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A general calculation of the polarization resulting from nuclear reactions is made by means of the .§
matrix and Racah formalisms. All sums over magnetic quantum numbers are performed; and the resulting
polarization is expressed as a series in associated Legendre polynomials, each coefficient being manifestly
real. All selection rules follow immediately from the requirements for the nonvanishing of the Racah and
X coefficients. The only restriction required is to a two-body break-up.

Higher spin tensor moments are required for the complete specification of the state of polarization of a
beam of particles of spin greater than 3. A general expression is given for arbitrary spin moments resulting
from a nuclear reaction. The result is expressed as a series in the spherical harmonics with all coefficients
being manifestly real. The previous results of Blatt and Biedenharn for the angular distribution follow as
a special case of the result. A generalization of the Eisner-Sachs rules for the complexity of angular distri-

butions is also given.

I. INTRODUCTION

CHWINGER! has shown that polarized neutrons

may be obtained by the elastic scattering of
neutrons from He! This is a special case of a more
general theorem, first stated by Blin-Stoyle? to the
effect that, under suitable conditions, the products of
any nuclear reaction will be polarized. As a result it
should be possible to use resonant charged particle
reactions to obtain directly (rather than by an inter-
vening elastic scattering) high intensity beams of
polarized neutrons, with energies variable over a
considerable range.

In Sec. II of this paper, we write down a general
expression for the polarization of particles emerging
from a reaction (the term reaction includes the special
case of elastic scattering). The expression includes the
elements of the nuclear scattering matrix as well as a
sum over magnetic quantum numbers, since the incident
beam and target nucleus are taken to be unpolarized.
The sums over the magnetic quantum numbers are
essentially geometrical in nature, since the elements of
the nuclear scattering matrix are independent of all
magnetic quantum numbers. These sums are eliminated
in Sec. III, and the final result is expressed completely
in terms of the nuclear scattering matrix and the
Racah coefficients.

From the properties of the Racah coefficients, it is
possible to read off the selection rules governing the
polarization. These are listed in Sec. IV.

In Sec. V two illustrative examples are given. In one
case the nuclear parameters given by Peshkin and
Siegert? for the Li®(n,a)H? reaction are used to estimate
the polarization of the emitted tritons. In the second

* This paper is based on work performed for the U. S. Atomic
Energy Commission at the Oak Ridge National Laboratory.

17J. Schwinger, Phys. Rev. 69, 681 (1946).

2R. J. Blin-Stoyle, Proc. Phys. Soc. (London) 64, 700 (1951).
An explicit formula for the polarization of spin } particles is
given in this paper. A previous Letter to the Editor of The Physical
Review was submitted before the authors became aware of this
earlier work.

3 M. Peshkin and A. J. F. Siegert, Phys. Rev. 87, 735 (1952).

case the formula given by Lepore! for the polarization
of neutrons resulting from elastic scattering from He*
is rederived using the general result. A rough rule of
thumb is also given in this section for the angles at
which polarization is most likely to be observed.

If the particle produced in a nuclear reaction has a
spin, complete information on its final state can be
obtained by giving all its irreducible spin tensor mo-
ments. In essence the angular distribution is the
expectation value in the scattered wave of the spin
tensor of rank zero; namely, unity. The polarization,
similarly, is simply the expectation value of the tensor
of rank unity formed by the spin operator 1. In general,
however, an outgoing particle of spin ¢ will have
nonzero irreducible tensor moments up to a maximum
tensor rank given by 2i’. For example, a deuteron
produced in a reaction will have a Legendre second
moment [3(7,/)?— ' (44+1)] which will usually differ
from zero. Lakin and Wolfenstein® have recently
pointed out the possible importance of the deuteron
second-rank tensor in analyzing reactions.

A reduction of the magnetic sums, similar to that for
the polarization, should be possible for this generalized
spin tensor expectation value. This reduction is per-
formed in Sec. VI. The resulting general expression
yields the previous formula for the polarization upon
specializing to tensor rank unity. The expression of
Blatt and Biedenharn® for the angular distribution of
scattering and reaction cross sections is also obtained
immediately by specializing to tensor rank zero.

A generalization of the rules for the complexity of
angular distributions results from the properties of the
Racah and X coefficients. These rules are given in
Sec. VI.

It is interesting to note that even a single level of
definite J (#3% or 0) and parity will produce polari-
zation if more than one subchannel (I value or final

4J. V. Lepore, Phys. Rev. 79, 137 (1950).

5 W. Lakin and L. Wolfenstein, Bull. Am. Phys. Soc. 28, No. 1,
36 (1953)

. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952), references to this paper will be designated by BB.
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channel spin) contribute. Several known reactions offer.

promise. In particular, analyses” of the angular distri-
butions of (p,n) neutrons resulting from resonances in
Cs, B4, Li%, and H? indicate that p waves or higher
and opposite parities are interfering. It, in fact, seems
likely that many neutron sources, hitherto considered
unpolarized, may actually exhibit partial polarization.
Such partial polarization could introduce systematic
errors in the measurement of differential scattering
cross sections for neutrons, if care is not taken.

