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The small angle scattering of x-rays or thermal neutrons from
cold-worked crystals is calculated on the basis of two models,
according to which the scattering arises predominantly from the
density variation associated either with small cavities or with
edge-type dislocations. The elastic distortions surrounding the
cavities are unimportant, so that the scattering from cavities in a
uniform medium of density n is the same, to a good approximation,
as that from partices (in vacuum) of density n of the same size
as the cavities. Thus the usual formulas of small angle scattering
obtain, the scattered intensity has the familiar Gaussian-like

. dependence on scattering angle, and earlier results on multiple
scattering may be applied. Around edge-type dislocations, on the
other hand, the density variation is proportional to ins$/r, where

( is the angle measured from the slip direction in the plane per-
pendicular to the dislocation line and r is the distance from the

dislocation line. This angular variation results in a complete
modification of the usual formulas, and, in fact, all of the terms
ordinarily present disappear for this case, and conversely. The
scattering shows a parabolic increase from zero at.small angles,
a maximum, and finally a monotonic decrease with increasing
scattering angle. There is a large degree of anisotropy in the
scattering, depending on the direction of the incident beam rela-
tive to the slip and dislocation axes. Multiple scattering from
an array of dislocations in even a thick specimen is shown to
be negligible. The theory is compared with Slin and Guinier's
preliminary experimental results, and it is concluded that dis-
locations are incapable of explaining their data, although it is
expected that under suitable conditions the measurement of the
scattering from dislocations should be experimentally feasible.

I. INTRODUCTION

A CCORDING to current interpretations, the process
of cold-working leads to the introduction of con-

siderable imperfection into a crystal. For the last dozen
or so years it has been generally believed that much of
this imperfection may be described in terms of dis-
locations of the lattice, and more recently, Seitz' has
suggested that vacancies are produced as a result of the
motion of dislocations during cold-work. The concen-
trations of dislocations involved are perhaps of the
order 10' or 10' dislocation line-cm per cm' in a "per-
fect" crystal, increasing to 10" lines per cm' in a
heavily cold-worked specimen.

Associated with imperfection of these types, there is
a variation in the density of the lattice and a variation
in the scattering power and potential within the ma-
terial. These variations will, of course, affect the elec-
trical conductivity, measurements of which are proving
an important tool in the investigation of crystalline
imperfection. Conductivity measurements, combined

' F. Seitz, Phil. Mag. Supplement I, 43 (1952).
'For'discussion of the sects of (a) dislocations, (b) isolated

vacancies, and (c) clustered vacancies or cavities on the resistance,
see, respectively, the following papers and references contained
therein: (a) D. L. Dexter, Phys. Rev. 86, 447 (1952); (b) D. L.
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with stored energy experiments on cold-worked metals,
suggest that the observed resistivity change per unit
stored energy q may be too large to be explained by dis-
locations or perhaps even by isolated vacancies. A
more advantageous ratio q is expected for clusters of
vacancies.

The density variations will also result in a scattering
of x-rays or thermal neutrons. The small angle scat-
tering of x-rays (wavelength 1A) has developed in
the past 15 years into an accurate and powerful tech-
nique for the investigation' of small particles of linear
dimensions I.)10'A. Although the most striking suc-
cesses have dealt with biological materials, 4 Blin and
Guinier' have recently made preliminary measure-

Dexter, Phys. Rev. 87, 768 (1952); J. W. Kauffman and J. S.
Koehler, Phys. Rev. 88, 149 (1952); (c) D. L. Dexter (to be
published).

~ A. Guinier, Ann. phys. 12, 161 (1.939) and many subsequent
papers.' The reader is referred to a series of papers in J. Chem. Phys.
by W. %. Beeman and his co-workers on the scattering from
protein molecules in aqueous solution, for example, Ritland,
Kaesberg, and Eeeman, J. Chem. Phys. l8, 1237 (1950). See also
Kaesberg, Ritland, and Beernan, Phys. Rev. 74, 7I ll948l.' J. Blin and A. Guinier, Compt. rend. 233, 1288 (1951).Pro-
fessor Guinier has kindly informed the writer in a private com-
munication that the concentration of scatterers mentioned in their
paper was too large by about a factor of 10.
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ments of the scattering from cold-worked metals, and it
seems probable that small angle scattering will become
useful also in the investigation of crystalline imperfec-
tion. It is, therefore, the purpose of this paper to
compute the scattering to be expected from clustered
vacancies, or cavities, and from dislocations.

