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THE INTENSITY' OF X—RAY REFLECTION, AND THE DIS-
TRIBUTION OF THE ELECTRONS IN ATOMS.

BY ARTHUR H, CoMPToN.

"N the study of the spectra of X-rays as analyzed by crystal gratings,
the remarkably low intensity of the higher orders of reHection has

from the 6rst attracted a considerable amount of attention. Preliminary
measurements by Mr. W. L. Bragg' showed that, when corrected for
temperature effects, the intensities of the different orders of reHection of
a given X-ray spectrum line are approximately proportional to the
inverse square of the order. A more detailed experimental investigation

by Professor W. H. Bragg' showed that if X-rays of a de6nite wave-

length are reHected at a glancing angle 0 by a crystal in which the
successive layers of atoms are similar and are similarly spaced, the energy
in the reHected beam can be expressed with considerable accuracy by the
formula

C(i + cos' ~8)—e-~""'.
sin' 8

In this expression C is a constant depending upon the energy in the inci-

dent beam, the wave-length of the X-rays, and the nature of the crystal.
The factor e """accounts for the effect of the thermal motion of
the atoms. The constant 8 can be determined experimentally' or may
be calculated from certain thermal properties of the crystal. '' The
polarization factor (r + cos' 2e) was originally deduced by J.J.Thomson'

for any case of the scattering of X-rays by electrons, and was 6rst intro-

duced into the formula for X-ray reHection by Darwin. ' Professor Bragg
was not able to verify this polarization factor, since in his experiments 0

was always small. Using rays of longer wave-length, however, the

writer has been able to measure' the reHection at sufficiently large

glancing angles to obtain an appreciable effect due to this factor, and thus

' W. L. Bragg, Proc. Roy. Soc., A, 89, 468 (19I4).
~ W. H. Bragg, Phil. Mag. , 27, 88I (I9I4), also W. H. Blagg and W. L. 81Rgg, X-rays

and Crystal Structure, p. I95.
3 P. Debye, Ann. d. Phys. , 43, 49 (I9I4).
4 C. G. Darwin, Phil. Mag. , a7, 3as (I9I4).
~ J. J. Thomson, Conduction of Electricity through Gases, p. 326.
& A. H. Compton, PHYs. REv. , 7, 6S8 (I9I6).
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to verify its existence. Since the sine of the glancing angle is proportional
to the order of reHection, this formula includes the result found by
W. L. Bragg, but is more general, as it expresses the intensity of the
reHection from all possible planes in the crystal.

The theory of the intensity of X-ray reHection has been examined
in considerable detail by Mr. C. G. Darwin, 4 ' who Ands that if all the
electrons which are effective in scattering the X-rays are close to the
centers of the atoms, the energy in the beam reHected at an angle 0

should be proportional to

I + cos'20e-
sin 0 cos 0

This expression differs from Bragg's experimental formula by the factor
tan 0, which must be explained, as Darwin pointed out, by the fact that
the electrons are not all concentrated near the centers of the atoms, but
that at least some of the electrons are at distances from the atomic
centers which are of the same order of magnitude as the distance between

the atoms. Since the relative intensity of the different orders of X-ray
reHection is thus a function of the distribution of the electrons in the
atoms of the crystal, it should be possible, knowing the relative intensity
of the different orders, to obtain some definite idea of the manner in

which these electrons are arranged.
The possibility of finding an arrangement of the electrons which will

account in a satisfactory manner for the observed intensity of X-ray
reHection at different angles was suggested hrst by Professor Bragg' and

independently soon after by the writer. ' Both of us were able to show

the nature of the effect on the intensity of reHection due to certain
different distributions of the electrons in the atoms of a crystal grating,
but we both neglected to consider certain important factors that must

seriously modify the conclusions at which we arrived. We based our

arguments on the assumption that the reHected energy would be the
same for all orders if all the scattering occurred at the centers of the atoms.
This is indeed true for the intensity in the middle of the reHected line, if
the crystal acts as a perfect grating, but since the effective width of the
spectrum line can be shown to be proportional to r/sin 0 cos 0, the re-

Hected energy is reduced in the same ratio. Thus instead of a factor
r/sin't' there is rea11y, as pointed out above, a factor of only r/tan 0

to be accounted for by the assumed structure of the atom. In the

present paper a more complete theory will be obtained of the dependence
~ C. G. Darwin, Phil. Mag. , 27, 675 (I9I4).
8 W. H. Bragg, Bakerian Lecture, March I8, I9I5; Phil. Trans. , A, aI5, 253 (July I3, I9I5).
' A. H. Compton, Nature, May z7, I9I5.
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of the intensity of reHection upon the angle and upon the distribution of
the electrons in the atoms of the reflecting crystal. The result obtained
will be in exact accord with that found in a different manner by Darwin,
but will be so expressed that it will be found possible to determine w'ith

some definiteness the distribution of the electrons in certain atoms by
comparison with the observed intensities of X-ray reflection.

THE INTENSITY OF X-RAY REFLECTION.

Let us therefore obtain a general expression for the energy of a beam

of X-rays of wave-length ) which is reflected at a glancing angle 0 from

a crystal all of whose atoms are similar. For sake of simplicity we may
consider the primary beam to be polarized in such a manner that the
electric vector is perpendicular to the plane of reHection. This will

eliminate the polarization factor (i + cos' 28)/2. The temperature
factor, e ""' may also be neglected if we consider the atoms to be
in their positions of rest. These factors can be introduced later into the
expression for the intensity of reHection without modifying the rest of the
calculation.

Let X-rays thus polarized strike the crystal C (Fig. x) in the elementary

solid angle der inc1uded between 0 + e&, c3 and 0 + e~ + de~, e& + d~3,

and consider the ray reflected at the angle 0 + e2, e4. Here 0 is the angle
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Fig. 1.

of maximum reflection, defined by the relation nX = 2D sin 0, e& and e&

are small angles measured in the plane of reflection and e3 and e4 are
similar small angles taken perpendicular to this plane. We shall con-
sider the eBect of the reflected ray at the surface of a sphere of very large
radius R. If I; do. = I;.de&des is the intensity at the surface of the
crystal due to this bundle of incident rays, the corresponding amplitude
dA; of the electric vector may be defined by the relation I;do = c(dA;)'.
The amplitude at the distance R of the ray scattered by a single electron

may then be taken'. ' as (e'/mC'R)dA. ; where e is the charge and m the
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mass of the electron, and C is the velocity of light. If the electrons are
held very rigidly in position, this expression might have to be slightly
modified, but it seems probable that such effects are inappreciable for
waves of the frequency of X-rays. The scattering due to the positive
nucleus of the atom may be neglected on account of its comparatively
great mass.

