.

If we separate Sz(E, x) to form the product of two
functions, one dependent on Z, the other dependent on
E and x, then

' Sz(E, x)=kzS(E, %), 2)

where kz~A4, the atomic weight of the primary par-
ticle.® Accordingly,

L=y, =5 ks f S(E, )j(E, dE. (3)
Z Ez(\,t)

Fonger? has fitted the function S(E, x) to the experi-
mental data shown in Fig. 5 for the omnidirectional
detector at 0° and above 40° for x=680 g-cm™2. The
primary differential spectra are obtained from Kaplon

8 W. H. Fonger, thesis, University of Chicago, 1953 (unpub-
lished).
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et al.® The results are as follows:

0 for E<E,,
S(E, 680)=
9.64 In[ (1+E)/ (14 Eo) ] for E> E,,

where Eq is 0.83 Bev. The computed detector counting
rate was normalized to unity at A=0°.

This function will generate an intensity vs latitude
curve which falls below the experimental curve in Fig. 5
at-intermediate latitudes since we do not take account
of the longitude effect.

We are indebted to the many pilots, ground crews,
and the staff at the Flight Test Division, Wright Air
Development Center, U.S.A.F. for their generous
cooperation and expert assistance in this work. We also
wish to express our thanks to L. Wilcox, K. Benford,
W. H. Fonger, R. Baron, and Dr. S. B. Treiman for
assistance.

( 9K'31plon, Peters, Reynolds, and Ritson, Phys. Rev. 85, 295
1952).
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A relativistic meson-nucleon two-body equation applicable to the elastic nonexchange scattering of nega-
tive pions by protons is solved using the lowest order interaction kernel. The scattering matrix which this
equation yields is shown to be unitary. The total cross section calculated from this scattering matrix is
finite at threshold and relatively independent of the coupling constant. A plot of the cross section as a func-

tion of energy is included.

HE relativistic two-body equation!? has proved
useful® in discussing the behavior of two-nucleon
systems. With this equation one may attempt to get
approximate solutions by using terms from the expan-
sion of the interaction operator in powers of the
coupling constant, but not assuming such an expansion
for the meson-nucleon Green’s function itself.# The
three-dimensional approximation to the resulting equa-
tion is equivalent to the configuration space or gener-
alized Tamm-Dancoff method.® The latter has the
disadvantage that self-energy terms cannot be readily
recognized and removed. In the case of negative pion
proton elastic nonexchange scattering that part of the
lowest order kernel which leads to divergences is so
simple that with this term alone we may solve the
four-dimensional integral equation directly. Renor-
* National Science Foundation Predoctoral Fellow.
1H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).
2 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951).
3 M. Levy, Phys. Rev. 88, 441 (1952); A. Klein, Phys. Rev. 90,
1101 (1953).

¢ S. Deser and P. Martin, preceding paper [Phys. Rev. 90, 1075
(1953)]. )

malization may then be carried out in the usual manner.
The scattering matrix for the process calculated from
this Green’s function can be shown to be unitary. For
meson energies above a few hundred Mev the calculated
cross section is almost independent of the coupling
constant; even at low energies the s wave scattering is
insensitive to the choice of coupling constant in the
usual range of values.

We begin with the relativistic meson-nucleon two-
body equation. Using the notation of the previous
papers,?*?® this may be written

L(vp+M) (B4-p?4T) — Inn JGun = 1. (1)

We retain only that part of the interaction operator
which gives rise to the above-mentioned divergence
difficulty,

(@&| Inw | ym) = — iyt GO (6 — ") ys77
- Xé(x—8d(y—mn). (2)
5 S. F. Edwards, Phys. Rev. 90, 284 (1953).
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The superscript 0 on the nucleon Green’s function is
used to indicate that it is the Green’s function for a
' noninteracting field. In the absence of an external field,
we may replace the inherently one-body radiative cor-
rections M and II by m and O, so that our equation
becomes, in the integral form appropriate to scattering:

Gun =G OA O+ GLOA O TynGuy, (3a)
Gun (x’ Yy & ’7—) = G+(O) (xy 3’) A+(0) (gn "7—)

- ig2fG+(°) (2, E)ALO (&4, E)vsmiGLO (&, & )vsr;

XGun (87, 35 £n-)dg/dg”,  (3b)

where we have written the isotopic spin indices, 1, 2, 3,
+ or —, explicitly as subscripts on the arguments of
the A, @ function.