The present paper is restricted to the case of an
unpolarized initial beam and target. The general case
of the spin tensor moments resulting from an arbitrarily
polarized initial beam has been solved and will be
reported on at a later time.

II. NOTATION AND GENERAL EXPRESSION FOR THE
POLARIZATION

In the following sections the notation of BB will be
closely adhered to. We consider the reaction
a+X=Y+4b, (2.1)
in which particle @ collides with nucleus X. Particle &
emerges at an angle 6 to the direction of the incident
beam, and ¥ is the residual nucleus. All quantities are
measured in the center-of-gravity system. As in BB,
the formulas derived below are applicable to any collision
process in which two particles collide and two particles
emerge.

The system before collision is described by the chan-
nel index « which defines the type of incoming particle
(neutron, proton, etc.) as well as the state of the target
nucleus, the channel spin s, and I the orbital angular
momentum. The channel spin s is the total spin angular
momentum in the entrance channel and is formed by
the vector addition of the intrinsic spin ¢ of the in-
coming particle and the spin I of the target nucleus.
The state of the system after the reaction will be
described by primed quantities.

The asymptotic form of the outgoing wave can be
written [see BB (3.12)]

90\ ¥ exp (thatar)
tﬁ(a’s’):'ﬁ\a(—) ~p—~———~¢a,
Vot

Y

X X qas'm; asms; 0, @)x(s'ms), (2.2)

ms! =—s’

where v, and k, are the relative velocity and wave
number, respectively, in entrance channel a; ¢ is the
product of internal wave functions of nucleus ¥ and
particle & corresponding to the specification o'; xs'm,

7H. B. Willard, private communication.

1037
is the final channel spin wave function; and®

7.7 7. .
g(a's'ms ; asms; 0, @)
© J+s J4s’

@' Y YT @)

| T=0 1=~ V=|T—s'| 7=t1
X (IsOm, | lsTms) Vs’ w'my’ | U's' Tms)
X[8(a, @)8(s", 5)8(V, 1)
=SV asl; Jm) Vv, w6, @). (2.3)

The quantity (IsOm.|lsJm,) is the Clebsch-Gordan
coefficient defined as in Condon and Shortley.® With
this choice of phase, we have V;_,=(—1)"V;,*
Here S(o/s'V; asl; Jr) is an element of the scattering
matrix representing the probability of a colliding system
having a total angular momentum J and a parity = to
go from an incident state described by the quantities
asl to a final state described by o's’/'. The good quan-
tum numbers for this reaction are Jmy and w. The
prime on the summation symbol for the orbital angular
momenta indicates that only those values of I and /'
are to be chosen which will satisfy the parity condition.
For pure elastic scattering S is related to the phase
shift 8 by the relation S=exp(245). Note that Eq. (2.2)
is written for a definite incident channel spin s and
channel spin direction m,. The differential cross section
for the process a—a’ can be written

Iti I'4i s s Al

fwe= Y Y T Y ——
s=II—=i| o'=|T'—4'| me=—s ms'=—s’ (2[+1)(21+1)

X |q(a's'ms; asms; 6, ) |2dQ.  (2.4)

Since the scattering matrix is independent of magnetic
quantum numbers, the sums over all magnetic quantum
numbers are essentially geometrical in character and
can be performed without any detailed knowledge of
the collision process. The elegant reduction of these
sums has been performed in BB. A similar reduction
will be performed for the case of the polarization (as
well as any higher spin moments of interest).

We define the differential polarization in the outgoing
channel o to be

AP o= (W (a's) |V [¥ (') I a®0a ar)nd, (2.5)
where the sum is over all final channel spins and final
channel spin directions and an average is taken over
the initial states. Here 1’ is the spin operator for the
outgoing particle b whose polarization is to be measured.
The polarization will be defined to be

fO)=(")"d|P|/dq,

8 Note that the separation of the final wave function into a
channel spin function and an internal function is an idealization.
Since, however, only angular properties of the wave functions
are of interest, the final answer will be unaffected.

$E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951).
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and such that f has a maximum value of unity for a
completely polarized beam.

It is more convenient in the calculations to evaluate
first the expectation values of those linear combinations
of the components of the spin operator i’ which trans-
form as spherical harmonics. In particular, for the
polarization, we will evaluate the quantities 7,4 where

T®="F (i/i4,))/[2¢ "+ 1) T,
' (2.6)
To®=i,'/[i "+ 1T

These definitions are chosen so as to agree with the
definition of a tensor given by Racah.?