If we write p = e'/mC', the amplitude of the reflected ray at the point
F (R, e2, e4) due to a single electron near the surface of the crystal is
therefore (p/R) dA;. If f(z) is the volume density of distribution of the
electrons at a distance s from the middle plane of a layer of atoms in the
crystal, the electric displacement at I' at the time t due to a volume
element of an atomic layer near the surface of the crystal is therefore

8+ rl
f(z) dxdydz —dA; cos 2x I

——,
}R }.T

where T is the period of vibration, 2x8/X is the phase angle at F due to
a crystal element at (x, y, 0) at the time t = o, and r is the distance
2z I sin 8 + (e~ + e2) cos 8}. Neglecting the small term (Eg + Ez) cos 8,

and writing,
8~

&T

we find for the displacement at I' due to an element of area of a layer
of atoms near the surface of the crystal,

6

~dA; dxdy f(z) cos
I ~ —

} dz,

where b —c is the thickness of the atomic layer, and represents the
diameter of the atoms. If X is the number of electrons per unit volume
of the crystal, and D is the distance between two successive atomic
layers, the number of electrons in unit area of such a layer is ND. The
function f(z) may therefore be written XDF(z), where F(z) is the prob-
ability that a given electron shall be a4 a distance s from the mid-plane
of the atomic layer to which it belongs. Since the function F(z) can
nowhere be greater than at the plane of symmetry, i. e., at s = o, the
displacement becomes a maximum when P = o. The integral factor of
the above expression then becomes,

and the amplitude at I' due to an element of area of the atomic layer
considered may be written

—dA; ~ SD ~ P dxdy.
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If we consider an element of the crystal so small that the reflection

from all of its atomic layers may be considered to be in the same phase,

yet containing a large number de of such layers, the amplitude of the
reflected beam at I' due to this element is evidently

—dA;ND Pdxdy ~ dn.

Or since dn = ds/D, the amplitude due to a volume element of the

crystal is

—dA;Npdxdydk = dAO ~ d&dyd&,

where dAO is the amplitude of the reHected ray at 8 per unit volume of the

crystal near its surface due to an incident beam of solid angle do-.* When

the rays are reflected from a depth s below the surface of the crystal,
they travel a distance 2s/sin 8 through the crystal before they emerge,

so that the intensity is reduced by a factor e'"'"' ', mhere p is

the absorption coefficient. The amplitude is thus reduced by a factor
e"'/""', so the amplitude of the beam reflected from any part of the

crystal is, per unit volume of the crystal,
iu, z iu, 8

(2) dA =dAe " '=dAN —PeR
Perfect Crystal and Lorrg Trains of Waves. —We shall first determine

the energy in the reflected beam on the assumptions (i) that the crystal
has no faults, but acts as a perfect grating, and (2) that the X-rays
come in trains of maves mhich are long compared with the depth to
mhich they penetrate the crystal. These are the assumptions on

mhich Darwin's theory of X-ray reHection is based, although he con-

siders also the general nature of the modification to be expected if the

crystal is imperfect. On these assumptions reenforcement mill occur
from all parts of the crystal struck by the rays if all the e's are zero,
but mhen the c's differ from zero the reflections from different parts of
the crystal will in general be in different phases, The difference in the
path of the ray reflected from an element of the crystal at p (x, y,

+ It will be noted that this expression seems to make the amplitude of the reflected beam
proportional to the number of electrons and hence approximately proportional to the atomic
weight of the atoms of the crystal. Though this result is conflirmed by some early experi-
ments by Mr. W. L. Bragg, i later experiments give different results. In the case of calcite
Professor Bragg findss that the intensAy of the beam reflected by an atom is more nearly

proportional to the atomic weight than is the aptitude. He writes me that some of his

results point one way and some the other. It seems very difficult to obtain a consistent
reflection formula on the assumption that it is the intensity which is proportional to the
number of electrons. The difficulty is probably to be explained by the nature of the function

P, for if many of the electrons are at an appreciable distance from the center, the amplitude

of the ray scattered by an atom will be considerably less than the sum of the amplitudes due

to each electron.
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s) and that reflected from an element at 0 (Fig. 2) is

x(e& —
~&) sin 8 + y(e4 + e~) + - (2 sin 8 + (~& + e2) cos 8},

where second order terms in the c's are neglected. The reHected rays

~ /. .i

Fig. 2.

from all parts of the crystal are in the same phase when the difference in

their paths is 2s sin 0, so the difference in phase between the two rejected
beams is

2T(
8 = {x(E2 E]) sm 8 + p(E'3 + E'4) + s(6y + 6g) cos 8}~

If the phase angle at I' of the ray reflected from the point (o, o, o) is
2zy/'), the displacement due to an element of volume of the crystal at
P is, by equation (2),

2K
defoe

" ' ~ cos —ty —x(& E'y) sin 8 g(f3+ fg) z(fg+E2) cos 8}dÃdgds.

The displacement at I' due to the reHection fr'om the whole crystal is
therefore

440 d8
k/2 z cot 8+l/sin g iu, Z

dx e ""'cos —Iy —x(e2 —e~) sin 8
(kP) z cot g—g/sin 8

—$(r'8 + 64) s(Ey + Eg) cos 8},

where / is the width and k the length of the slit through which the primary
beam passes just before it strikes the crystal. This becomes when

integrated,
2~7 - 2~7

ts cos
~

—5 sin

gA; 1'+ b'

where
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ml ~k8 = sin (42 41) C = sill (63 + 44)

2'
g = (42 —41) Sill 9, k = —

(C3 + 44),

p
m =

sin 0' b = —e2cose,

If this expression is differentiated with respect to y and equated to zero,
it is found that the maximum displacement occurs when

2xy f b i—= tan-I
{
—},im&'

s. e.,
27= b -- 27= m

sin —= cos
&m2+ b2' ~ &m&+ b&

Substituting these values in the above equation, we 6nd for the amplitude
of the reflected beam,

(s)
4' ABC

gh&m'+ b'

The corresponding intensity of reflection is therefore,

I6c(dA3) 282C'
dJ, = c(dA, )' =,„,(, ,),

where c has the value assigned above, This may be expanded into the
form

cPk' sin'{33(42 —41) } Sill {p(63+ 44) } Ap d6Id43J,d&id&3—
Sill 8 {12(42 61) } {P(43 + 44) } 133 + g42

where 33 = 2rf/X, P = Irk/), , and It = (4.II/X)cos 0, and dJ, and dA3 are
written as J,de~des and Ao&de~d~3 respectively. dJ, has its greatest
value when all the e's are zero, and is then

d J(max)
c(dA3)2Pk2

The maximum intensity of the reflected beam is thus independent of 8

except for the function dAO, a result which is in accord with that found

by Webster' on similar assumptions.
It is not, however, this maximum intensity which is measured in the

experiments. It is customary'' rather to have the opening into the
ionization chamber which measures the reHected X-ray beam large enough
to receive the rays reflected at all angles e2 and e4. If the X-rays come
from a point source, the angle 43 has all values between —k/2r and

'o D. L. Webster, PHvs. Rzv. , 5, ~4z (xgxS).
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+ k/2r, where r is the distance from the anticathode to the slit, and er

has a range of values be~ ——l/r. The energy per unit time in the reflected
beam which is due to the rays incident at angles between e~ and e~ + de~

is therefore,
00 +Ic/2r 00

EeIZE] — Rd'~4 4~3 Rd~2 ~ J,d~j,
—00 —Ie/2r —00

If the crystal is rotated with a constant angular velocity co = de&ldt,

it is exposed to rays incident at the angle ez for a time Be&/~ = N, and the
total reflected energy due to the rays incident at the angle e~ is B„de~.Q.
If in the time At the crystal moves through all angles e& at which any
appreciable radiation of wave-length ) is reflected, the whole reflected

energy is thus,
+Ic/2r

Zp = 0t ZelCf61 = R 8 dE'4 dE3 de d&]. ' Jq ~

—00 —00 Ic/2r, —00 —00

Substituting the value of J, given above, and integrating, this becomes,

cA02R2Pk3E„= . , ~ St,r sin' 0 nznPg
or

c/2/2) 3 . +2+ .2y2P2
Zr

2r~(op sin (20)