II. SCATTERING FROM CAVITIES

%e consider an electively infinite medium con-
sisting of a solid of electron density e, and atomic
density n . For the sake of definiteness we shall speak
throughout of x-ray scattering and shall consequently be
concerned with the electron density and the Thompson
scattering coefficient I,. It is clear that our conclusions
will likewise apply to neutron scattering, if we replace
e, by e, and the x-ray scattering cross section per elec-
tron by the neutron scattering cross section per atom.

The coherent scattering by the perfect infinite
medium will, of course, all be in the forward direction
and will be indistinguishable from the direct, unscat-
tered beam. Thus only the deviations from the density
e, will be of interest to us. If we introduce into the
medium a number E of randomly arranged identical
regions of constant electron density e,', the coherent
scattered intensity will be

I(e) =I,N[V (sz,
'—n,)j'(1—3r (2zrpe/X)'+ ), (1)

where ~ is the angle of deviation from the incident beam,
I, the intensity scattered by a single electron, U the
volume of one of the identical regions of electron density
e,', and p is the radius of gyration defined by

where the integration is carried out over a single region.
. Thus the scattering is a maximum in the forward direc-
tion. It should be noted that I(e) is proportional to the
square of the difference between the electron densities.
Thus a number Ã of cavities of density zero scatter
exactly as S particles in vacuum of the same shape and
of density tz, . The small angle approximation in Zq. (1)
requires that sin(e/2) be replaceable by e/2 and that
3 (2zrpe/X)' be less than 1. Thus we may not treat the
scattering of 1-A x-rays from isolated vacancies by this
approximation, since the radiation will be scattered
over large angles where sin(e/2) is not e/2. For large
cavities, however, Zq. (1) is valid out to the angle of
half-maximum intensity, in so far as the model is
adequate. All of the above follows directly from well-

known results.
The above model is certainly applicable if the elastic

distortions surrounding a cavity are sufficiently small.
According to the theory' of elasticity of an isotropic
continuum, the displacement of the. medium surround-

' S. Timoshenko, Theory of E/astzezty (McGraw-Hill Book
Company, Inc. , ¹wYork, 1934).

ing a spherical cavity of radius e at the center of a
sphere of radius 8 is of the form

where
U(r) =A r/r'+Br,

8=2A (1—2v)/R'(1+ v),

(3)

Since the density change is roughly independent of
position, the lattice surrounding the cavity does not
contribute to the scattering, and the radius of gyration
is determined solely by the size of the cavity. Thus the
primary effect of the distortions is to change the factor
[V(rz,'—zz,)j' by an amount that will be seen to be
negligible, and the radius of gyration determined by
experiment will correspond in the usual way to the
geometrical size of the cavity.

If the magnitude of the displacement at the surface
of a cavity is p, then A=a'(p/a), so that Eq. (5)
becomes, on setting v 3, 6D/D 23(Na'/R') (—y/a).
The factor Na'/R' is the fractional volume of the sphere
occupied by cavities and is less than or about equal to
10—' for all cases in which we shall be interested. Like-
wise, y/a is in all cases much less than unity. Thus we

may certainly neglect the eGects of distortion in the
surrounding medium, and we may treat the cavities
in a medium of initial density n, as small particles of the
same size and shape and of the same density e, dispersed
in vacuum.

Blin and Guinier' found that their experimental data
on copper, heavily cold-worked at room temperature,
are characterized in angular dependence by a radius of
gyration of about 6.6A. This experimental figure is,
of course, determined independently of any model
which may be chosen to interpret the data and corre-
sponds to the spatial extent of whatever regions may be
present in which the electron density di8ers from that
of the surrounding medium. If these regions be spherical
and of a constant density, they correspond to a volume
of 2.6&(10 "cm', or about 200 times the atomic volume
of copper. If the density is constant but the regions are
nonspherical, the volume is correspondingly less. Blin
and Guinier' likewise made a preliminary measurement
of the absolute intensity of the scattered x-radiation.
From comparison with Eq. (1), therefore, the total
nuniber of scattering regions may be determined for
any specific model consistent with the measured radius
of gyration. For example, if one assumes the scattering
regions are spherical cavities of radius of gyration 6.6A

v is Poisson's ratio and A is determined by the boundary
condition at the surface of the cavity. The fractional
change in the density of the medium associated with the
distortions resulting from S cavities is then given
approximately by (bD/D) NV —U, and since the
divergence of the first term in Eq. (3) vanishes, we
obtain a density change