Using Egs. (2.6), (2.5), (2.3), and (2.2), we can now
write the polarization intensity as

AT wa®=1R2 QI+ 1)L (2i4 1)1 Y jltth'—l’
X[ (2hLA41) 2L+ 1) 6 (o, a)d(sy s)8 (', 1)
—S(&/sy'ly’; asla; Jm) TT8(o/, @)3(sy', )50, 1)
—S(a'sy'ly'; asly; Jors) JAQ
X3 X 3 [(asOms | lisT 1) (lasOms | LosT ym.,)

mg m1’ me’
X (W'si'pi'my’ l U'sy'Tims) (Laso' us'ms’ I 1y'sy' T o)
XY *1'u1' YV ig e’ (x (si'my) I T,® IX(Szlmz,))], 2.7)

where the first sum is over the quantities
j1J27rl7l'2Z1lgllllz’S1/S2' and s. For 51mp1icity we have
written msy’ =mi"; mse' =my'.

The expression in the square brackets may be
expressed entirely in terms of Clebsch-Gordan coeffi-
cients by the use of two theorems. One relates the
product of two spherical harmonics to a linear super-

position of spherical harmonics.

lig o [ 24L41) 21+ 1)]%

V*1,Y tgue= (—1)™
4w (2L4-1)

L=|li—12|

X (110200 102 LO) (lidy— papa | IidoLppg— p1) VLo w1, (2.8)

The other expresses the matrix element of 7',V in terms
of the Clebsch-Gordan and Racah coefficients. By the
use of the Eckart-Wigner theorem and the Racah
formalism we obtain the following result, which is
derived in Appendix A:

Oc(s1'm0) | Tu® [ x (s2'my"))
= (=)= m=(24'4-1) (25:'4-1) (255'+1)/(3) ]
X (sl’s{——ml’m?’ I 51,82/1 —x)W('i’S{i’Sz’ H [’1), (29)
where W (abcd; ef) is the usual Racah coefficient.

10 G. Racah, Phys. Rev. 62, 442 (1942); references to this
paper will be denoted by R.
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Combining Egs. (2.7), (2.8), and (2.9) we obtain

ATy o =[Ro*/ (2141) (2i+1) 7 (24'4-1)/12]¢
X3 (— 1) I=i=x jle b=+ 5o, @)8(sy, $)8 (0, 1)
—S(a'si'ly; asly; Jimy) ¥[8 (o @)d (s2's)6 (L' ls)

— S(a’S2l12,; (XSZZ; ]271'2)][(2l1+ 1) (2l2+ 1)

X 20+ 1) 2L+ 1) (2514 1) (255'+ 1) JH(L+1)
X ('1/00| L'l LOYW (¢'s1/d'sy’ s I'1) Y 1, «(0, ¢)dQ
XZ Z Z [(- 1)ms (llsOmsl llsflms)

ms m1’ mg’
X (l2s0ms I leJz’ms) (ll’sl',u.l'ml’ ' ll’sl’flms)
X (I'so ua'my’ |1/ so/ Tams) (Il — i’ | 111y Liey
X (s1'se’—mi'my" | s1's5'1—«) ],

(2.10)

where the sum now includes the index L. Note that
by the properties of the Clebsch-Gordan coefficients,
wi'=me—mi’, ' =ms—my and m,'—ms'=«. Hence the
sum ;' is purely formal and actually reduces to only
one term: my =m' —«.

The remaining geometrical sums over the magnetic
quantum numbers can be eliminated by the use of some
Racah identities which have been recently summarized
in a review paper by Biedenharn et al.!

III. ELIMINATION OF THE MAGNETIC SUMS
By use of BBR (1) and (18) we find that
(150ms | LisT 1ms) (losOm | LosT gms)
= (= 1)stS=m (2] +1) (2T 1)]%};_‘,[(111200 | 112 f0)
X (T 1T a— oy | T T of OW (T T 3 sf) -
Using this reduction once again, there results
(T gms—mg| T 1T 2f0) (I's1 ua'mn’ | 1)s1' T yms)
= (= p)7stsaromet [ Q1) (24 1)/ QI+ 1) T
XZL Qg+ 1) (fsr/Om’| fsi'gmy)
X (Jog—msmy'| T oght! — YW (Jofli'sy; T19) ]
The sum over m; by BBR (1) can now be written as
Z_;[(g]z—ml'ms [ g7 oly'") (W'l — e’ | 1/’ L— k)
X (Jaola'ms—ps’ | T ola'se'my’) ],
which by BBR (19) becomes

=[(20'+1) (2554 1) T (52— mi'my’| gsy' L— )
X W (gJQngl 5 11,52/> .

Finally, the sum on m," can be put in the form
Z, C(fs1'Omy’ | fs1'gmy’) (gso'my' —my' | gso' L)
" X (s1'ss'my’ —my! | 5153/ 1x) ],
which again by BBR (19) becomes
=[3(2g+1) P(F10«[ fIL)W (fs1'Lsy'; g1).