The amplitude dA; of the beam incident in the solid angle da. has been
defined by the relation c(dA;)' = cA;2do. = I;da, where I; is the intensity.
The energy of the radiation in the solid angle do- = de&de3 which passes
through the slit in unit time is therefore klI;der = chloe;2de~de3, and as
above, putting Be, = I/r, Be3 ——0/r, the total energy which passes through
the slit in the time At is

&2'E, = k/I; ~ 8eg5e3dt = —~ cA 26t
r2

Writing 58 = coAt we 6nd for the ratio of the reflected to the incident

energy,
Z X9P&2P X

R ————
E; 2p sin 29 60'

where 60 is the angle through which the crystal is turned while making
the observations. This result is in accord with that obtained by Darwin,
but is worked out for somewhat diferent experimental conditions.

Imperfect Crystal. —It remains to determine the eB'ect of changing our
assumptions. Let us consider the case in which the crystal is not perfect,
but is made up of a large number of small crystals, each of which acts
as a separate unit. We shall have to determine the energy in the beam
reflected by each li.ttle crystal, and sum up for all the component crystals.
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Each component crystal will for convenience be considered to have the
form of a rectangular parallelopiped of dimensions bx, by, bs. If one of
these little crystals is so small that the rays are not appreciably absorbed
in passing through it, the phase of the beam reflected from the whole
little crystal is the same as that of the ray reflected from its center. In
a crystal whose center is at x&, y&, s& the amplitude contributed by a
crystal'element at that point is, by equation (2), s ""~""dAedxdydh.

If b is the phase difference between this ray and the one reflected from
the point x, y, s, the amplitude contributed by a crystal element at
x, y, s is therefore e '"" dAocos b dxdyds. Substituting the value
of b similar to that used above, we 6nd for the amplitude at I' of the
beam reflected by the whole little crystal,

zI+(8 z/2) yI+(eely/2) x1+(hx/2)

d~, ' = defoe
"" dS dx ' cos

z1—(6z/2) e y1—(By/2) x]—($x/2)

&& {(x—x,) (ee —e~) sin 8+ (y —y,) (e.+ 44) + (s —s,) (e,+ee) cos 8}

sin
sin 8 ~

mbx
(ee —e4) Sin 8

mbx

X
(ee —e4) sin 8

~by
sin (ee + e4)

~by
(ee + e,)

mR
s1n (el + ee) cos 8

X
~be

(e4 + ee) cos 8

~ bxbybs.

As before, the whole energy reflected by this crystal as it is turned
through an angle 60 at @n angular velocity co is given by

00 +(/c/2r) 00 G0

E,' = R'8t de4 . dee des de4 ~ c(A, ')'.
—00 —(k/2r) —00 —QO

Substituting the above value of A, ' = dA, '/de4dee and integrating, we

obtain

cA o'R'kl) 'e
bxbybs.

2r2o) sin 0 cos 0

The energy reflected from the whole crystal is of course the sum of the
energies reflected from all the component crystals, i. e. , Z„=ZZ„,or
replacing the summation sign by an integral,

2tt, z

+(&/2) z cpt 0+(l/2 sin 8) g gg2pp 3»n 0

dx '
()c/4l) ~ zeptfl —(g/4l sin g) 2f M Sln 0 COS 0

cPP9
2r'o)p sin 20
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which is the same as was found in the case of a perfect crystal. Although
this result has been obtained from the consideration of one particular
type of imperfect crystal, it is evident that the same formula wi11 hold
in whatever manner the crystal is divided into its components.

Short Trains of Waves I.—t has been pointed out by Webster'o that if
X-rays do not come in long trains like light waves, but come rather in
trains which are short compared with the depth to which they penetrate
the crystal, the intensity of the reflected beam at the angle of maximum
reflection is proportional to t/sin'8. He has since noted, however, '"

that the breadth of the reflected line increases with 0 so that the total
reflected energy does not obey the same law. The following analysis
will show that the total energy reflected in this case is the same as with

long trains of waves. If we consider the primary beam to be made up
of trains M waves in length, the total number of reenforcing layers is

3f/e, where n is the order of the reflection. The thickness of the crystal
which is effective in reenforcment at any instant is therefore

3I/
S~ = —D,

n

where D is the distance between two adjacent layers of atoms, If the
point x&, y&, sj is the center of the part of the crystal which has reflected
the ray reaching I' (R, E2, «) at any particular instant, the amplitude of
of the reflected wave at P at that instant is

"p, s'y se I+(AID/2') lc/2 ~ cot B+(l/2 sin B)

dA 'e ""' ds dy
ei.=(Nl)/2n) —(k/2) e cot B—(l/2 sin B)

(x —xr) ir2 fy) sin 8
27r

X cos —~ + (y —yi)(«+ ~3)

+ (s —sg)(«+ e») cos 9.
kl3SID sin I sin v sin m

sin B ~ ~ " ~

nsin8 n v m

where
~l ~k aziVDs = (Eg fl)q v = («+ «), w
X nX

62 COS 8,

and the corresponding intensity is

—-'-"—"O2P3II~D2 sin' n sin' v sin' m
c(dAO')'e n' sin' 0 n2 e2 m'

Since by hypothesis the primary train of waves is short compared with

the depth to which it penetrates the crystal, the length of the reflected
train will depend, not on that of the incident one, but only upon the depth
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of penetration. In order to And the mean intensity of the reHected

beam at this angle, we must therefore integrate this intensity over the
whole length of the reHected train, and divide by the average distance
between successive trains of waves. If this distance is p, the mean

intensity of the reHected beam at this angle is thus,

c O'PM'D~ sin' u sin' v sin' m—(dAO')' ~ — e ''~ 2 sin 0ds
p

' n' sin' 0 u' v' m'

c(dAO')'Pk'3PD' sin' u sin' v sin' w
~ 4 ~

pn'/J, Q2 Cp2 QJ2

Since nX = 2D sin 0, this may be written:

c3PX'O'P(dAO')' sin' u sin' v sin' uJ,do- =
4py sin' 0 RV &

When e = v = m = 0, this intensity is a maximum, and the resulting
expression agrees with that obtained by Webster. To obtain the whole

energy of the reHected beam, however, we must have as before,

Bg = R 5f

00 +C&/'3&)

Je4 8e3
oo —(A:/2r)

dog ~ J„
and substituting the above value of J, this becomes

g3n 4/2)2(g /)2+2y2$2
Zr 2f capp, sin 20

The mean value of the square of the amplitude of the incident beam is
evidently AP = A;" ~ 3'/p, so the energy of the refiected beam is as
formerly,

cPk9PÃ~A 2y~PE. =
2f cop sin 20

where cAP now represents the mean intensity of the incident beam
instead of its intensity at a given instant.