8D NA (1—2v)—= —6
D R' (1+v)
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and electron density zero, the concentration of cavities
turns out to be about 7)(10'7 per cm'. ' The fractional
volume of the copper occupied by cavities would then
be 1.8)&10 '. If one chooses cylindrical cavities in the
shape of a pancake, of thickness J=3A, radius a= 9.25A

$p = (a'/2+X'/12) &=6.6A), the concentration becomes
7.3)&10"cm—', and the fractional volume occupied by
the cavities is 5.9)&10 '. Similarly for cylindrical rods of
L=22.6A, a=1.5A (p=6.6A), the concentration would
be 1.8)&10" cm ', and the fractional volume occupied
would be 2.9X10 '. (The above shapes for the cylinders
were not selected as reasonable physical models but
were chosen as limiting cases. )

It is clear that if one employs too thick'a scattering
sample, a given photon may be scattered more than
once. Such multiple scattering would broaden the scat-
tering curve and would result in too small a radius of
gyration, if- the interpretation were made on the basis
of Eq. (1). There exists an alternative procedure for
obtaining the radius of gyration, however, in cases
where multiple scattering is present, a method depend-
ing on the variation of the width of the scattering curve
with sample thickness. ' As will be seen below, this
method is not practicable for the systems of interest
here.

The condition that multiple' scattering have neg-
ligible e8ect is given by p, ,t(1, where p,„the linear scat-
tering coefFicient, is equal to

p, = 27ro'V [V(m
'—e )O'Ot/(40m p') (6)

Since V varies as p', p, , appears to vary as the fourth
power of the radius of gyration. It must be recalled,
however, that the fractional volume of a cold-worked
specimen occupied by cavities cannot become greater
than about 10 ', since the fractional density change of
cold-worked crystals is of this order of magnitude.
Hence, we must add the condition that XV&10 ', so
that p, varies linearly with p for samples in which KV
has reached its maximum value of 10 '. Thus we see
that for very small cavities p(100A, multiple scattering
need not be considered at all. Alternatively, we may
say that the condition for the experimental practica-
bility of the multiple scattering method' for determining
particle size is given by

@gal p~) (7)
7 D. L. Dexter and W. W. Beeman, Phys. Rev. 76, 1782 (1949).

where ro is the classical electron radius e'/me', ) the
x-ray wavelength, V(r4 —ii,') the deficit of electrons in
each scattering region, X the number density of the
regions, and where t is the thickness of the scattering
sample. Thus, for example, in the first case mentioned
above for copper, with X=1.54A, V=2.6X10 " cm',
Ãp 2 4)(10 cnl pz 0) X 7)& 10" cm ', and
p=6.6A, the condition for negligible multiple scattering
is

t(40 cm.

where p, is the linear absorption coefFicient of the bulk
medium. For spherical cavities, we may solve the
inequality (7) for the radius of gyration, first inserting
the relation VX & 10 '. We find as a necessary condition
that appreciable multiple scattering occur,

p) 2 X104r,&/Zli'

where 7, is the mass absorption coefhcient, 6 the atomic
volume, and Z the atomic number of the bulk medium.
In obtaining Eq. (8), we have taken the atomic weight
as approximately twice the atomic number. All quan-
tities in Eq. (8) are expressed in cgs units. It is clear
that Eq. (8) cannot be satisfied and that the multiple
scattering method cannot practicably be applied to
cold-worked specimens by means of x-rays.

For neutron scattering the linear scattering coefFicient
is given by Eq. (6) with N,

' —e, replaced by N,
' ri, —

and with ro2 replaced by o,/4~, the coherent scattering
cross section per unit solid angle for neutrons of wave-
length X. With e,'—e of the order 10" cm ' and 0; of
the order one barn, the condition for negligible multiple
scattering becomes

t(2X104 cm,

a condition that indicates the experimental imprac-
ticability of a multiple scattering measurement with
neutrons.