1 Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
(1952) ; references to this paper will be designated by BBR.
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Hence, the entire magnetic sum can be written as

= (=)= NE (2714 1) (2T 1)
XE(=1)/ (241} 00| e fO) (f10¢] /1L

XW(ll]llgjz; Sf)z[(— 1) ”(2g+ 1)W(J2_ﬂ1'$1’; Jlg)
g
XW(gszl2l, l1'Sg’)W(fSllL821; gl)]

Finally, by BBR (14), the sum over g can be written
in terms of the X function defined in Appendix B and
originally introduced by Fano and Racah.!? As a result
the magnetic sum becomes

= (= 1)+l It 3 (2T, 4-1) (2T 4 1)
X L (2f+ 1) (1500|2102 f0) (10| f1Lx)
!

XW(l1]1l2J2; Sf)X(]llllsll; leg’Sz’; le) (31)

In the particular case of the polarization tensor,
which is of rank one, the sum over f reduces to a single
term which is f=L. To see this, recall that by conser-
vation of parity li+I,+1'+1 =even integer. In addi-
tion, the Clebsch-Gordan coefficient (ab00|abc0) van-
ishes unless a+b-+c=even integer [see BBR (5)]. The
corresponding coefficients in Egs. (3.1) and (2.10) now
show that L+f=even integer. However, by the prop-
erties of (f10«x|f1Lx) we must have f=L or f=L-A1.
Hence there follows the result f=L.

The final result for the polarization intensity may
now be written in a very simple form by noting that
the entire dependence on « of dP, is contained in the
terms (L10x| L1Lk)Y 1, . where we have set f equal to L.
Hence

dP;EdP():O,

dPx= (dP_1—dP1)/\/2~%(YL,_1+ YL, 1) _
~—1isingPr!(9),

dPy=1(dP1+dP__1>/ ZN_%i(YL,l—YL’_I) _
~ig cospP1(8),

where P! is the normalized associated Legendre poly-
nomial. This result clearly shows that the polarization
is always normal to the plane formed by the directions
of the incoming and outgoing particles. In terms of the
unit vector n= (k,Xka)/|keXks'| we have the final
result:

dPwa=n(Ro%/4) (214 1) 21+ 1) 22+ 1) !
XY it =R P.Lig8 (o, o (', 1)3 (s, 5)
—S(a/lysy; alys; Ty y¥{8 (e, a)8(ly, 12)8(s2’, )
—S(a'lysy; alas; Jama)} ] (— 1) I'—i'—s+l+Ti=sr
X[ Q204-1) (2024-1) (20'+1) 20"+ 1) 25+ 1)
X (255/4+1) 1} (27 14-1) (2T 241) (14200 | 14, LO)
X (ll’lz'OO l l1’l2’L0)W(’l:/Slli’S2, 5 I,I)W(lljllz.’z, SL)

XX(]llllsll ; ]212,82,; LLl)PLl (G)dQ (32)

27, Fano and G. Racah, unpublished. See also U. Fano,
National Bureau of Standards Report 1214, p. 48.
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where the sum is over JiJorimaoliloli'ls'si'sy’s and L. The
final expression for dP has been written entirely in
terms of real quantities by use of the symmetry property
of the X coefficient for interchange of two rows (see
Appendix B). This form of the expression clearly
shows that the polarization is an interference phe-
nomenon.

IV. SELECTION RULES

The fact that the polarization is always normal to the
scattering plane has been demonstrated in the previous
paragraph. All other selection rules follow from the
requirements for the nonvanishing of the Racah and
Clebsch-Gordan coefficients [see BBR (5) and (13)]
and are listed below:

(a) If only S waves are effective in the reaction, for
either the incident or the final states, there can be no
polarization.

(b) If only levels of the compound nucleus having
J=1 and a single parity (or J=0 with any parity) are
effective, there will be no polarization.

(c) If only channel spin O is effective for the final
channel spin, the polarization vanishes.

(d) Polarization results from the interference of
different subchannels (i.e., partial waves or final channel
spins) contributing to the reaction. (The state of the
residual nucleus must always be the same, of course.)
Hence, if there is only a single nonzero element of the
scattering matrix, the polarization will vanish.

(e) If there is no spin-orbit coupling, the polarization
is zero.

(f) If there is a largest effective incident orbital wave
I, final orbital wave I’ or total angular momentum J,
there will be a largest value of L in Eq. (3.2) given by
the simultaneous conditions

L<21;20;27. (4.1)

In addition, one must remember that L must be even
if the interfering states have the same parity. These
rules are identical to the rules for the limitation of the
complexity of angular distributions.! Selection rules (a)
and (b) are actually special cases of (f). Some of these
rules have been given before by Wolfenstein!® for the
special case of reactions involving polarized particles
of spin 3.