If there is any difference in the reHecting power of a crystal according
to its degree of perfection or the nature of the incident rays, it must
therefore be accounted for by a di8erence in the value of the absorption
coefficient p, since all the other factors in equation (4) have definitely

defined values. It has been found by Darwinv that the value of this
absorption coefficient does differ according to the degree of perfection of
the crystal. This results from the fact that a sort of selective absorption
occurs near the angle of maximum reHection, which is great only in the
case of a crystal that is nearly perfect. Darwin concludes, however,
that this effect may be accounted for by inserting a constant factor into
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the reHection formula. * We may therefore consider the expression here
derived for the energy of the reHected beam of X-rays to hold for any
crystal and any beam of X-rays if p is taken as the effective absorption
coe%cient.

If a beam of X-rays of wave-length ), polarized so that its electric
vector is perpendicular to the plane of incidence, is reHected at an angle 0

from a crystal in which all the atomic layers are equally spaced and whose

atoms have no thermal motion, the energy in the reHected beam is there-
fore given by equation (g) as

E; N9PQ'Pz. = —'-
60 2p sin 20'

where E; is the whole energy of the radiation of wave-length ) which

strikes the crystal as it is turned with uniform angular velocity through
an angle 60, and 60 is large enough to include all the angles at which rays
of wave-length ) are reHected. N is the number of electrons per unit
volume of the crystal, p, is the effective absorption coefficient of the X-rays
in the crystal at the angle of reHection, and may dier by a constant
factor from the coefficient of absorption at other angles. p is the
amplitude at unit distance of the ray scattered by a single electron, and
has the value e'/mC'. g is a factor depending upon the arrangement of
the electrons in the atomic layers, and has the value

f 4' sin 0
P(s) cos ] s ) Cs,

where b —a is the diameter of an atom, and F(s) is the probability that
*The statement that this correction for selective absorption at the angle of maximum

reflection can be accounted for by the insertion of a constant factor into the reflection formula

implies that this absorption is equally strong in all orders. 'Darwin has shown (loc. cit, )
that this means a high degree of imperfection of the reflecting crystal. If the crystal is more

perfect, the selective absorption must be large compared to the normal absorption and be
proportional to r/sin 20. This would make the reflected energy B independent of the angle

except for the factor P. Darwin considers the fact that the reflected energy at the larger

angles is known to fall off rapidly to be sufficient proof that the reflecting crystals cannot be so
perfect. It is to be noted, however, that since it is possible, as will be shown below, completely

to explain the low intensity of the higher orders by assuming the proper distributions of the
electrons in the atoms, the existence of this diminution cannot properly be used to prove the
imperfection of the crystal. The fact that the absorption coefficient p which is to be used in

the reflection equation is found by Darwin to be of the same order of magnitude as the normal

absorption coefficient indicates, however, that the selective absorption is not large, and hence

that the crystal must be very imperfect. The writer has recently made a series of experiments

comparing the rate of falling off of the higher orders when tungsten and rhodium rays are
reflected from the same crystal. These experiments, which will be published in the near
future, indicate rather definitely the existence of the term sin 28 in the denominator of the
reflection expression, which would not occur if the crystal used were not suKciently im-

perfect to make the absorption coefficient approximately constant.
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a given electron wi11 be at a distance s from the mid-plane of the atomic
layer to which it belongs. This factor corresponds to the "excess
scattering" factor introduced by Darwin. 4 As pointed out above, if
the primary beam of X-rays is unpolarized, the factor —',(t + cos'2 0)
will have to be introduced, and to account for the thermal motion of
the atoms the factor e """must also be included. Introducing these
factors, writing sin 2 0 = 2 sin 0 cos 0, and expanding the terms @ and

P, the complete expression for the energy of the reflected beam becomes:

Z; 1PX' t + cos' 20 t e'

&8 2y 4. sin 0cos8 ~imC'&

4m' sin 0
X F(s) cos dk e ~""".

It may be. remarked that this same equation holds when the crystal
remains stationary if the angular aperture 60 of the slit as observed
from the anticathode includes all the angles at which X-rays of wave-

length 'A are reflected.

THE DISTRIBUTION OF THE ELECTRONS IN ATOMS ~

By comparing this equation with Bragg's experimental formula (I)
it should be possible to determine the form of the function F(s), and hence

to find the mean distances of the electrons from the centers of their
respective atoms. We shall first attempt a direct solution of the problem,
and shall find that there is no possible distribution of the electrons in

atoms which mill give Bragg's formula as it stands; but a slightly
modified form of his law will be found to lead to a definite value of F(s),
thus determining the probable distance of an electron from the center
of its atom. On comparison with experiment it will be shown, however,
that the diff'erences in the intensities of reflection by different crystals
are such that no single distribution of the electrons can explain the
reflection from all crystals. Arbitrarily chosen distributions which will

explain satisfactorily the observed differences between the reflections
from certain crystals will then be described, and these will be of con-
siderable interest in connection with certain hypotheses concerning the
structure of the atom.

Direct 1iIIetkod.—According to equation (6), if X-rays of wave-length )
are reflected by a certain crystal at two different angles, 0 and 0&, the
ratio of the energy in the reflected beam in the two cases is

+ cos' 20 ',
, f 4~s sin 0 I,

Z sin 8cos0 . & X
7 Zr t + cos'281 '

/4ms sin 8&

sin 0~ cos 0~
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Bragg's experimental formula (i) gives this ratio as

I + cos'20
Z sin' 0 e

E I + cos'20 e= """
sin 01

tan 01

tan0 '

Extracting the square root, and substituting

O'Jl sin 01
g =

X

tan 0
CP

tan 01'

4~ sin OI
r =

'A
G,

sin 0

sin 01

4~ sin 01
S =

this equation may be reduced to the form

(to) P(x) {n cos (Px) & cos xIdr = o.

From this equation we have to evaluate the function p(x) and the
limits of integration, r and s.

This seems to be a difficult form of integral equation to attack by direct
mathematical methods. It is possible by graphical methods to show that
there are an infinite number of solutions of the form p(x) = c sin px,
if r = —s, where the constants c and p can have any value. These
solutions, however, imply that the probability function p becomes nega-
tive at certain points, which is meaningless, so that they do not apply
to this problem. There are also an infinite number of solutions of the
type

y(x) = c, sin" p,x + c, cos" p2x + c„
if P1 and p2 are integers, r and s are integral multiples of x, p is an integer,
c&, c&, n, m, may have any value, and c3 is large enough to prevent the
expression from becoming negative. Experiment shows, however, that
p is not necessarily an integer, so that these solutions also do not apply.
Other possible solutions are not obvious.

