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Spins and Parities of Excited States in
Even-Even Nuclei. I

IGAL TALMI
Palmer Physical Laboratory, Princeton Unitversity, Princeton, New Jersey
(Received April 9, 1953)

ECENTLY! evidence has been brought in favor of the rule
that in even-even nuclei the low-lying levels of (excited)
configurations with odd parity have odd spins, whereas the low-
‘lying levels of configurations with even parity (a special case of
which is the ground state configuration) have even spins. Such a
rule can be explained theoretically by considering short-range
attractive (central) forces between the nucleons, in the same way
that on the basis of such a force the order of levels in the j»
configuration (in jj coupling) or the I configuration (in LS
coupling) is predicted to be 0, 2, 4, ---.

In order to see which are the low-lying levels of excited con-
figurations in even-even nuclei, let us consider the simple case of
the Iil, configuration of two protons (or two neutrons). In this
configuration the energies of the triplet and singlet states are
given as follows: 2

E(l23L) = (Ll LM | V (r12) | hl2LM)
— (=D)L (L LM |V (r12) |l M),
EQua L) = (Lo LM | V (r12) | Lo LM)
+ (=D)L (WLLM |V (r12) |10 LM).
In the case of the é-potential (extreme short-range force) the
interaction energy vanishes in triplet estates (as the wave function
is antisymmetric in the space coordinates of the two nucleons).
In this case, for (—1)i*L=-41 the singlet state energy
is EQ@ud'L)=2(LM |V (r12) | Ll LM); for (—1)btlerl=—1,
(12 LM | V (r19) | lid:LM) =0 and the singlet state energy E(lis1L)
vanishes a fortiori. (The direct and exchange integrals are equal
in the 8-limit.) In the first case one obtains, using Racah’s methods,
(o LM |V (r12) | doLM) =Z 3 FE(Qulo LM | (C1® - Co®) |14, LM)
= (= 1)ut1eL 3y, FE(L{[C®||1) (a| C®|[lo) W (lalils; LE)
= (= 1)1+ (20, 4-1) 2s4-1)Z 5, F*V (ll1k ; 000)
XV (lodok; 000)W (lidolils; LE).  (2)
In the §-limit F*¥= (2k-+1)F?; inserting this in (2) and usmg a well-
known formula of tensor algebra, we obtain
(o LM | V (r12) |1 LM)
= (= 1)uta2h+1) 2+ 1)F* 2 (2k+1)
XW (hiladile; LE)V (lLisk; 000) V (lolok ; 000)
= (21;41) (2l 1) F*V (12 L ; 000) V (1122L ; 000)
= (21;+1) (2le4+1) 3CuiLFC.

(€))

3)
The result is*
E(l L) = (2l1+1) 2+ 1)ClilsLFO, 4)

where F® and CuiL are defined by Condon and Shortley? (for
equivalent nucleons put /;=1/, and divide by two). Therefore the
only states with nonvanishing energy are 1L for which (—1)u+iL
=1 (among these the lowest occurs usually for minimum L).
The L’s of these low-lying levels (for which J=L) are odd if /41
is odd, i.e., in odd-parity configurations and are even if /14, is
even, i.e., in even-parity configurations. This order of levels is
the same also in other cases, particularly in the configuration
Ii™1,; it is not expected to be appreciably changed if we consider
also the interaction with the other, nonexcited, group.

The situation in j7 coupling is essentially the same. In the con-
figuration 7172 of two protons (or two neutrons) the energy of a
state with spin J is given in terms of the LS coupling term energies
as follows

E (lllzjljgj) = dlE[lllz 3(]+ l):H—(le (lllz 3])
Fa:E[l: 3 =) JHaEGil: V), (5)

where the a; are positive and are simple functions of lils, jijs,
and J.4 In the case of the -potential the only nonvanishing ener-
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gies are E(li2 1J) for which (—1)utr7=4-1 (L is equal to J in
this case) and only for such J’s is E(j1j.J) different from zero.
Therefore, the J values of the low-lying levels are odd if /17,
is odd, i.e., in odd-parity configurations, and are even if i+, is
even, i.e., in even-parity configurations (note that this result is
independent of the relative orientation of s and 1in j; and js).

The energies of these states are obtained by inserting the values
of a4 in (5) as follows:

Si=b+3, ja=l+45,
E(j1j)) = (JitjatT+1) (it ja—J) 3Cutes FO;
3 Jo=la—
E(j1j)) = (1ot T+2) (it go— T+ 1) 3Cus P
Ji=hl, ja=1F3, ‘
E(j1j2) = (JFjizjot1) T j1Fj2) 3Cuis FO.

For equivalent nucleons (li=Is, ji=j2) the first two expres-
sions divided by two give the energies of the j2 configuration.
If we want to find out the order of levels among those
with nonvanishing energy (which have the proper odd or
even character) we can use these expressions, although this
should not be expected to be as accurate as the general relation
between the spin and the parity of the low-lying states. The
lowest state will have the minimum J for jy=Il14%, jo=l=+3, and
this is simply J=|ji—jz| [it is odd if (—1)4+i=—1 and even
if (—1)htle=+17. In the case ji=h=x3}, je=0F3, the lowest
state will have the maximum spin, namely J=j;-+j. [also it
satisfies (—1)utiz=7=+4-17]. These rules are in a sense the opposite
of Nordheim rules concerning the coupling of unlike nucleons (in
that case the coupling has to produce maximum triplet component

Ji=h—

(6)

"but in the case considered here the coupling produces maximum

singlet component as the triplet states have space-antisymmetric
wave functions). This order of levels holds also in other cases and
is not expected to change appreciably if the interaction with the
nonexcited group is also considered. One could choose the probable
configurations in all the cases of Table I in reference 1, so that

_the resulting spins will conform to these more definite coupling

rules.

* It has been pointed out to the author that this formula is found in a
paper by M. H. L. Pryce in Proc. Phys. Soc. (London) 65A, 773 (1952).
Also A. de-Shalit (private communication) has independently obtained
eqmvalent results.

1 M. J. Glaubman, (preceding letter), Phys. Rev. 90, 1000 (1953).

2 G. Racah, Phys. Rev. 61, 186 (1941).

3E. U. Condon and G. H. Shortley Theory of Atomic Spectra (Cambridge
University Press, Cambridge, 1951), pp. 177 and 182, respectively.

4 G. Racah, Physica 16, 651 (1950).

0dd-0dd Spins and j-j Coupling™*
R. W. KING, Nuclear Development Associates White Plains, New York
AND

D. C. PeasLEE, Columbia University, New York, New York
(Received April 15, 1953)

DD-ODD nuclei with neutrons and protons filling equivalent

shells have the unique feature of providing evidence both
for and against the j-j coupling scheme in nuclei. When the spins
of these nuclei are plotted against 4, they show a regularly re-
peating pattern with a periodicity that exactly matches the
ranges of the j-j subshells ps/s, ds/2, dss2, and fr/2. At the same
time, the pattern entirely fails to show the symmetry within a
given subshell that would be demanded by perfect j-j coupling. If
j-j coupling were ideally followed, the pattern of odd-odd spins
should be entirely symmetric with respect to holes and particles
within the subshells; the empirical pattern, however, is that the
spins tend to increase continuously throughout the filling of each
subshell.

This is illustrated in Fig. 1, where the spins of odd-odd nuclei
having neutrons and protons in equlvalent shells are plotted
against the total number of particles in the subshell. The nuclei
symmetric with respect to the hali-filled shell have the same
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FiG. 1. Spins of ground states of odd-odd nuclei with neutrons and
protons filling equivalent shells. The abscissa is the number of nucleons
in the given subshell. The spin assignments are derived from the survey
of B-decay data in R. W. King, Thesis, Washington University, 1952
(unpublished). Several points for the same isotope indicate possible spin
values.

value of isotopic spin T'; they should therefore have the same real
spins 7, if the equivalence of holes and particles is strictly according
to the j-7 scheme. The surprising fact shown by Fig. 1 is that the
holes tend toward higher I values than the equivalent particles.
Within the limits of present experimental uncertainties, the varia-
tion of the ground-state spin I appears roughly linear with the
number of particles in the subshell.

If the variation of spin with the number of particles in a sub-
shell is truly linear, the spins of a number of the above nuclei
would be predictable. In particular, the following spins would be
expected: F18, [=1; F®, [=2; Al?% J=5; CI# [=1; K3 =3

More detailed experimental information is needed to establish

the ground-state spins of many of the above-mentioned nuclei, but"

in some cases even qualitative information will help. For example,
if CB* can be shown to undergo allowed B-decay to the ground
state of S¥, the possible spin values for CI3* would be restricted to
I=0,1.

For odd A nuclei this increase of I with the number of particles
in the subshell is much less marked, but the tendency may still be

present to some degree. The j=3/2 subshells provide no evidence’

for variations of 7. With j=5/2 the succession of spins through
the shell seems to be 1/2, 3/2, 3/2, 5/2 (with the exception of
nuclei having just one particle or one hole, for which 7=3), and
the several possibilities of the j=7/2 subshell cannot now be
surveyed for lack of data.

* Partially supported (D.C.P.) by the research program of the U. S.
Atomic Energy Commission.

Fermi’s Theory of Nucleon Collisions and the
Zero-Point Energy of Pions
F. C. AurLuck AND D. S. KOTHARI

University of Delhi, Delhi, India
(Received April 8, 1953)

ERMI,! on the basis of statistical thermodynamics, has

recently given a theory to account for the production of
pions (and also nucleons) in collisions of high energy nucleons.
The theory, and particularly the predicted distribution, of
angular momentum of the pions is in rather striking agreement
with experiment. The fundamental assumption of Fermi’s theory
is that the pions (and also nucleons) are produced in a small
volume 7 which is given by

r=(4r/3)REQM/W), a

where R=¢h/uc, ¢ being a dimensionless number of order unity,
and p is the pion rest-mass. The factor 2Mc?/W arises on account
of Lorentz contraction: W is the energy of the colliding nucleons
in the system in which their center of gravity is at rest (M is the
nucleon rest-mass). If W’ denotes the energy in the laboratory
system of the incident high energy nucleon, we have

W' = M (W /Mc%)2— 2}. 2)
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The purpose of this note is to take into account the effect of
the zero-point energy of the pions.? This has not been done in
Fermi’s treatment. Because of the reduction on account of Lorentz
contraction of the volume in which the pions are produced, the
zero-point energy (as shown below), becomes comparable to the
energy. of the colliding nucleons. This results in a substantial
reduction in the number of pions emitted in the process, and
further, the number of sufficiently large energies of collision,
becomes independent of the collision energy.

Following Fermi, if NV particles are present in the final state,
then the probability P(N) of the final state is

P(N)=Fk(r/I)N"1(dQn—1/dW), (©)

where % is a constant and Qn-1(W) denotes the volume of the
momentum space which contains all those states for which the
energy is equal to or less than W. Assuming that there are
relativistic pions and S nonrelativistic nucleons, we write (fol-
lowing Fermi)

S—1 . S-1 n
W=—1~{ S Paf (=2 P;)2}+SMC2+Z clpl. (@
M\ ey i=1 i=1

Let & be the zero-point energy of a pion. The volume of the
momentum space bounded by the surface defined by Eq. (4) and

6]?13' 2501 (1’=1127 "'n)
is given by
(27 M)3(S-Di2(47)n 22 Qre?nT
Sicdn = D'(r+35/24+n—%)

X (W —SMct—ne)ntriss—nlz,  (5)
The constants arare given by

2n .
(@4 2k+2)n=Z a2, (6)
=0

Thus, the probability that there are » pions and S nucleons in
the final state becomes
k (x/2) (8-1)/2 (453 Ma)m‘s-l
T M@ S5 \3g 3

nep \WH3S/2-8/2 2 ar
_ e > &
( -3 ) T3S —1)/247)

ney € 2n—r
X(w S— —)( ) , (D
M) \Mc
where w=W/Mc. ‘

It has been shown by Fermi that for moderate energies, the
probability of there being more than two nucleons (and there are
the two initial nucleons) in the final state is very small. In the
sequel we shall therefore confine ourselves to the case of S=2.
For the zero-point energy e, we take

& =ho/2R=W (r/28) (u/M). @®
The maximum number of pions # is therefore given by
w 22+ (/28w (u/M),
or
. <w—-2 2¢ M<2£ M
w T T

Thus we have the relation-that # <4.3% always.

Tables I and II give the relative values of M¢2P (2, #)/k for £=1
and £=2, respectively. The last column gives the average number
of pions emitted.

TABLE I. Relative probability of emission of # pions in a collision of two
nucleons for £=1: wMc? is the energy of the colliding particles in the rest
system; # is the average number of pions emitted.

3 25 75 0.75
5 1 40 59 1.59
10 2 74 24 2.22