B F, Coester [Phys. Rev. 89, 619 (1953)] has recently con-
jectured that the elements of the scattering matrix S(si; s''; J)
having the same J and = have the same phase. If this were so,
polarization could only result from the interference of levels of
different J or parity and not from the possible interference of
different subchannels of a single level, as stated in Sec. I. The
existence or nonexistence of this type of polarization would then
constitute an experimental check of Coester’s hypothesis. In this
connection it should also be noted that the matrix elements
resulting from the use of perturbation theory or the Born approxi-
mation are all real. Hence in these approximations there can be
no polarization (or higher odd tensor moments). This implies
the absence of circular polarization in ~-rays resulting from
nuclear reactions.

14 C, N. Yang, Phys. Rev. 74, 764 (1948).

15 L., Wolfenstein, Phys. Rev. 75, 1664 (1949).
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It is important to note that, if the observed angular
distribution in a nuclear reaction is not isotropic, we
are assured that selection rules (a) and (b) are not
operating. Furthermore, if the distribution is not
symmetric about 90° in the center-of-mass system,
then selection rule (d) is also not operating.

In many nuclear reactions the largest incident or
final orbital angular momentum is often either a p wave
or a d wave. In such cases the polarization will vary
with angle as P;1(f) or P3*(6) or a combination of these.
In the absence of more detailed information, it would
then seem most profitable to search for polarization in
the vicinity of 45° or 135° in the center-of-gravity
system.

V. ILLUSTRATIVE EXAMPLES

Any calculation of the polarization, as well as any
other spin moments, requires a knowledge of the
scattering matrix. In practice only a few levels con-
tribute to a reaction at a given energy and hence the
formidable sum of Eq. (3.2) reduces to only a few
terms. However, even this limited information is
practically nonexistent.

Recently, Peshkin, and Siegert® have analyzed the
Li%(n,0)H? reaction and obtained some information on
the nuclear parameters. In addition, Lepore* has given
a formula for the neutron polarization resulting from
He* scattering. We will make a numerical estimate of
the polarization of the triton in the Li® reaction and
‘also rederive Lepore’s formula as a special case of our
general result.

Li®(n,e)H? Reaction

The relative angular distribution of the tritons at
270 kev has been found to bel®

I1(6)=1034-83 cosf+192 cos™.

Absorption cross-section measurements!’ show a reso-
nance maximum of 3.1 barns, 2.5 barns of which is
actually due to the resonance, at 250 kev with a width
at half-maximum of about 100 kev. Peshkin and Siegert
have shown that these measurements can be fitted by
assuming that the resonance is of total angular mo-
mentum J=4% formed by a p wave with the entrance
channel spin s=3. In addition there is interference
with the two distant levels formed by s waves. One
being of s=J=1% and the other of s=J=$£. If we now
define the corresponding scattering matrix elements in
terms of the notation in reference 3, we have

S(13;13;3—)=1/V2,
S5(03;03; 3+)=b,
S(2%;03; 3+)=a.
The resultant angular distribution then agrees with

16 Roberts, Darlington, and Haugsnes, Phys. Rev. 82, 299 (951).
17 J. M. Blair and R. E. Holland (to be published).
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that of Peshkin and Siegert and is

do(0)=1%|a|24+%]0|24+2| 7]+ (1/V2) (0*r+b7%)

X cosf+2| 7|2 cos?6]d2.
Comparing with the experimental cross sections, we
find the relative values

|7[2=256, |a|*+3|b]2=39, (b*r+br*)=83V2. (5.1)

The expression for the polarization may now be
written down almost immediately from Eq. (3.2). Since
different entrance channel spins are incoherent, the
only contributing term is that due to interference
between the reactions denoted by 7 and 4. For this
case, the sum on L reduces to a single term, L=1.
Tables of the Racah coefficients have been published
by Biedernharn.’® Using these, we find

W (3333, 01)=4%,
W(130%; 31)=67%
X (313;303; 111)= (216)‘%,
and the final result which is
dP=nA2(864)¥ (rb*— r*b) P11 (6)dS.

By Eq. (5.1) we have |b]| <(78)* and |7|=16, and
thus Ir*b[ <141.3. Now 7b*+7%b=2|7%b|cosp=83V2
where ¢ is the modulus. Hence

|3(76*—7%b) | =2| 7*b|sinp=[4]| 7%b|2—4] *b[2 cos?¢ |}
<[4(141.3)2—2(83) Jt=257.1.

Depending on the unknown phase which is not deter-
mined by the angular distribution, there will be a
polarlzatlon of the triton which may vary from zero to
a maximum value given by

f=105P1(6)/[ 103483 cosb+192 cos?¥].  (5.2)

This expression has a maximum value of 0.95 at an
angle §=100°. Conversely, a determination of the
polarization would establish the value of this phase.