The necessary form of the function F(s), and hence also of the function
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p(x) can be found, however, by certain physical considerations. If we
consider the primary beam of X-rays to be plane polarized, and the
rejecting crystal to be at a very low temperature, the experimental law

expressed in equation (8) becomes Z/Z& ——sin' 8~/sirP 8. The ratio of
the intensity of the reHected beam at two different angles thus depends

only upon the angles at which refiection occurs, and is independent of
the wave-length of the reHected beam. Thus with the layers of atoms
at a distance a apart and with a beam of X-rays of wave-length X, the
ratio of the reflected energy at the two angles 0 and 0& is the same as
when the layers are at a distance mu apart using X-rays of wave-length

mX. Since, however, the ratio of these intensities is determined by the
distribution of the electrons in the atomic layers, this means that this
distribution shall be the same on the scale ma as it is on the scale c.
That is, if the density of distribution is p times as great at s = (t/g)a as
at s = (n/q)a, it must be also p times as great at s = (t/g)(mo) as at
s = (n/g)(mu), or

'I
F/-of Ff-ma

(q & &g

nF(-of F -ms
)

&g g i

and in general

F(s) F(ms)
F(ns) F(nms) '

where the constants n and m may have any value. The only type of
function which will satisfy this relation may be shown to be

F(s) = bus [s) o]

= b&(- s)-' [s ( o],

where bI and p are arbitrary constants. Since

Xx

4x sin 0I'

'Ax

y(x) = F(s) = bg . = bx &[x ) o]. -
4z sin 0

Equation (i t) shows that the density of distribution of the electrons can

vanish nowhere unless it is everywhere zero, so the limits of integration
of equation (to) must be —~ and m. This of course corresponds to
an atom with an in6nite radius.

Substituting this value for g(x), and remembering that the function
under the integral sign is symmetrical on both sides of the plane s = o,
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equation (t o) may be writ ten

x-~{n cos Px & cos x]dx = o

The integral is a known one, " the solution being

7r &Pm. &

(np
—'~t) sec{ —

t
for [o(p&t]

2 I'(p) L 2
00 for [p ) i]

indeterminate for [p ( o].

This integral can vanish only when

OP" '~I =0

cos 0 sin 0

cos 0~ sin 0I

Since 0 and 0& can have any values, it is obvious that there is no constant
value of p which mill satisfy this equation. Thus there is no solution

of the integral equation (to) which meets the conditions. We must

conclude, therefore, that there is no possible distribution of the electrons
in the atomic layers which wi11 give Bragg s experimental law as it stands. *

If equation (i) is modified by inserting the factor cos 0 in the denomi-

nator, its value is not greatly changed, since 0 is usually small. This
modi6cation changes the quantity on the right-hand side of equation

(9) to sin 9~/sin 8, and the coefficient a in equations (to) and (rg) becomes

(sin %in 8,)'~', the other quantities remaining unchanged. In this case
the left hand side of equation (tg) vanishes only when

sin'/' 0 sin 0

sin'/' 0I sin 0~

or

(t4) whence
F(») = b,» "" [» -) o]

= bg( ») "~' [» &—o].

Thus although Bragg's law in its original form is not given by any possible
» D. L. Webster, PHvs. REv. , 7, 696 (zyr6),
» Bierens de Haan, Nouv. Tables d'integrales de6nies.
*On somewhat different assumptions from those used here, Professor Bragg has found a

distribution of the scattering material which leads to the law Z/EI = ni2/n', where n is the
order of reflection. 8 The distribution he finds is, however, a function of the distance between

the atomic layers, and so cannot truly represent the arrangement of the electrons in the atoms.
In fact it is possible to show by reasoning similar to that used above that on his assumptions
also there is no distribution of the electrons which will give his law for the intensity of
reQection.
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distribution of the electrons, it can be obtained in a slightly modified
form if the density of distribution of the electrons is inversely propor-
tional to the square root of the distance from the mid-plane of the atomic
layer to which they belong.

The quantity F(s) represents the probability that a given electron
shall be at a distance s from the middle of its layer of atoms at any

instant. It is evident, therefore, that the relation I" s Ck = I: or

F(s)dz = —', must be satisfied. The constant bi in equation (i2),
~ ~ ~

~

~

~ ~

representing the probability F(z) at unit distance from the mid-plane is

thus defined by the expression

or

since

~Ct = 2)
0

= 0,

for all values of p. This means that there can be no appreciable density
of distribution of the electrons in the atomic layer unless there are an

infinite number of electrons in it. It is evident therefore that the
function F(s) cannot have the form b s ". According to the argument

above, this means that the relative intensity of the beam of X-rays
reHected at diff'erent angles must depend not only upon the angle of
reHection, but also upon the wave-length of the incident beam of X-rays.

Empirical Sate/bod. —Since there is no possible distribution of the
electrons in the atoms which will give a law of reHection of the form of
Bragg s empirical expression, let us see if it is not possible to find some

arbitrary distribution which will give a reHection formula fitting the
experimenral data better than his law. In order conveniently to compare
data obtained with different crystals and with X-rays of different wave-

lengths, let us remember, according to equation (7), that the part of the
ratio F/Fi which is due to the diffuseness of the atomic planes is

2 I + cos 20'
E sin 0l cos 0~

E~ I + cos'20
sin 0cos 0

e
—B sin~ Ol

e
—B sitt-" 8 '

From any assumed distribution of electrons F(s) the theoretical values of

U=—
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may be calculated for different angles of reHection, and by comparison
vrith the corresponding experimental values as given by the equation

(t6)

I + COS 20'
Z sin 0~ cos 0~ e

i + COS'29 e ~s""
sin Ocos 0

the accuracy of the assumed distribution may be tested.
For the cases of rock-salt and calcite the values of Z/Z~ have been

determined experimentally by Professor Bragg. His results are given

in Tables I. and II., columns 3. In the case of calcite the reHection at

TABLE I.
Rock-Salt.

Crystal Face.

100
110
iii
100
iio
100
111

sin 8
sin 81

1.00
1.41
1.73
2.00
2.83
3.00
3.46

1.00
41
.244
.187
.0705
.0625
.042

1.00
.79
.69
.67
,55
.55
.54

Ucalc,

1.00
.83
.75
.70
.58
.56
.51

1.00
.81
.695
.63
.56
.55
.50

TABLE II.
Calcite.

Crystal Face.

111
100
111
110
110
111
100
211
iii
110
100
110
111
100
111
110
110

sin 8
Sill 81

.80
1.00
1.07
1.24
1.59
1.60
2.00
2.12
2.14
2.46
3.00
3.22
3.21
4.00
4.28
4.78
4.91

1.44
1.12
.95
.67
.46
.48
.257
.286
.297
.164
..113
.091
.108
.034
.036
.021
.013

+obs

1.05
1.03
.98
.88
,86
.88
.72
.78
.80
.65
.61
.57
.62
.41
.42
.37
.30

1.12
1.00
.97
.90
.78
.78
.70
.68
.68
,62
.56
.54
.54
.48
,46
.43
.42

CB,lcg

1.03
1.00
.98
.95
.87
.87
, 79
.76
.76
.69
.60
.58
.58

.42

.36

.35
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* In calculating the values of U here given, the constant B in equation (I6) has been
evaluated by Debye's formula, 8

I.I42 X Io-12 4I(x)
A W.'

