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The dependence of the differential cross section for bremsstrahlung on photon polarization is calculated
in the same approximation as the Bethe-Heitler formula for the sum over polarizations. The radiation is
found to consist of a mixture of an unpolarized and a linearly polarized component. The relation of the
method of intermediate states to the method of transitions between stationary states is explicitly stated.

I INTRODUCTION

T is well known that x-rays produced when an electron
strikes a solid target are polarized. Sommerfeld! has
treated this process on the basis of nonrelativistic
quantum mechanics and showed the correspondence
with the classical picture of the radiation being due to
the acceleration of a charged particle in the electric
field of a nucleus.

The cross section for bremsstrahlung summed over
photon polarization has been treated on the Dirac
theory of the electron by Heitler??® and by Bethe and
Heitler.* The cross section for arbitrary photon polariza-
tion was obtained by May and Wick® by means of the
Weizsicker-Williams method® and by May” as an
extension of the Bethe-Heitler formula for extreme
relativistic energies (>137Z7%mc?). All of these calcu-
lations presuppose the validity of the first Born approxi-
mation in the calculation of the effect of the Coulomb
field on the electron wave function, namely Ze?/Av<1.
Maximon and Bethe?® and Bess® have investigated the
change in the Bethe-Heitler formula for large Z using
the more exact wave function of Furry® and of Sommer-
feld and Maue.!! The exact answer for the first non-
vanishing term in the interaction with transverse
photons has not been obtained even for the intensity
summed over polarizations.

The assumptions involved in the derivation of the
differential cross section formula:*2 for arbitrary photon
polarizations are analyzed below in Sec. II. Stationary
states of matter are considered as being perturbed by
radiation and the first-order effects in €?/%c are calcu-
lated, reducing the problem to the consideration of
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Einstein’s spontaneous emission probability. Com-
parison with other treatments shows the equivalence
of this consideration and that of intermediate states.
In Sec. ITI some symmetry considerations regarding the
nature of photon polarization are discussed.

Symbols and Notation

Po, p=1Initial and final momentum of the electron.
E,y, E=1nitial and final total energy of the electron.
k, k=Momentum and energy of the emitted photon.
6o, §=Angle of po and p with respect to k.
dQ, d2=Element of solid angle in the directions po and
p, taken with respect to k.
Wy, ¥=Dirac wave functions of the initial and final
states of the electron in the field of the nucleus.
®, d=1Initial and final states of the radiation field.
e=Dirac matrix vector. .
a;=Component of « in the direction of polariza-
tion. 4
a, at=Creation and destruction operators for the
electron.
V=Fundamental volume for normalization.
Ar=Vector potential of the radiation field.
o0, ¢=Time independent 4-component Dirac spinors
for the initial and final electron states.
a, S=Direction of spin and sign of energy.
Z=Nuclear charge.
H=Dirac Hamiltonian (H=— «-p—p_m).
q=Momentum transferred to the nucleus (q=po
—p—k).
€?=—2(kE—k-p)=—2kA.
€2=2 (kEo—k . po) = ZkAo
Ao"—"Eo—Po COSO(].
A=E—p cosh.
y#=Matrix four-vector (v, v*); vy=—1iBea, v*=—0.
y!=Component of y in the direction of polariza-
tion.
Pous pu=Momentum energy four vectors (po, 1E¢) and
(p, 1E) for initial and final electron states.
YA =vy*A p.

The constants % and ¢ will be taken as 1 throughout
the paper except where the meaning may be clearer with
the explicit use of 7 and c.
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POLARIZATION OF BREMSSTRAHLUNG RADIATION

II. DIFFERENTIAL CROSS SECTION

The radiation field is treated as a perturbation
between states of the electron in the field of the nucleus.
Thus if ¥ and ¥ are the Dirac wave functions of the
initial and final states of the electron in the field of the
nucleus, and if &, and ® are the initial and final states
of the radiation field, the matrix element for the emission
of a photon with momentum k is given by

M= {DY, e(a-Ar)Pe¥,}, 1)

where « is the Dirac matrix vector and Ag is the vector
potential of the radiation field. It is convenient to
make use of Heisenberg and Pauli’s second form of
-quantum electrodynamics, employing the choice of
gauge enabling the elimination of the electrostatic
field and leaving the radiation variables only in the
description of transverse waves. This is the form of
radiation theory which has proved especially useful in
nonrelativistic quantum mechanics. The interaction
energy with the radiation field may be written as®®