Scattering of Neutrons by He!*

The general formalism has been used to rederive
Eq. (2.9) in reference 4. The only nonzero elements of
the scattering matrix are those referring to .S and P
wave scattering. In terms of the notation of Lepore,
these scattering elements are

1—S(0%; 0%; 34+ )= — 24 exp(ido) sindo,
1-S13;13;3—)=—iT/(E;— E—3%4iD),
1-S1%; 13 8—)=—iT/(E3— E—3iD).
Note that o/=a, I’=1 and s'=s in all cases.
Equation (2.9) in reference 4 was found to have two

misprints. The sign of the first term in the numerator
should be negative. The last term in the denominator

18L. C. Biedenharn, Oak Ridge National Laboratory Report
No. 1098, 1952.
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should read in part (xjx3+3%) rather than (x3+x3+1).
When these corrections are made, complete agreement
is reached.

VI. HIGHER SPIN MOMENTS

The previous sections have been specialized to the
problem of the polarization of the outgoing particle 7.
In essence this quantity is just the expectation value in
the scattered wave of the tensor of rank unity formed
out of the spin operators i’. In general however, an
outgoing particle will have nonzero irreducible tensor
moments up to a maximum tensor rank given by 27'.

The previous results can be made completely general
by a few slight changes. Instead of considering the
expectation value of a tensor of rank unity 7,?, we
ask for the expectation value of the general.irreducible
tensor operator of rank ¢, 7',¢?, which is formed out of
the spin operators 1'.1* We define the differential tensor
moment to be

de, a’a (0
=X @) | TP (a's"))rava var)dS,

where the sum is over all final channel spins and final
channel spin directions, and an average is taken over
the initial states. By Eq. (A.2) we have

- ((s1'm)) | T2 [ x (s9'ma”))
= (= DIt (251 4+-1) (252 + 1) ]
XLE@NTLQI—!Q2i"+¢+ 1)/ (2¢+ D]
X (s1'ss’ —mi'my’ | s1's)' q— )W (/5133’5 I'q)

X P[4/ @+ 1) ).

which replaces Eq. (2.9). Here P, is the usual Legendre
polynomial. The magnetic sums proceed as before with
the only change being the replacement of 1 by g.

As a result, we obtain the following general expression
for the differential tensor moment:

()2 (28— ) 12+ g+ D)1 ]p
202I4+1) (2i+1) (24') !

VR
XPq( [__’L___] )Z (_ 1)1’—i’—s+J1——31’+11’ jle—lrtl—12’
7+1

X[8(a, a)8(sy, 5)8(l, L) —S(si'ly; asly; Jymr) T*
X[6(a!, a)8(ss, $)6(le’, 1) — S (e'sy'ly ; ausly; Jams) ]
X[ (2f4+1) 204-1) (20,4-1) (21/'4-1) (215'4-1)
X (25 +1)(259'4+1)/ 2LA+-1) (2T 1+ 1) (2724 1)
X (l]_/lz,OOI llllzlLO) (l1l200 | l1l2f0)W (l1]112]2; Sf)
XW (3's1'd'so’; I'q) X (Jui's1"; Talo'se’; fLq)
X (fgOx| fgLr) Y L« (8, ¢)de,
where the sum is over JiJamimalilely'ly'si'ss'sL and f.

Note that for tensors of rank higher than unity, the
sum over f does not necessarily reduce to a single term.

(6.1)

(6.2)

dT,‘, a,a(q)z

(6.3)

19 All tensor operators are to be defined so as to agree with the
definition given in R. For definiteness we take

To @ =P,/ /(&' @+ D).
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Selection rules (a), (b), and (d) of Sec. IV are now
seen to apply to all odd values of g. Selection rules (c)
and (e) apply to all values of ¢ greater than zero.

A generalization of the rules* for the complexity of
the angular distribution also follows from the properties
of the Racah coefficients. If there is a maximum effective
final orbital angular momentum /', a maximum initial
orbital momentum I/, or a maximum total angular
momentum J, then a maximum value of L in Eq. (6.3)
is given by the simultaneous conditions

LL2; 21H4-q; 2J+q (g even)

, (6.4)
<2;214q—1;2J4+q9—1 (godd)

along with the condition that L must be even if the
interfering levels have the same parity.

Equation (6.3) is the general expression for the
components of the spin tensor with respect to the
direction of the incident beam. It is also convenient to
have these components expressed relative to the direc-
tion of scattering (8, ¢). If the incident beam direction
is denoted by k and the scattered direction by k’, let
us choose a new coordinate system with 2’ axis along k’,
and with the y axis along kXk’. The Euler angles of
this rotation are then (g, 6, 0) relative to the original
coordinate system.