where A is the atomic weight, 0 is Debye's "characteristic temperature, " x = 0jT, where
T is the absolute temperature, and @(x) is a function which Debye evaluates. The value of
B thus calculated has been found by Bragg2 to account with considerable accuracy for the
observed changes of the intensity of reflection with temperature. For rock-salt 0 = 26o' K.,
A. = 2g, x = .89, @ = .8o, and using rhodium rays of wave-length X = .6I4 )& Io 8 we obtain
B = 3.6. In the case of calcite 0 = gIo' (determined from the specific heat at 2@8' K.),
and taking A = 2o, x = 3.Io and @ =,473 we find B = o.2S. It is these values which
have been used in calculating U. If a "Nullpunktsenergie" is assumed, Debye shows that
the value of B is

I.I4.2 &( Io» ( @(x) I )
A0V ( x +4)'

In this case for rock-salt B = 4.6 and for calcite B = .67. This makes no very large difference
in the values of U. In any case the effect of the temperature factor is not. large at the angles
at which these measurements are made, so that any slight error in the value of B will not
greatly affect the results.

different angles is produced by layers of different kinds of atoms, but the
values here given have been corrected according to the method explained

by Professor Bragg' for the effect of the differences in the atomic layers,
so these figures may be taken as due to a crystal all of whose atoms are
similar and whose atomic layers are uniformly spaced. In these tables

8& is taken as the angle of the first
order reflection from the (t, o, o) face
of the crystal. The values of U cal-
culated from the observed values of U

1.0

E/Z, are given in columns 4, and are

plotted in Fig. g against the corre-

sponding values of sin %in 0~.* The
open circles in this figure represent
the experimental values of U for rock-

FlglLFC 3o

salt, and the solid ones for calcite.
The agreement between the results

0

of successive experiments indicates
that these data may be taken as ac- Flg. 3.
curate within a probable error of
about one or two per cent. , although consistent errors of considerably
greater magnitude may occur due to various causes.

The values of U calculated from Bragg's law, equation (t), are given
in columns 5 of the tables and are shown on Fig. 3 by the solid line. If
the function J'(s) is assumed to have the form bs—

&, U has the values
observed for the first and second. order reHections from rock-salt when
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P = o.425, which gives U = (sin 8~/sin e)'". This expression is plotted
in the broken line of Fig. 3, and is about as accurate an expression for the
reHected energy as can be obtained with this type of function. Professor
Bragg has suggested' the use of a function of the form F(s) = be '* to
express the distribution of the electrons. The coe%cient b in this case
has a fiinte value, so although this function also implies an atom of infinite

radius it is not a priori impossible. It can be shown, however, that the
values of U obtained with such a distribution are considerably too large
at moderately small angles, and decrease much too rapidly at large
angles. Better agreement is obtained if a distribution of this type is

combined with a certain concentration F(0) = a of the electrons at the
middle of the reHecting layers. In this case

& 4m sin 0l '

&4~ sin 8& I'
C +

In order to make the values of U thus calculated agree with the observed
values for the second and third orders of reHection from rock-salt we
must put a/b = o.2p4X and c = z.sr/X. The values of U thus obtained
are plotted in the dotted curve of Fig. 3, and are seen to be in better
agreement with the experiments on rock-salt than is the empirical law

expressed by the solid curve. A comparison of the experimental data
for rock-salt and calcite as shown in Fig. 3 shows at once that a curve
which corresponds to the observed values of U for rock-salt cannot fit
accurately the data for calcite. Professor Bragg has suggested' the
possibility of the existence of such a difference, but it was a diAicult

thing to detect on account of the many disturbing factors. Since by
equation (r5) U is a function only of the distribution of the electrons in

the atomic layers and of sin 0/X, any observed differences in U for a given
value of sin 0/) can be explained only by differences in the distributions
of the electrons in the layers of atoms which do the reflecting. Thus
we may conclude that the distribution is not the same in the atoms of
calcite as it is in the atoms of rock-salt. * It appears, therefore, that

+ Note added December 9, x9x6: A more striking example of the difference in the value
of U for different crystals is afforded by Vegard's recent determination of the intensity of
X-ray reflection from silver (Phil. Mag. , 32, 94, July, x9x6). He finds the intensity of the
first three orders of reflection from the (xxx) plane to be in the ratio of x.oo: O.45:o.x x, re-
spectively. The corresponding values of U are x.oo: x.o3:o.'73. In the case of rock-salt
we have found the values of U for the first three orders of reflection from the (xoo) plane to
be x.oo, o.67 and O. 5S. The difference is too great to be accounted for by experimental
error. Since, as pointed out above, U depends only upon the distribution of the electrons
in the atoms of the crystal, these differences must be taken as a strong confirmation of our
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instead of considering the electrons to be distributed according to some
general law such as we have been discussing, one should rather consider
every atom to possess a finite number of electrons, each placed at a
definite distance from .its center.

Atoms with a Finite Number of Fferfrons If .—each atom of a certain
kind has an electron at a distance a from its center, the average effect
from a large number of such atoms will be the same as that due to a
uniform distribution of the electrons over the surface of a sphere of
radius a. The center of this equivalent spherical shell mill be in the
mid-plane of the atomic layer, and the probability that a given electron
in the shell will be at a distance s from the middle of the layer may be
shown to be

F(s) = c [—a & s & a],

or, in virtue of the relation

cd' = I,

I
F(s) = —[—a & s & a].

2Q

The value of P due to an electron in such a shell is therefore

x ~4~a sin 0 l

cos ! ! ds =

and the value of P for a whole atom is

8
)!sin

4vra sin 9

X

(z8)
r +, z + !f4sa„sin8I /I~4su„sin 8Iv„" v, L X &/

where I is the number of electrons in the atom, and the summation
extends over all the r's from I: to v. In any actual case this summation
is most readily performed by plotting P according to equation (i7) and
taking off its values corresponding to the desired values of e sin 8/X.

From the value of P thus obtained, the quantity U can be calculated as
before by equation (t5).

Attempts to obtain a suitable formula for U by thus adding the effects
of a number of electrons placed at arbitrary distances a from the centers

fundamental assumption that the intensity of X-ray reflection depends upon the distribu-
tion of the electrons in the atoms of the reflecting crystal. If the values of U for silver are
calculated on the basis of the assumptions used below in the case of calcite, giving to each
electron an angular momentum of h/~, we obtain the values of U for the first three orders.
of reflection as z.oo: 0.93:0.82. Though the agreement is far from perfect, it is much
better than that obtained with the values x.oo: o.vo: o.S6, assigned by Bragg's law.
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of the atoms soon convince one that the form of the resulting curve is
very sensitive to changes in the assumed values of c. The results
obtained above indicate that there must be a rather strong concentra-
tion of the electrons near the centers of the atoms, but it is difficult to
select a distribution of the outer electrons which will give a refiection
formula that agrees with the experimental data.