III. SCATTERING FROM DISLOCATIONS

In this section we shaH compute, on the basis of
certain approximations, the coherent, disuse, small
angle scattering to be expected from dislocations in a
heavily cold-worked crystal. Since the separation of
dislocations in heavily cold-worked metals is believed
to be of the order of 100A,' it perhaps seems impossible
at first sight to attempt to explain with dislocations
the scattering observed by Blin and Guinier' which was
characteristic of a linear dimension of 17A (for spherical
regions). Nevertheless, the peculiar distribution func-
tion for electrons surrounding a dislocation Lsee Eq.
(9)) would be expected to reduce the "effective"
characteristic length for the distorted region about a
dislocation. It will be seen below that this is indeed the
case but that the reduction is insufFicient to explain the
observed data.

We shall ignore the effects of vacancies in this section;
we shall likewise ignore the scattering from the screw-

type component of the dislocations, since to a first
approximation, there is no electronic density change
associated with this type of imperfection. ' It is assumed
that the dislocation liges do not remain straight for
macroscopic distances, but rather are frequently bent,
that the principal component changes from screw to
edge type over distances of the order of the mean
spacing of the dislocations, and that only small co-
herence occurs in the scattering from regions surround-

8 A. J. C. Wilson, Research 2, 541 (1949};3, 387 (1950).
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ing neighboring edge-type sections. This assumption of
random phase from one such region to the next certainly
is not exactly valid; quantitatively correct results can
perhaps be obtained by the calculation of corrections
for coherence, when more is known about the detailed
geometry of interacting dislocations. (Such corrections
would be expected to reduce the scattering at very
small scattering angles, as in the scattering from con-
centrated solutions. As will be seen below, however, the
scattering has a minimum in the forward direction
anyway, so it seems certain that interference corrections
will not change the qualitative aspects of the scattering
curves. ) A further approximation, which is closely
related to the others, is the neglect of end effects at the
termination of an edge-type component of the disloca-
tion line. Now, according to the theory of elasticity for a
homogeneous isotropic medium, the density change at
a point in a lattice is equal to'

sing
(9)

In this expression i is the Poisson ratio (approximately
equal to —, for most materials), a is the unit slip distance,
r is the distance from the point to the dislocation line

(Z axis), i.e., r= (x'+y')'*, and t is the angle from the
slip direction (X axis) measured in the XF plane, i.e.,
)= tan '(y/x). (The "extra plane" of atoms, according
to this notation, in the I'Z plane, and XZ is the slip
plane. ) It will be noted that, since the density change
below the slip plane is the negative of that above, there
is no excess or deficit of matter in a symmetrical region
region surrounding the dislocation axis. This fact has
important consequences on the shape of the x-ray scat-
tering curve.

Following the assumptions described above, we take
as our model for the elementary, coherently scattering
region, the lattice surrounding a length I of edge-type
dislocation, out to a distance E. equal to about half the
average separation between dislocations. We' shall
arbitrarily cut off our unit scattering region by con-
sidering only that volume enclosed in a right circular
cylinder of radius 8 and length I.; the scattering we
calculate with this model will be very similar to that
obtained from any cylinder of length I. and of sym-
metrical cross section, for example, a square. The matter
outside the cylinder is considered. to contribute to the
scattering associated with neighboring dislocations, and,
in accord with the assumptions discussed above, the
total scattered intensity will be taken to be the sum of
the intensities scattered from the individual cylinders.

The scattered intensity from one of these cylinders

' J. S. Koehler, Phys. Rev. 60, 397 (1941).

is given by

I=I,
~ De(r)dry "De(r')d7' cosk(l —/'), (10)

~ L/2I f

ds
K I8 -~~ I/Q o

d$ sing dr

Xcosk{r sin8(cos p cos$+ sing sing)+s cosg}

~ L/2 ~2~

+ '

ds~ d$
singlet

dr
—LI2 0 0

X sink(r sin9(cosy cosg

+sing& sing)+s cos8} . (12)

In most scattering problem the density function is
an even function of $ and the second term of this sum
vanishes by symmetry. In the present case, however,
the reverse is true, since the presence of sin) in the
density makes the first term vanish. Performing the
integrations indicated in Eq. (12), we obtain

I z'167r' sin'(-'kL cos8) sin'q
I= L1—Jo(kR sin8) j'. (13)

k4 COS219 Sin28

Let us now define an axial ratio u=—I-/2R and a
reduced scattering angle y=—2m. oR/X=kR. If the dis-
locations are distributed with random orientation in
the cold-worked specimen, the average intensity scat-

' See, for example, A. Guinier, Radiocristallogrcphie (Dunod,
Paris, 1945), p. 229.