The spin tensor operator 7,(? in the new system is
then related to the spin tensor operators 7(? in the
original coordinate system by the relation®

T,9=Y D, . ?(gp,0,0)T, 2, (6.5)

where D, ,(? is an element of the three-dimensional
rotation group. The complete dependence on « of Eq.
(6.3) is contained in the factors (fqOk|fqLx)Y 1, «(8, ).
Hence, the new tensor moment contains the trans-
formed factors

2 Diu'®(e,0,0Y .6, ¢) (fqOk| fqLx).

Using the relation
(=110, ©)=[(2L+1)/4x PD_,. o (¢, 6, 0),

as well as the following expansion of the product of two
rotation matrices,*

D™ (R)D’YB(T) (R) = Z (STay I STUa+)
U
X (STBS|STUB+8) D iy, 545 (R),

and performing the sum over « by R (20a), we obtain
for the transformed factors

(=D LEL+1)/2/+1D ] (LgOu| Lgfw)
X [(2L+ 1)/47‘-:]%‘00, #U) (¢a g, O)
2 E. Wigner, Gruppentheorie und ihre Anwendung auf die
Quantenmechanik der Atomspekiren (F. Vieweg, Braunschweig,

1931), p. 165.
21 This is derived in reference 20, p. 203.
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In addition,

DO-I;(f) (foa 0) O) = DO, ll(j) (07 0) 0)
= (= 1“4/ 2f+1) PV 1,0, 0).

This result yields the following simple recipe for
converting Eq. (6.3) so as to give the tensor moments
relative to the scattered axis.

(a) Replace the expressions (fqO«| fgLx) V1, (8, ¢) by
(LqOx| Lqfe) Y ;,«(6, 0).

(b) Multiply by the factors

(—1) e QLA1) 2f+ 1)

The component « now refers to the scattered axis.
Note carefully that the angle 6 is still measured relative
to the incident direction and that our result is now
independent of ¢. Note also that f and L have inter-
changed their roles since the complexity of the angular
distribution is now determined by f. This clarifies the
physical meaning of the parameter f and leads to an
alternative form of the generalized rule for the com-
plexity of the angular distribution. Instead of Eq.
(6.4) we have

<21, 27, 2U4q (g even)
<2, 27, 20+¢—1 (g 0dd)

along with the condition that f must be even if the
interfering levels have the same parity.

(6.6)

Angular Distribution of Nuclear Reactions

It is interesting to note that the results given in BB
for the angular distribution of nuclear reactions now
appear immediately as a special case of our general
result. Since the angular distribution is essentially the
expectation value of the unit operator in the final state,
we obtain this result by taking ¢=«=0 in Eq. (6.3).
An immediate consequence is that f=L and s;/=s,'=5".
In addition, by Egs. (B.1) and BBR (14) and (30),

X (Jidys"; Jaly's"; LLO) = (—1)L+8" =71+’
X W(ll/.fllzljg ; S’L) [ (2L+ 1) (28’+ 1)]_%,

W (i's'd's’; I'0) = (= 1) "+ =T'[ 24"+ 1) (25'+ 1) %,

and Y o=[(2L+1)/4x*Pr(#). The result follows
immediately.

The authors wish to thank Dr. Ugo Fano for per-
mission to see the manuscript by Fano and Racah in
advance of publication and for the information that
the X coefficient was also introduced by Wigner in an
earlier unpublished manuscript.

APPENDIX A. REDUCTION OF THE SPIN
MATRIX ELEMENT

Consider the matrix element (x (si71) | T.(? | x (sm2)),
where s; and s; are channel spins resulting from the
vector addition of the spins ¢ and I. The magnetic
quantum numbers of s; and s, are m; and m,, respec-

SIMON AND T. A. WELTON

tively. The tensor operator 7'x(? operates only on the
particle with spin ¢ and is so normalized that

Ty 0= P,(i//[4 ("+1) ],

where P, is the usual Legendre polynomial. By the use
of the Wigner-Eckart theorem and the Racah formalism
[see R (44) and (16’)] we have?

Oc(s1ma) | T2 [ x (sama)) = (— 1) T—e—im
X[ (2s1+1) (2s2+1)/ 20+ 1) TW (isuisa; Iq)

X(slsz-mlmﬂslszq—x) (i“T(Q)”i), (Al)

where the reduced matrix element (i[|7¢?||:) is inde-
pendent of «, mi, ms, I, s1, and s,. To evaluate this
matrix element then, we can choose special values of
the parameters which allow a solution of Eq. (A.1).
Let us choose k=I=0 and m;=m,=1. Then s;=s5,=1

and
(x(49) | To'? | x (12))= P ([4'/ (7 +1) ¥,
W (idii; 0g) = (—1)*~9/ (2i+1),

and, by BBR (1) and R (16),

(41— 4] 3190) = (— 1)¥~9(43i— i| iiq0)

= (—1)*72(29)!(2¢+ 1)} (2i—¢) ! 2i+g+ 1) 1T
Substituting these in Eq. (A.1) we obtain
G@rely

=P ([4/ (i+1) D[ (29) ][ (2i—g) 1 (2i+g+1) 1
Hence the general result is
Oc(s1m) | T2 | x (s2m2))
= (= 1) (2g+ 1) (24) 1T
X[ 2s1+1) 252+ 1) (26— ) 2i+g+ 1)1

XW('iSliSQ; Iq) (slsz—m1M2Is152q-K)

XP(Li/ (i+1) 1.
For the particular value of ¢g=1,

(x (sym1) | T | x (s2m2) ) = (— )T~ #ml (4sisq; 11)
X[ (2s141) (2s5+1) (2i+1)/3 ¢

X (8182—7’”11%2"91321'—/().