((! * AR (r)) = Zstatesal (fOk/Z"')_%
X{aexp(—ik-r)+iat exp(ck-1)}, (2)

where «; is the component of e« in the direction of
polarization, and U is the fundamental volume used
for normalization. Only the creation operator a con-
tributes to spontaneous emission, and the matrix
element becomes

M=¢(Vk/2m) ¥V, a; exp(—ik-1)¥}. 3)

If exact wave functions of the continuous spectrum
were used for ¥y and ¥ in Eq. (3), one would have the
true cross section except for radiative corrections, the
treatment of which is not attempted in the present
paper. The success of the Bethe-Heitler formula indi-
cates that the treatment of matter waves by the first
Born approximation should be good enough for many
purposes, and all of the work below is carried out by
means of this simplifying device. One then has

) ) Ze?
eO’“I’()(I') = @o €XP (ipo ‘ 1') - (———])
27?04

¢ exp(ip’-1) (¢, po)dp’
Xf , (4.1)
a’ S’

(E'—Eo) [p"—pol?

Zé?
’Ui\I'(r)=(pexp(ip'r)——(— )
2720t

¢" exp(ip”’-1) (¢", p)dp”
X f , (4.2)
S

(EI/__E)lpll__plz
where ¢o, ¢, ¢’, and ¢’ are the Dirac 4-vectors for the
various electron states, o denotes the spin orientation,

13 The notation used is similar to that of G. Breit, Revs. Modern
Phys. 4, 504 (1932).
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and S the sign of the energy in the perturbed states
with moments p’ and p’’ and energy E’ and E”.

If Egs. (4.1) and (4.2) are inserted into Eq. (3), the
lowest order nonvanishing terms are the two linear in Z.
The integration over r in Eq. (3) gives a delta-function
for each of these terms, in one case giving §(p'—p—k)
and in the other 6 (p"’—po+k). The p’ and p”’ integration
then yields an expression of the form

(o, a1¢") (&', 00)
-

NP |
aay |a’S’ E’—Eo

(§0) ﬁo“) <¢//) a“ao) 2
E'—FE '

alt S

©)

The sums over «, &'/, S may be performed with the
aid of the factors (H'+E)/(E'+E) and (H"+Eo)/
(E"+E,) which make the denominators independent
of the sign of the energy in the perturbed electron state.
Here H'=—a-p'—pm and H'=—a-p”’—pm. The re-
sulting expression is of the form

Z [ (907 (A+B)¢0) [27 (6)

@, a0

where

A=a(H'+E)/¢* B=(H"+E)a/e",
?=E"— Ee= (p+k)*+m?— E¢= —2(kE—k-p), (6.1)
¢"?= E""— B?= (po—k)*+m?— E?= 2 (kE,—k-po).

The average over the initial spin states and sum over
the final spin states is carried out by using the pro-

jection operators (H+E)/2E and (Ho+E,)/2E, in the
usual way. The cross section then becomes

do= (226887 (p/po) (dk/q)
X Tr{ (A*+B*) (H+E) (A+ B) (Ho+ Eo) }d2dQ0, (7)

‘where the symbols A* and B* represent the Hermitian

conjugates of the matrices 4 and B, and the momentum
transferred to the nucleus is given by

(7.1)

Equation (7) may also be reached formally by use of
Feynman diagrams. The terms A and B in Eq. (7)
correspond to the two diagrams in which the photon
emitted “after” and “before” the interaction of the
electron with the field of the nucleus, and may be
written down directly according to Feynman’s pre-
scription.”* However, the relationship to the nonrela-
tivistic emission probability calculations employing
exact nonrelativistic functions is not immediately clear
in the method of Feynman diagrams.

The evaluation of the trace in Eq. (7) can lead to an
unreasonable amount of work unless it is properly
arranged and a few of the intermediate steps will be
outlined therefore. It is convenient to introduce the

matrices
yH= (Y) 74>y 74=—B- (8)

4 R, P. Feynman, Phys. Rev. 76, 749, 769 (1949).

q=po—p—k.

y=—1Be,
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The functions H+E and Ho+E, may be written in
terms of the momentum energy four-vectors as

H+4E=—i(yp+im)yt, Ho+ Eo=—1i(ypotim)yt, (9)
where vp stands for Z,v#p, and
bu= (py 'LE)? pou= (pO: 1EU)

The quantities 4, B, A*, and B* in Eq. (7) may simi-
larly be written as

A=y (yp+im)v'/€?,  A*= (yp'+im)vyiyi/€?,
B (10)
B= (yp'"+im)v'yy /€2, B*=yyi(vp''+im)yi/€”,

where

9.1)