where k=—(4'/X) sin(o/2). io In the usual small ang]e
approximation, we set k equal to 2m.o/X throughout the
following. The lengths l and l' are de6ned in the cus-
tomary way as follows. We consider an incident x-ray
AB, having a given orientation with respect to the
cylinder, and consider a particular ray BC scattered
through an angle e. The angle bisector of the supple-
mentary angle ABC will be referred to as I, and the
angle between I. and the axis of the dislocation Z will
be called 0. We now define a plane II perpendicular to I,
which passes through the geometrical center of the
cylinder. The quantities 1 and l' are the perpendicular
distances from the points r and r' to II. The value of
these definitions is a result of the fact that all of the
electrons on a given plane parallel to II scatter in phase
with each other. I.et the projection of I. on the XV
plane make an angle p with the X axis. Then the
perpendicular distance from a point to II is given by

l(r, $, z) = r sin8 cosy cosP+r sin8 sinoo sing

+s cos8, (11)

in terms of the location of the points and the orientation
of the angle bisector. Inserting Eqs. (9) and (11) into
Eq. (10), we find
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tered from each is equa1 to 20

I,(~R'Le,)' ( a ) ' (1—2v) '

~R~ i1-, ) "'" IO

where Illy, O.g is a dimensionless quantity having a
maximum of about —':

1—Io((v' —')')3' (15)I'(y, a)=— dx L1—Jo y —x l
x'(p' —x')

For small scattering angles, i.e., p(&&, w ywe ma expand
expand Eq. q j' an o. q15j' d btain a quadratic dependence on
scattering angle,

'! (.R L..) (

—
)

Ig 1—2Pi (8 )
48gr2 4 1—p ) LR)

X(v' ——'ov'(1+-' ')+ . .). (16)

Th lt s in striking contrast with t phe sha e of theis resu i
ich have a1 ll an le scattering curves, w ich

maximum in eth forward direct~on. The abse

3.5
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20

0.2

O. l 8 IO IP.
E, xlO+

an les in the present case is ascattering at very small angles i p
result of t e ach f t that no net material has been a e

but the material has merely been
placed from one side of the slip plane to t e o er.

y 1 here all the electrons scatterat very smal ang es, w ere
nth the scattering takes no accounapproximately in p ase, e s

0 lnf inhomogeneities in the sample. "
e E . 16 with the inten-It interesting to compare Eq. ( )is

i c linder of t esity scattered in vacuum from a so i y
'

same dimensions and of electron density m, :

r es re resent the shape of the familiarc v s p
~ ~

us an le square . urve ispo o g y g
i . 1. for the scattering y is oca i

f Fi 1 for s herical cavities and curve 3proportional to curv o g.
y

relative ordinates for the ree curves

I=I,(~R'Ln )'(1—6y'(1+23cP)+ (17)

I.Q
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& BIO

'n both E s. (16) and (17) the quantities in curly

io of the peak scattered intensities is o
th rder one to one miBion for n= an e

i.e., for dislocation concentrati ions of the or er'7

are the absolute inten-It is also of interest to compare
Blin and G-uinierof the scattering observe y 8 '

sltles 0 e
d e-t e dislocations.with that to be expected from e ge- ype

=2R=100A, v -,'and a=2.55A (for Cu), the
intensity scattered from a volume m

rve 1 re resents the intensity scattered from an edge-""'u""'"r"'"'98A f-. -.f -. "'g"-gl.
h tt d t t f this ro ortional to t e sca ere

if
&X10'z 3 F b th.

1 f bo th i l to th)i= 1.54A. The ordinate scale or o curv
42 21 —1tered intensity times 10 ze,

. Beeman has kindly called the attention of
LM t ilk d 43, 217 (1952)j,

cattering from silver-rich clusters in— y ~ ~ g hA-. h l t ~.ll for h ."--.iso h-. .--rounded by a +g-poor shell, for t is sys em

th f dd t~ . ~

intensity is o sb erved to have a minimum in e
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Im&x 3.8X1o "+e'I' (19)

However, the total scattered intensity is much smaller
for the dislocations than that observed, as indicated in
Fig. 1. The upper curve of Fig. 1 corresponds to Eq.
(19), the scattering from 7&&10'~ spherical cavities per
cm', of radius of gyration 6.6A, as estimated by Blin
and Guinier with Cu Ea radiation. On the same absolute
intensity scale, the lower curve corresponds to a
numerical integration of Eqs. (14) and (15) for axial
ratio equal to unity. To 6t the absolute abscissa scale
of Fig. 1, X is set equal to 1.54A and E equal to 49A,
so that p becomes 200&. The quantity plotted vertically
in Fig. 1 is the absolute intensity scattered from a
sample of volume (mR'L), multiplied by 104'(n.2I,) '.