(A.2)

(A.3)

APPENDIX B. SOME PROPERTIES OF THE
X COEFFICIENT

The X coefficient is defined by Fano and Racah'? in
terms of Racah functions as

a b ¢

X(d e )= (=) [ 22+ 1)W (bdcg; 2a)
¢ h i :

X W (dbfh; ze)W (gchf; 26) .

2 For the spin moments of rank greater than zero it is necessary

to specify the scattering matrix more completely than the defini-

tion given in BB (3.3) and (3.2). The phase of the channel spin
wave function must be fixed. We take

Xo,m=Z (tImim—mi| 1ISm) X, miX 1, m—mi-
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Where S=a+4b+ - - -+1. Fano and Racah have shown
than an interchange of two rows or columns multiplies

X by (—1)% and that the interchange between rows
and columns leaves X invariant. It should also be noted
that the elements of each row and each column must
form a possible triad.
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For simplicity in printing, we have written the X
function as X (abc; def; ght). The special value

X (abc; dec; gg0) :
= (—1)cto==<W (abde; cg)/[ (2c+1)(2g+1)] (B.1)

is often useful.
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The Azimuthal Distribution of Photoelectrons Produced by 0.5-Mev Polarized Photons*

FraNk L. HEREFORD AND JEROME P. KEUPERT
Department of Physics, University of Virginia, Charlottesville, Virginia
(Received January 22, 1953)

The azimuth angular distribution of photoelectrons ejected from lead by linearly polarized 0.51-Mev
photons has been studied. The known correlation between polarization states of annihilation quanta was
employed in preparation of the incident beam of polarized photons. Results indicate that for emission from
the K shell, the most probable direction is in the plane containing the momentum and polarization vectors
of the incident photon. The asymmetry in the distribution thereby produced is slightly greater than that
expected from the relativistically computed differential cross section.

ARLY measurements of the spatial distribution of
photoelectrons produced by linearly polarized
photons were carried out by Wilson,! Bubb,? and Kirk-
patrick.? These measurements were confined to photons
of energy less than 40 kev because of the difficulty of
preparing a polarized beam at higher energies. The
results confirmed the cos? azimuthal distribution
deduced from classical considerations by Auger and
Perrin,* and from nonrelativistic quantum mechanics
by Sommerfeld and Schur.? Here ¢ is the angle between
the plane containing the momentum vectors of the
photon and ejected photoelectron and that containing
the polarization and momentum vectors of the incident
photon. Thus the most probable electron emission is
along the polarization vector.

This result is valid only for electrons ejected from
the K shell, those from higher levels showing complete
azimuthal symmetry. The K shell electrons normally
comprise approximately 80 percent of all electrons
ejected for moderately hard quanta.’ Actually the
computed distribution for L electrons contains a term
yielding an azimuthal asymmetry.” However, this com-
component represents a small fraction of the 20 percent
of total intensity deriving from higher levels and can be
neglected for our purposes.

* Supported in part by the Navy Bureau of Ordnance, Contract
NOrd 7873.

T Now with Remington Arms Company, Bridgeport, Con-
necticut.
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For relativistic energies, Sauter® has computed the
distribution for K electrons with the following factor
in the differential cross section giving the angular dis-
tribution,

sin%0
(1—8 cosh)*
+[1/v=5(r—1)(1—8 cosd) ] cos’p}, (1)

where B8 is the photoelectron velocity in units of ¢,
vy=(1—p%"% and 6 is the angle (ko, p) between the
incident photon and photoelectron. For the case of
importance here (§=m/2), this factor reduces to

do~;(y—1)+[1/y—3(y—1)Jcos%.  (2)

In the nonrelativistic limit the second term pre-
dominates in agreement with the previously stated
results. For 3=0.87 (K.E.=0.51 Mev) the second term
vanishes yielding azimuthal symmetry, and for higher
energies this term is negative. Moreover, in this region
the first term, containing the square of the energy,
predominates. Thus for 8>>0.87 the preferred K electron
emission is orthogonal to the polarization vector of the
incident photon. It can be presumed that the 20 percent
of the photoelectrons from higher levels show azimuthal
symmetry for all energies, although no calculations on
this point have been performed.

No experimental results in the region of higher
energies were available until recently when the cross-
polarization property?® of electron-positron annihilation
quanta was used to investigate the azimuthal distribu-
tion of photoelectrons ejected by the 0.51-Mev anni-

do~

{2 (y—=1)*(1—8 cosh)
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