In the case of calcite it was found that a fairly acceptable expression
could be obtained if the atoms of calcium, carbon and oxygen were
assumed to have a number of electrons equal to their positive valence,
i. e. , 2, 4 and 6, respectively, placed at distances from the centers of the
atoms inversely proportional to the valence, together with an arbitrary
number of electrons placed at the centers of the atoms. The use of
this number of electrons in the outer part of each atom was suggested

by well-known theories of valence, while some such spacing as this
seemed necessary in order to obtain a suitable formula for U. This
assumption concerning the spacing is, however, very nearly what is to
be expected if these valency electrons revolve in rings about the centers
of their respective atoms, all the electrons having the same angular
momentum. For according to classical mechanics, " the centrifugal force
men'u, where m is the mass and ~ the angular velocity of the electron
and a is the radius of its orbit, must be balanced by the centripetal force
(3II —o )e'/a' where e is the electronic charge, 3E is the total charge in
electronic units on the part of the atom inside the ring considered, and
o-„ is a term which depends upon the mutual repulsion between the
electrons in the same ring. Kith one electron in the ring o-I ——o, for
two 0-& = .25, and similarly 0-4 ——.96, 0.6 = I.83, 0.7 = 2.3I and o8 = 2.8I.
But if the angular momentum is constant, i. e. , ma'cu = c, we may write

C2 g2
ma = —(M —o„),m'a4 a'

or
C I

6 me'(3l —o )'
Since for the outer ring of a neutral atom M is equal to the number of
electrons in the ring, u is thus approximately inversely proportional to
the number of valency electrons. This suggested, therefore, the assump-
tion of the constancy of the angular momentum of the electrons in the
atoms as a working basis.

It is of course possible to 6nd any number of satisfactory arrangements
unless the number of electrons in the atoms is defined. Barkla has
shown" that the number of electrons in an atom which are effective in

&~ H. Q. J. Moseley, Phil. Mag. , 26, IO32 (I9I3).
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scattering X-rays is approximately equal to half the atomic weight. His
work in connection with that of Rutherford on the scattering of alpha
particles" and of Moseley on the high frequency spectra of the elements'4

makes it very probable that if N is the atomic number, there are N elec-
trons distributed about the atomic nucleus, and that all these electrons
are effective in scattering X-rays. This, together with the assumption
used above concerning the valency electrons, determines the number
of electrons in both rings of the erst row of elements in the periodic
table, including carbon and oxygen. For the second and third rows it
has been assumed, in accordance with Moseley's interpretation of his
X-ray spectra, " that the inner ring contains 4 electrons. This leaves
6 electrons in the middle ring of the second row of atoms. There remain
8 electrons to be placed in the calcium atom, and it seemed reasonable to
put these in a ring just inside of the valency electrons.

With the number of electrons in each ring thus determined, the
relative distance of each electron from the nucleus can immediately b&

Ca, t'If on

OryrIen

Chlorine

Fig. 4.

calculated by equation (i9), and the corresponding values of ff can be
determined by equations (x5) and (t8). If the angular momentum of
all the electrons is the same, their relative spacing in the atoms here
used is as shown in Fig. 4. The value of U obtained for calcite on the
basis of these assumptions is shown in the dotted curve of Fig. 5. Al-
though the agreement is fair, it is evident that the theoretical valueq
are too high in the low orders, and fall off too rapidly in the higher orders.
It is to be noted that as there is but a single arbitrary constant, the

~4 C. G. Barkla, Phil. Mag. , z4, 4o8 (xgo7).
"E.Rutherford, Phil, Mag. , 27, 488 (rgb. 4).
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angular momentum of an electron, in the equation for U, even this
general agreement indicates that we are working along the right line.
If the assumptions are modified to the extent of giving the electrons in

the inner rings and in the second calcium ring half the angular momentum
of those in the outer rings, the values of U given in column 6 of Table II.
and shown in the solid curve of Fig. 5 are obtained. The equation for P
is in this case,

I
50

4 sin (.or3k sin 8)/. or3k sin 8+6 sin (.orgk sin 8)/. oz8k sin 8

+8 sin (.139k sin 8)/. I39k sin 8+2 sin (.57rk sin 8)/. 57 Ik sin 8

+ [2 sin (.o43k sin 8)/. o43k sin 8+4 sin (.329k sin 8)/. 329k sin 8]

+3[2 sin (.o32k sin 8) / 032k sin 8+6 sin (.24ok sin 8) / 24ok sin 8]

Pg l
~

~ ~

Figure 5.
F't'pure b.

Fig. 5. Fig. 6.

5o is the number of electrons in a molecule of calcium carbonate, and k

is the constant (4s/X) (c'/me') where c is the angular momentum of an

electron in one of the outer rings. The agreement of the theoretical

curve with the observed values is well within the probable experimental

error, and is evidently better than that obtained with Bragg's empirical

formula.
If the assumption that all the electrons have the same angular momen-

tum is used in the case of rock-salt, a result is obtained which does not
at all correspond with the observed intensities of reflection, as is shown

in the dotted curve of Fig. 6. In order to account for the low value of U

around the second order, it seems necessary that there shall be a ring of
electrons about z.oo g xo ' cm. in radius which contains a considerable

number of electrons, and that there shall be no other heavy ring of more

than half as great diameter. This arrangement is obtained if we con-

sider the electrons in the outer rings of chlorine to have 3/2 as great
angular momentum as those of sodium, and if, as before, we assume the
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inner ring of each atom to have —', the normal angular momentum.
According to the work of J. J. Thomson" it appears probable that the
valency electron of sodium goes over to the chlorine atom and becomes
a part of its outer ring. This would give 8 electrons in the outer ring
of chlorine and none in that of sodium. The values of U given in Table
I. and shown in the solid curve of Fig. 6 have been calculated on this
basis, If the valency electron of sodium is not thus transferred, the
broken curve in this figure is obtained on the same assumptions concern-

ing angular momentum. It will be seen that the former hypothesis
yields the better results. Although the accuracy of the experimental
values of U is not great enough at present to warrant any definite
conclusions concerning such details, the difference in the curves obtained

by thus shifting the position of a single electron indicates the extreme
sensitiveness of this method for determining the distribution of the
electrons in atoms.

CONCLUSIONS AND DISCUSSION.

Thus we see that if certain definite distributions of the electrons in atoms.
are assumed, it is possible to explain in a satisfactory manner the rapid de-

crease in the intensity of the higher orders of reHection of X-rays by crystals.
Although it is not possible thus to derive Bragg's empirical formula, expres-
sions for the intensity of reflection can be derived which agree better with

experiment than does his law. We have shown from a theoretical stand-

point that any equation which is to express adequately the relative inten-

sity of the beam of X-rays reflected at different angles must be a function
not only of the angle of reHection, as is Bragg's law, but must involve also

the wave-length of the incident beam of X-rays. Professor Bragg has sug-

gested that the observed values of the intensities of the reflection from

different crystals actually show differences which do not depend upon the

angle alone. These differences are usually masked by the large general

variations of the intensity with the angle of reflection which is to be expected
with any crystal grating; in the cases of rock-salt and calcite, however,
these general variations can be accounted for, and it has been found

above that there remain certain decided differences between the spectra
from these crystals. It has been shown theoretically that any such

differences must be due to differences in the distribution of the electrons
in the atoms of the respective crystals, and the arrangements of the
electrons which have been assigned to the different atoms have been

found capable of accounting for these variations. Thus our fundamental

hypothesis that the intensity of the reHected beam is a function of this
distribution is strongly confirmed

6 J. J. Thomson, Phil. Mag. , 27, 757 (I9I4).
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The scarcity and comparative uncertainty of the experimental data
make it premature to arrive at any positive conclusions concerning the
details of the distribution of the electrons in the atoms considered. In
general, however, it may be said that a comparison of the different
distributions of the electrons which have been found to give satisfactory
results show that there is usually a rather strong concentration of the
electrons near the centers of the atoms, but with a considerable number

at appreciable distances from the atomic centers. The expression

F(s) = bs=', which was found to give Bragg's law in a slightly modified

form, implies that the volume of density of distribution of electrons is
inversely proportional to the 5/2 power of the distance from the center
of the atom, and the satisfactory distributions in the case of a limited
number of electrons have followed this rule approximately.