Figure 2 shows the customary curves of the log of the
intensity verses the square of the scattering angle for
(1) dislocations of 2R=L=98A, (2) spherical cavities
of radius of gyration 6.6A, and (3) solid cylinders of
2E=I=98A. The relative heights of the three curves
are of no signi6cance. It will be noticed that curve (1)
is accurately represented by a straight line for more
than a full cycle on the log scale and that, if experi-
mental data were lacking for angles smaller than that
of the maximum, the data would ordinarily be inter-
preted as representing the scattering from homogeneous
regions of radius of gyration 0.5428, or 26.5A. Note
also that this effective" radius of gyration is 41 percent
smaller than that for the solid cylinder of the same
dgnensions, 44.8A.

It will also be observed that dislocations of this size
clearly cannot be responsible for the scattering ob-
served' by Blin and Guinier. Furthermore, if one should
attempt to interpret their data on the angular variation
on the basis of suitably reduced cylinders of this type,
namely, 2R =1.=24.4A, the absolute scattered intensity
wouM be too small by a factor of 8.

If the scattering observed by Blin and Guinier should
indeed be a result of clustered vacancies, as they ten-
tatively suggest, it may be possible to observe the scat-
tering from dislocations by cold-working and measuring
the scattering at liquid nitrogen temperatures, where
isolated vacancies are not su%ciently mobile to cluster.
The extremely characteristic minimum in the scattered
intensity at zero scattering angle should enable the
effects of dislocations to be observed even above a
background of diffuse scattering which is due to a large

Imax~i &X10 ne Ie. (18)

On the other hand, from Eq. (1), the absolute intensity
scattered from the cavities (of radius of gyration 6.6A
and of concentration 7&(10"' cm ') contained within
this volume would be equal to about twice this value,

Izx=Ixz=—0,

IzY =IxY= -'~'~'I I.'g4&'

IYZ —IYX—4 6 IZY.

(2o)

The anistropy of the x-ray scattering may prove useful
in the investigation of kinking phenomena, where
dislocations may be oriented primarily in one direction.

Another possible imperfection of interest is the col-
lapsed vacancy disk, similar in some respects to an edge
dislocation and in others to a flat cylinder of vacancies
of the type discussed in Sec. II. Since there is a net
absence of matter in the vicinity of the disk, we would

expect that the scattering would be a maximum in the
forward direction and that by a suitable choice of size
and concentration of the collapsed disks, it should be
possible to fit Blin and Guinier's results.

number of isolated vacancies. The expected counting
rates (&3 sec ') with apparatus similar to that in use

by Beeman and co-workers, 4 should be high enough
above rooni background ( 0.5 sec ') to make the
experiment feasible. It is possible, however, that some
geometrical mechanism not as yet understood favors
the production of high concentrations of vacancies in
localized regions such that clustering is possible even at
extremely low temperatures. If such is the case, it may
prove impossible suKciently to reduce the background
scattering due to vacancies to isolate the effects of dis-
locations. Certainly the variation with temperature of
the scattering curves for samples cold-worked at nitro-
gen temperatures should be most interesting.

From the discussion given in Sec. II it is clear that
multiple scattering can have an appreciable inhuence
on the scattering from dislocations. The scatter'ing coef-
Acients for solid cylinders is more than a million times
larger than that for our model of the dislocation Lsee
Eqs. (16) and (17)] and even a solid cylinder would
have to be hundreds of angstroms in size for multiple
scattering to become experimentally significant. '

Another point of interest in the scattering from dis-
locations is the large degree of anistropy in the scat-
tering, as can be seen from Eq. (13). For example, if
x-rays are incident along the dislocation axis (Z axis),
the scattered intensity in the slip plane (XZ plane) is
zero, but that in the plane of extra atoms (VZ plane)
is relatively large. On the other hand, the scattered
intensity in either the VZ plane or the VX plane
from x-rays incident along the V axis is of the order
e'/4 times the latter. If we let the first subscript denote
the direction of incidence of the x-ray beam and the two
subscripts together indicate the plane of scattering, the
anisotropy relations may be summarized as follows, for
very small angles:


