The Thermal Neutron Capture Cross Sections of Pa²³¹ and Pa²³²

R. Elson,* P. A. Sellers, and E. R. John Argonne National Laboratory, Lemont, Illinois (Received December 3, 1952)

The neutron capture cross section of Pa²³¹ has been determined to be 293 barns, the largest uncertainty in this determination being due to the uncertainty in the half-life of U²³² and being of the order of 15 percent.

The neutron capture cross section of Pa²³² was determined to be about $40\begin{pmatrix} +40\\-20\end{pmatrix}$ barns.

THE cross section of Pa²³¹ for capture of pile neutrons has been determined by the measurement of the U²³² formed by the beta-decay of the Pa²³² initially formed. Previous values obtained either as above or by direct measurement of the Pa²³² have ranged from 140 to 230 barns.¹

A two-milligram sample of Pa²⁸¹ was irradiated in the Hanford pile along with 4.52 μ g of Np²³⁷ as a flux monitor. The amount of Pu²³⁸ formed was determined radiometrically. The total neutron flux was then calculated from the amount of Pu²³⁸ formed and using the following constants: Np237 half-life, 2.20×106 years;2 Pu²³⁸ half-life, 92 years;³ and the capture cross section of Np²³⁷, 172 barns.⁴ After the sample had cooled sufficiently for essentially all of the Pa232 to decay (16 half-lives), the sample was dissolved in 10M HNO₃ containing a little HF. An aliquot of this mixture was alpha-counted and pulse analyzed for U²³² at this stage. The fluoride was removed by fuming with perchloric acid, and the uranium was isolated by exhaustive extraction with double volumes of ether from a solution 1M in HNO₃ and saturated with NH₄NO₃. There was less than 1 percent by activity of the original U²³² left

* Now at California Research and Development Company, Livermore, California.

in the aqueous solution, as determined by pulse analysis. The uranium was re-extracted into water, and an aliquot was plated and its rate of alpha-emission determined. As pulse analysis showed this sample to be ~ 95 percent U^{232} , the weight could be determined. This value checked that obtained from the assay of the original solution. Assuming that all of the Pa^{232} had decayed to U^{232} and using a value for the half-life of U^{232} of 70 years, 5 a value of the capture cross section for Pa^{231} was determined as 293 barns. The largest uncertainty in this determination is due to the uncertainty in the half-life of U^{232} and is of the order of 15 percent.

An estimate of the capture cross section for the second-order reaction, $Pa^{232}(n,\gamma)Pa^{233}$, was made. After the uranium was removed from the original dissolver solution, the protactinium in this solution was purified by extraction into di-isopropyl ketone from a solution 6N in HNO_3 and further purified by extraction from a 10N HNO_3 solution with thenoyltrifluoroacetone in benzene.

An attempt to resolve the G-M activity of the protactinium fraction failed, and the amount of Pa²³³ present was estimated by following the decay of the sample. As the counting efficiency was not known, this was determined by counting a purified sample of Pa²³³ under the same conditions and estimating its weight by following the increase in fissionability due to the U²³³ daughter. With due corrections for the counting efficiency, Pa²³¹ blank, and other long-lived GM activity, an estimate could be made of the Pa²³³ formed. Assuming a constant flux during the irradiation, a value is estimated for the Pa²³² capture cross section of

$$40 \binom{+40}{-20}$$
 barns.

¹ Clinton Laboratories Report CL-RWS-20, 1946 (unpublished); A. H. Jaffey and Q. Van Winkle, Argonne National Laboratory, Report ANL-4283, 1949 (unpublished); recalculated from data in a report by Elson, Van Winkle, Bentley, and Ghiorso [Argonne National Laboratory Report CF-3795, 1947 (unpublished)].

² L. B. Magnusson and T. J. LaChapelle, J. Am. Chem. Soc. 70, 34 (1948).

³ Seaborg, James, and Ghiorso, The Transuranium Elements: Research Papers (McGraw-Hill Book Company, New York, Inc., 1948), p. 226, National Nuclear Energy Series, Plutonium Project Record, Vol. 14B, Div. IV.

⁴ A. H. Jaffey and L. B. Magnusson, Argonne National Laboratory Report ANL-4030, 1947 (unpublished).

⁵ James, Florin, Hopkins, and Ghiorso, reference 3, Paper No. 22.8.