From the value of the constant k which is determined by the experi-
mental data, it is possible to calculate the radii of the different rings of
electrons according to the formula

kX

4~(III + o.„)'
Using the values corresponding to the solid curve of Fig. 5 we thus And

for the outer ringof calcium, c = o.97 && ro—'cm. , forcarbon, o.56 X zo '
cm. , and for oxygen, o.4r g j:o ' cm. The absolute magnitudes here
given are of course subject to revision by further experiment, but if the
number of electrons in the outer ring is taken equal to the positive
valence of the atom, a number of unsatisfactory attempts to obtain
expressions for U with other arrangements make it seem necessary that
the ratio of the diameters of the rings shall be about that here given.
This result is interesting in connection with the fact that while the carbon
and oxygen atoms in calcite are only about r.op && ro ' cm. apart, the
calcium atom is about 2.95 g to ' cm. from its nearest neighbor. In the
case of rock-salt, if the valency electron of sodium is in the outer chlorine
ring, the radius of the next sodium ring is o.36 X ro cm. , and of the
outer chlorine ring is z.oo p io ' cm. If the valency electron remains
in the sodium atom, it is, according to our assumptions, r.86 & Io cm.
from the center of the atom, and the chlorine ring is reduced to
0.89 g ro ' cm. This is a possible arrangement, since the atoms are
2.8r &( xo—' cm. apart. As mentioned above, the diameter of the chlorine
ring is probably determined with a fair degree of accuracy. The arrange-
ment of the inner rings is by no means so de6nitely determined. A
number of attempts were made, however, to fit the data for rock-salt
assuming only 2 instead of 4 electrons in the inner rings, and this seem-

ingly small change made the curve for U depart too far from the experi-
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mental values to be acceptable. Results such as these make it reasonable
to suppose that in the case of the lighter elements it may be possible,
with a sufhcient amount of accurate experimental data, to determine
positively the distance of each individual electron from the center of
it~ atom.

Bearing onT.heories of Atorw cS'tructure. Whi—le it is difficult by
any such "cut and try" method to find the only possible arrange-
ment of the electrons in atoms, it is evident that a study of the
intensity of X-ray spectra thus affords an extremely sensitive test
of any theory mhich assigns a definite distribution to the electrons
in atoms. From the experimental data now available it may be said,
for example, that unless some important factor has been neglected in

our formula for X-ray reBection, it seems impossible to account for the
rapid diminution of the intensity of the higher orders on any theory,
such as Crehore's, '~ which would confine the electrons of an atom within

a distance less than co ' cm. from its center. Such a distribution would

make the quantity if of equation (6) approximately equal to unity, and
this equation would then differ from the experimental equation (i) by
the factor tan 0, which is much greater than the experimental error.
Even if such a factor mere introduced into the theoretical equation, it
would still be unable to account for the variations in intensity which

are characteristic of the individual crsytal used as a grating. It seems

necessary, therefore, to reject Crehore's theory of the atom as an
impossible hypothesis.

On the other hand, it seems possible to explain all the X-ray intensi-

ties on the basis of the type of atom suggested by Bohr." The working
assumption that we have used, the constancy of angular momentum, is

the fundamental hypothesis of Bohr's theory. We may calculate the
angular momentum of the electrons in the atoms here considered accord-
ing to the relation

I )me2
c =+0 4x'

Using the values ) = o.614 &( ro—' cm. , ns = 9.o && ro " gm. and
e = 4.77 )& Io "gm. '~'cm. 'i"sec. ', for the outer rings of the atoms in

calcite k = 35.o and c becomes I.87 X zo ' gm. cm. ' sec '. For the
inner rings our hypotheses make c half this value. According to Bohr
the angular momentum of an electron in an atom is an integral multiple
of h/2ir, where fi is Planck's constant. Using the value Ii = 6.57 )( to 2r

~7 A. C. Crehore, Phil. Mag„26, 25 (x9x3) and elsewhere.
's N. Bohr, Phil. Mag. , a6, pp. r, 476, 8S7 (zgz3), 27, p. 5o6 (rgr4).
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gm. cm. ' sec. ', we find c = 2(t —.ro) Ii/2s. In the case of rock-salt
it is the outer chlorine ring whose diameter is most definitely defined.
In this case k = 9/4 38.2, and c = 2.93 X ro "= 3(t —.o6).h/2s. . It
may be only an accident that the angular momentum in these cases
works out so nearly in accord with Bohr's hypothesis, but it is at least
a most interesting accident. The difference between the coefficients of
Ii/zx and integers is probably too great to be dne to experimental error
in the determination of the radii of the electronic rings, but there are
good reasons to believe that there may be forces acting on the electrons
which have not been considered, and which would be sufficient to account
for the difference.

SUMMARY.

In the first part of this paper an expression is derived for the energy of
a beam of X-rays of definite wave-length which is reHected from a crystal.
The result is in accord with that previously derived by Darwin, and
shows that the intensity of the reHected beam depends not only upon the
angle of reHection but also upon the arrangement of the electrons within
the atoms of the reHecting crystal.

The form of the equation for the energy in the reHected beam is shown

to be independent of the degree of perfection of the crystal and of the
length of the wave-trains of which the X-rays consist.

In the latter part of the paper a study is made of the possible distribu-
tions of the electrons in atoms which will account for the observed
energy in the reHected beam of X-rays. It is shown that there is no
possible distribution of the electrons which will lead to Bragg's empirical
law for the intensity of reHection; it is found rather that any formula
for this intensity must depend not only upon the angle of reHection but
also upon the wave-length of the incident rays.

Attention is called to the fact that Bragg's experimental data indicate
differences in the reHection from certain crystals which can arise only
from differences in the distribution of the electrons in the atoms of which
the crystals are composed.

Assuming a number of electrons in each crystal equal to the atomic
number, and making certain plausible assumptions concerning the ar-
rangement of these electrons in rings, it is found possible to account in

a satisfactory manner for the observed intensities of the X-ray spectra.
Although the particular distributions assigned to the electrons in the

atoms of calcite and rock-salt may not be the only ones which will

account for the observed intensities of the X-ray spectra, it seems prob-
able that these distributions are not far from correct.

The results of this investigation seem to show conclusively that the
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electrons are not concentrated within a very small distance from the
center of the atom, as is assumed in Crehore's theory of atomic structure.
On the other hand, the conclusions arrived at are in good accord with
the theory of the atom due to Bohr.

My thanks are due to Professor H. L. Cooke for his helpful interest
in this research.
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