P#/= Putlu=pou—qu
Pu”= Pow— k= putqu,
kl‘= (k7 1k) and qu= (q) 0) .

and (
10.1
with )

The ~y-matrices obey the usual commutation rule
(11)

and v, the component of v in the direction of polariza-
tion, having only a space component, anticommutes
with % :

The terms arising in Eq. (7) separate naturally into
those proportional to (¢)™, (¢'¢’)~2, and (¢’)™*. For
example, the term proportional to (¢)* is

— () Tr{ (Ypot im)y* (vp'+ im)~!
X (vp+im)y(yp'+im)yty.  (12)

In the evaluation of the trace, the commutation rule is
conveniently written in the form

(yA)(vB)=2 3, A,B,— (vB) (vA4).

Since a trace is invariant under a cyclic permutation of
its factors, one can arrange for the second factor
yp'+im to occur first, having first removed the free
factors ¥4, ¥! by means of Eq. (11.1). Employing next
relations such as

(im~+p) (im—vyp) = —m—3, Pupu=0,
(tm+p") (im—ryp") = —m> =3, pu'p/ = — €%,
Tr[1]=4, Tr[(v4)(yB)]l=42%. AuB,,

one obtains the term displayed in Eq. (12) after some
simple manipulation as

8p2(AE—¢*) (¢)*+8(pigi— Eok) (¢') 2
) +2(")2 ()2

In a similar manner the term containing the factor
(¢)~* is found to be the result of changing p to po,
€ to €, E to Eo, k to —k, g to —¢ in Eq. (14.1). The
part of the trace containing (¢'¢’’)~2 is similarly found

Y Y= 20,

(11.15

(13)

(14.1)
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to be

16pipo(4EE—¢*) (€ €") 2+ 8 (poigi— kE) (') *
—8 ({)lql— kE(]) (6’)_2—‘ 8k292+ 4,

Combining these three contributions, one obtains

do= (Z%5/47%) (p/ po) (dk/ kq*)dQd
X{(4E*— ) (p2/ M)+ (AE*— @) (poi®/ AdP)
—2(4EEy— ¢®) (pipor/ AAo)
— LA/ At Ao/A—2— (¢*/A00) T},
€?=—2kA, A=E—p cos,

6”2 = 2kA(),

(14.2)

(15)

where

(15.1)
Ag= Ey— po cosby,

and 6 and 6, are the angles of p and p, measured with
respect to k. This expression was reported previously!?
and was also given by May’ who then went on to
treat the extreme relativistic case. If a sum over polari-
zation is taken, Eq. (15) goes over directly into the
Bethe-Heitler differential cross section for brems-
strahlung.
In the nonrelativistic limit Eq. (15) becomes

dox .r.= (Z2%¢%/7%) (p/ po) (dk/ kq*)AQdQ (p1— por)*.

Since on the classical picture p—po is in the direction of
the average acceleration of the electron, Eq. (16) states
that the radiation has its electric vector parallel to the
direction of acceleration, as expected from the preser-
vation of form of classical equations of motion in
quantum theory.

(16)

III. POLARIZATION FOR FIXED ELECTRON
RECOIL DIRECTION

In an adjoining paper Eq. (15) will be used to obtain
the intensity of radiation with specified directions of
polarization / and photon propagation k/k, integrating
do of Eq. (15) over all directions of the recoil electron
momentum p. The present note is being concluded by a
few observations concerning the intensity of the ele-
mentary process, averaging over spin directions of the
electron in the initial and final states but with a specified
direction of the electron recoil momentum p.

Introducing an azimuthal angle ¢, for the direction
I measured in a plane perpendicular to k Eq. (15) can
be verified to be of the form

. do=[ G+ ® cos2 g+ € sin2 ¢, Jd2dQ, 17)
1.e.
’ do=[ G+ D cos2r—2¢:°) 1dUQ,  (17.1)
where
D= (®2+e2)% tan(2¢,)=C/B®. (17.2)