The solution to this equatlon may be found formally.
It is

1
G =G4 O 8, O — ig'G, O 8, Oy57GL D56 04,0, (da)
or, with indices,

G (3, 93 £oy 1) =GO (2, )AL O (4, 1)
—ig? f AEdEGLO (x, £)0,0 (s £/)

Xys7iGy @ (&, &) ysr
XG @ (&7, y)ALO &, n-).
G+® is the solution of the one-body equation
(vp+m+ g Tplys7GLOys7AL O NGO = ®)

It is the nucleon Green’s function obtained by using the
first approximation to the mass operator. In momentum
space, operation with yp+M ® becomes merely multi-
plication by a function of p, whence the inverse operator,
G+ ®, may be determined by taking Fourier transforms.
We obtain®

(4b)

GO (=, x’)—— f dipetr=GW (p), (6a)

102

4
G (p)= 4w
b4 Wim (2m)"

[rro0-8
XysT jA.}. © (k) d4k:l_ . (6b)

The integral in G+ @ (p) may be evaluated by procedures
identical with those used in the corresponding electro-
dynamic calculation? with trivial modifications due to

8 We are indebted to Dr. S. D. Drell for furnishing us helpful
information about K. Brueckner’s recent discussion of this Green’s

function and its bearing on the two nucleon problem.
7 R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).
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the use of a yz7-vertex operator instead of a -y,. Incor-
porating the renormalization terms appropriately, we
have

3g2 1
6M=167r2j; du{[(u—l)'yp—m]
(1 —w)u2+um?+u(1—u)p?
Xln[ ]
(A—u)u>+u*m?
| 2mu?(1—u) } ;
o move- (1— )y g
where

M (p)=M®(p)—m. ()

Since Gumy is the vacuum expectation value of the
ordered product! —[¥(x)¥(») e(£)e(n)lre(x—7y), the
S matrix elements are obtained by integrating Gun be-
tween eigenvalues of the momenta conjugate to ¢,
1!/, and ¢, namely, x=#,0u¢, — By y="n,0.¥, and
WhYu=n.930. The S matrix element between e1gen~
functions ¥, (y) and x; (n) ona space—hke surface prior
to the interaction and ¥/ (x) and xy (E) on such a sur-
face subsequent to the interaction is given by the
expression®

W' x| S| xd)

——j;w dayj;_w a?cr,,j;°° dtrxj:w dog ¥y (%)X (8)

XyoGun (%, ¥;5 & n)voxs e (v).  (8)

In particular, if at large times we assume the fields to
be adiabatically. decoupled, the eigenvalues of the
momenta may be taken to be plane waves satisfying
noninteracting field equations, and we may determine
matrix elements from the meson state with momentum
and charge denoted by (k, i) and the proton state of
momentum and spinor index described by (p, A) to the
state described by (k’, 7') and (p’,\’). The S matrix
element then becomes

@no x| S—1¥ap ki)
=ig2f ded'x"Prr p’ (8) X’ () Yo7

X Gy ® (w—a")ys7ixa’ (¢ Wy (). (9)

Expressing all quantities in terms of their Fourier trans-
forms and performing the usual integrations, we get
@'k |S—1| pk) = CouCoprr 2m)*8 (p'+ &' — p— k)
Xigdn pr (e - T)TvsGD (p+E)vses m)tr . (10)
The quantity C,x is the normalization factor for a

8 J. Schwinger, Lectures on quantum field theory, Harvard, 1952
(unpublished).



1074 KARPLUS,
18 T T T
B a T
o L n
z
«
<
™
|
:J -~
Sz
2
=
o L -
e
o
w
»
(2]
(%] 6r -
8 S SCATTERING
o A
P SCATTERING
0 1 | . |
1149 1.5 2.0 2.5 3.0