Replacing cos2e by 2 cos?e—1 in Eq. (17.1), one sees

an intensity variation with ¢; of the form
@— D+2D cos?(p1— "), (18)

which is such as would be obtained if the radiation con-
sisted of a superposition of unpolarized radiation of
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relative intensity @— D and of linearly polarized radi-
ation of relative intensity 2®. The direction of the
electric vector of the linearly polarized component is
¢1= ¢{. Intensity measurements with a device capable
of measuring the intensity having a given direction of
linear polarization cannot give more specific information
regarding the composition of the radiation than is con-
tained in Eq. (18). As is well known linearly polarized
light may be resolved into circularly or elliptically
polarized components and it is impossible to claim on
the basis of Eq. (17) that the radiation cannot be
analyzed in other terms than the unpolarized intensity
@— D and the linearly polarized 2D. Thus, for example,
Eq. (18) is consistent with supposing a part or all of
@— D to be circularly polarized. In optics one is able
to distinguish between circular and unpolarized radia-
tions by means of a quarter-wave plate while a Nicol
prism by itself corresponds only to Eq. (18). A quarter-
wave plate between crossed Nicols when rotated
through 90° distinguishes between right- and left-
handed polarization. It is thus possible to distinguish
between @— D being composed of unpolarized radiation
and consisting at least partly of photons having a
preferentially right- or left-handed polarization. Since
the p, po plane is one of symmetry and since averages of
intensity over electron spin directions are taken, one
suspects that there can be no net preference for a sense
of rotation around k. A proof of the correctness of this
surmise will now be given.

" Elliptically polarized photons in the general case can
be described by means of Egs. (135), (136), page 103
of the continuation'® of a previously quoted paper.”
‘The propriety of physical identification in terms of
elliptic polarizations follows from an examination of
absorption or emission effects as on page 102 of the
same reference. Changing ¢ to (7/2)— ¢, the right-
and left-handed ellipses of Fig. 2 on page 102 are seen
to interchange. Calling the radiation variables thus
obtained a@,"’, @;”"" and comparing them with variables
a1"?, a,™ obtained by changing 4 to —4 in the formulas
expressing the a,”’, a,”’1 in terms of the &/, a,'t, one finds

(@)t=—i(@™)t, (s=1,2) (19)

which shows that these variables are equivalent, since
the factors ¢, —7 correspond only to a contact trans-
formation involving one s at a time. It is thus seen that
one can analyze the radiation in terms of elliptic
polarizations with reversed directions of rotation simply
by reversing the sign of ¢ in the defining formulas for
the a”.

The calculation of the intensity of elliptic polarization
takes place through the introduction of the variables
ay’, a;’’ with the result that the «; in Eq. (5) becomes

15 G. Breit, Revs. Modern Phys. 5, 91 (1933).

a,iv= ias"’,
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replaced by expressions of the type a; cosg—ia,, sing
with m standing for a direction perpendicular to k and 1.
According to the discussion of elliptic polarizations in
connection with Eq. (19) the change to the opposite
direction of rotation can be made by changing from
a; COSp—ta, sing to a; cose+ia., sing. The intensity
difference between the two directions of rotation can be
ascertained therefore by substituting a;+iAa., for a;
in Eq. (5) and ascertaining the difference caused by a
change of sign of \. It may be shown in several ways
that the sign of A\ does not matter. One way of doing so
is to transform the sum in Eq. (5) by means of pro-
jection operators which gives an expression of the form
F/(4E,E), with :

F= 3 [(¢)*(HA+E) or(H'+ Eo)/€”

707,

+ (H"+E)an/ € J(Ho+Eo) 0], (20)
where
vy=a,8; Yo=ao, So; (20.1)
and
on=a;+Aam. (20.2)

On employing completeness relations for ¢ and ¢, one
obtains an expression for F in the form of a trace of
products of four-row matrices. The coefficient of 7\ is
also such an expression and the matrices occurring in
the product are Dirac’s ay, as, as, and 3. The trace of a
product of any number of such matrices is real or zero.
Therefore the coefficient of 4\ is real or zero. If the
coefficient were not zero the quantity F would have a
nonvanishing imaginary part which contradicts Eq.
(20). Hence the coefficient of X is zero and a change in
the sign of A does not affect F. By working with Eq. (5)
one can show by explicit calculation that a change in
the direction of the electron spin in the initial, inter-
mediate, and final states leads to a change in the sense
of rotation of the polarization which can be represented
by a change in the sign of \. It is probable therefore
that polarized electrons can produce elliptically polarized
bremsstrahlung. The lack of ellipticity for unpolarized
electrons is the result of compensation of right by left-
handed components somewhat as in the Zeeman
pattern of optical lines. The part @G—D of Eq. (18)
has no net right-handedness. This part of the intensity
is thus neutral to all tests for polarization. The whole
radiation may be considered therefore as consisting of
an unpolarized part with intensity proportional to
@—D and a linearly polarized part with intensity pro-
portional to 2D. The proofs as given refer specifically
to the approximations used in obtaining Eq. (5). The
symmetry involved is that of the time reversal trans-
formation.!6

16 Unpublished work of L. C. Biedenharn and G. Breit.