TOTAL ENERGY, €

Fic. 1. S and p scattering cross sections as- functions of total
energy emc? in the center-of-mass system. emc? is related to 7', the
kinetic energy of the incident meson in the nucleon rest system,
by T=c2(2m) [m2e— (m~+u)?]. The experimental data are those
of Anderson et al. (A) and Barnes et al. (B). The experimental error
for the latter was not available. )

meson-nucleon function and is given by®

1 m 1 ¥
Cou=(—— dpdk ) .
’ ((ZW)GE(p)Zw(k) P )

The meson amplitudes and Dirac spinors have been
normalized so that

(11

4
and Y hpm,=1. (12)

A=1

(e*-e)=1,

Unlike the Born approximation to the S matrix, the
approximate S matrix here obtained is unitary. We
demonstrate this fact directly by proving that the
matrix S—1 satisfies the relation

(@] (S=1)'(S—1)|a)=—2 Re(e|S—1|a).

The evaluation of (a¢| (S—1)t(S—1)|a) by summation
over intermediate states is accomplished with the use
of the identities

PP i 3 G )= (18

2m i=1

(13)

2
2 Unplhrp=
=1

and integration over p’ and k’ in the frame in which
p'+k'=0 and po'+k/=Po. If, in this frame, q is the
momentum for which Py=E(q)+w(q) and VT is the
magnitude of the space-time region in which the inter-

? E(p)= (m*+p»)? and w(k) = (u2+k?)%.
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action takes place, then the Lh.s. of Eq. (13) becomes

4

8§
Cpk24—VT1Z).p (6,’ .

T

m—+voE (Q) Il )
E(q)+w(q)
XG(I) (Po)’)/5(6i‘ T)’I/t)\p. (15)

GO (Py)t is the adjoint of the Fourier transform of
G® (Py). This is to be compared with —2 Re(a|S—1]a),

DGO (Poﬁ(

—2Re(a|S—1|a)=—2VT Re[ig%ixp(ei'f)“’)’s

SM*(Po)
| —=voPotM (Py)|?

where M * is the complex conjugate of M. Only the
imaginary part of the mass operator need be evaluated
to demonstrate the desired equality. This imaginary
part arises from integration over the logarithm in Eq.
(7). The sign of the imaginary part may be determined
by explicitly including a negative imaginary addition to
the mass. The integral in M (P,) is evaluated in the
appendix. The imaginary part is stated in Eq. (A.3).
The substitution of Eq. (A.3) into Eq. (16) makes the
latter identical with Eq. (15).

The cross section ¢ is obtained from (15) by multi-
plying by the density of final states and dividing by
the relative velocities in the center-of-mass system.
Since the scattering matrix has been expressed in terms
of yo and the unit matrix, there is no mixing of small
and large components of the spin wave functions, and
o divides into cross sections for s and p wave scattering.
Denoting 6M evaluated with y¢=1 and —1 by 6M,
and 6M _, respectively, we find

Y5 (ei . T)MA p]; (16)

4 g [14+E(q)/m](Im 6M_) (172)
= a,
3 ]q[e (Im 8M_/m)*+ (14-e+Re 6M_/m)?
and
2 - M
4 ¢ [1—E(q)/m](Im 6M,) (1)

" 3qle (Im 0M, /my+ (1— e+ Re 5M /m)”

where q is defined as in Eq. (15). A factor of 2, arising
from the isotopic spin matrices which enter explicitly,
and an additional factor of 2/3, required to select only
those final states in which a negative meson is present,
account for the 4/3 in the expressions above. The de-
pendence of the cross section on the kinetic energy of
the incoming meson is shown in Fig. 1. The value of 10
has arbitrarily been selected for the coupling constant
g2/4w. Two experimental values have been included.!0:!!

Naturally, a calculation based on one leading term of
an expansion of the interaction in powers of the coupling

10 Anderson, Fermi, Nagel, and Yodh, Phys. Rev. 86, 793 (1952).

11 Barnes, Roberts, and Tinlot, Summer School Newsletter No. 3
(unpublished).



MESON-NUCLEON SCATTERING

constant is not much sounder than a similar assumption
for the Green’s function. However, the fact that the
partial S matrix here obtained is unitary makes us feel
that this covariant calculation presents some progress
over the Born approximation applied to this term.

APPENDIX
In this section we evaluate the integral appearing in
EQ' (9); ’
3¢

1672

oM =

fo 1 dul[(u——l)yP—.m]

| [(1—u)p2+ um?+u(1— u)P2]
n|

(A—w)u*~+u*m?
2m2u?(1—u)

+(7P+m)2———*~}- 9
mPud+ (1—u)u?

The integration is carried out in the reference frame in
which the spatial components of P are zero and the
dimensionless quantities a=pu/m and e=Py/m are
introduced. The real part of 6)/ is obtained by straight-
forward integration with absolute value signs placed on
the argument of the logarithm:

Re 6M = (3¢/16m2)m{ — 1+ 202+ (1+ 3a?— 2at
+ (a2—1)/€é) Ina+ a3 (202—T7) (4— a?)}
Xtanla(4— a?)}—1B(e) InF (¢)
2y 1— 3024 (1—a?) /e~ (1+4a?
—3at+20%/ &— (1—a?)?/e*) Ina
- — (32— 10) (4— o)t tanla(4—a?)?
+(1—(?—1)/)3B(e) nF (91}, (A1)

B=(1—2(1+a¥)/e+ (1—a?)?/e)?  (A.la)
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Fic. 2. Path of intégration for the variable . -

and

1= (14-a?)/e—B(e)
1—(1+ad)/e+B(e)

F(e) (A.1b)

To obtain the imaginary part of 6}, we note that the
polynomial o?(1—u)+u—eu(1—u) which appears in
the numerator of the logarithm in Eq. (9) has two
roots in the region of integration 0< %<1,

u=(€—1+a?)/2&3B(e). (A.2)

and that it is negative between these roots. The values
of the logarithm appropriate to the three segments of
the interval may be inferred from the path of integration
shown in Fig. 2, which follows from the choice of Green’s
functions for outgoing waves. The imaginary part of
the mass operator is therefore

TméM = — (3g%/16m)m
X{—1+3vee{ 14+ (1—a*)/e]} B(e).

The numerical value of o '=M/u=6.70 may be used
to simplify the expressions in Egs. (A.1) and (A.3) to

(A.3)

Sg'm 2__1
~(—2.998+1.862/ ¢~} B(€) InF (9

167
+70¢[1.5044-0.531/€2—0.910/¢*
+3(140.9778/€)B(e) InF () ]

+ir[— 14+3v0e(14-0.9778/¢) 1B()}.

M=

(A4)
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A Covariant Meson-Nucleon Equation

StaNLEYy DESER* AND Paur C. MARTIN*
Harvard University, Cambridge, Massachusetts

(Received March 9, 1953)

A relativistic meson-nucleon two-body equation is derived in a form suitable for carrying out renormaliza-
tion. Methods for determining the interaction kernel and classifying its terms are discussed. A reduction
of the equation to three dimensions is carried out and the approximations involved in this procedure are
examined. The resulting equation agrees with a corresponding one derived by Tamm-Dancoff methods.

INTRODUCTION

SEVERAL investigations! have been undertaken
recently with the aim of improving the Born
approximation results for pion-nucleon scattering. It is
the purpose of this note to point out that such a boson-

* National Science Foundation Predoctoral Fellow.
1 Dyson, Schweber, and Visscher, Phys. Rev. 90, 372 (1953).

fermion system may be described to advantage by
means of a covariant two-body equation akin to the
one employed in the two-nucleon problem.?~* We shall
derive such an equation for the pion-nucleon Green’s

2 J. Schwinger, Proc. Natl. Acad. Sci. U.S. 37, 452 (1951); also
unpublished lectures at Harvard.

3H, A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).
4 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).



