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THEORETICAL CONSIDERATIONS ON THE NATURE OF
METALLIC RESISTANCE, WITH ESPECIAL REGARD
TO THE PRESSURE EFFECTS.

By P. W. BRIDGMAN.

N a recent number of the Proceedings of the American Academy*® 1
have given data for the effect of pressures to 12,000 kg. and temper-
atures between 0° and 100° C. on the electrical resistance of 22 metals.
A detailed discussion of the nature of the results and methods of measure-
ment and calculation will be found in that paper. The most important
results follow. (1) The temperature coefficient of resistance is nearly
independent of pressure; this holds for pressures high enough to compress
the metal in many cases to less than its volume at 0° Abs. Another way
of stating the same fact is that the pressure coefficient is independent of
temperature. (2) The relative pressure coefficient of resistance becomes
less at higher pressures. (3) The curvature of the resistance-pressure
curves is in most cases greater at lower temperatures. (4) Two metals,
bismuth and antimony, show an abnormal positive pressure coefficient
of resistance. The anomaly of bismuth was known before, but that of
antimony is new.

The purpose of this paper is to present a view of the nature of metallic
conduction which had its origin in an attempt to bring into line the facts
at high pressures, but which also accounts for other facts not intimately
connected with the pressure effects. In brief, this view of the nature of
conduction regards all metals as naturally perfect conductors in the sense
that the electrons may pass without resistance from atom to atom when
the atoms are in contact at rest. The precise mechanism of this free
transfer need not be further specified for our purposes; we may if we like
suppose the electrons capable of freely penetrating the substance of the
atom, in much the same way as recently suggested by Professor Hall.?
If the atoms become too much separated, however, the electrons encounter
difficulty in passing from atom to atom, and if the separation is too great,
are almost entirely unable to pass. In a solid at absolute zero the elec-
trons pass freely from atom to atom, thus giving perfect conductivity,
but as the temperature is raised, the atomic centers become separated,
and if the separation passes a certain critical value, the electrons encounter

1 P. W. Bridgman, Proc. Amer. Acad., 52, 571-646, 1917,
2 E. H. Hall, Proc. Amer. Acad., 50, 67-103, 1914.
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difficulty, and electrical resistance makes its appearance. In a solid
under given conditions there must be a certain number of pairs of atoms
separated by more than the critical distance, or we may say, there are a
certain number of “gaps.” The resistance is proportional to the number
of gaps. Now the number of gaps evidently is closely connected with
the mean amplitude of oscillation of the atoms. Our first task, in at-
tempting to cast this view of the nature of conduction into quantitative
form,is to find how the amplitude changes with pressure and temperature.
The following deduction of the variation of amplitude and frequency
is valid only at moderate temperatures, where the classical statistical
mechanics and quantum theory are not essentially in conflict. For
these temperatures, everything may be obtained from three equations.
We assume in the first place that the vibration of an atom is simple har-
monic, and that the energy of a degree of freedom is equal to the energy
of a degree of freedom of a gas atom at the same temperature. This

gives as a first equation
v’a? = const 7, . (1)

where » is the average frequency of atomic vibration, and « is the average
amplitude. The second assumption concerns the nature of the restoring
force under which the atoms execute their harmonic vibrations. If the
volume remains unaltered, it is natural to suppose that in most cases the
average restoring force for a given displacement will not be affected by
such changes as changes of temperature. We therefore write as the

second equation
dv ‘
(5),= o @)

These two relations are not enough to completely determine » and «
as functions of pressure and temperature. As the third equation I will
adopt Griineisen's relation®

I{d I (dv
). =5, 3)
These three relations must all be recognized as only approximate. At
low temperatures »?a? increases more rapidly than r, and at high tem-
peratures there may be further increase. The frequency cannot be a
function of volume only unless at constant volume the average restoring
force on an atom is a linear function of atomic displacement. But it
seems inevitable that as the amplitude of oscillation becomes greater the

restoring force, due to contact between atoms, must increase more

LE. Griineisen, Ann. Phys., 39, formula 23, p. 276, 1912.
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rapidly than the displacement, resulting in an increase of frequency as
temperature is increased at constant volume. The existence of an
effect of this nature is demonstrated by the existence of a positive thermal
expansion. For if the restoring force were truly linear, the expansion
must probably vanish, as I have suggested in connection with effects
found in liquids at high pressures, and as Debye! has suggested more
recently. Equation (2) is, therefore, only a first approximation.
Griineisen’s relation, equation (3), is in accordance with an equation of
quantum theory, obtained by assuming Planck’s relation between energy
and entropy. Planck finds that the entropy is a determinate universal
function of »/r. Griineisen’s assumption is more general than the relation
obtained from quantum theory, in that he assumes entropy a function
only of »/r without assuming anything at all about the special form of
the function; in fact he does not even assume that the function is of the
same form for different substances. Since the particular form of the
function demanded by quantum theory seems to suit the facts at at-
mospheric pressure fairly well, we are reasonably safe in assuming Grii-
neisen’s less restricted form.

From equations (2) and (3) above we obtain immediately (9v/9p),
and (d»/d7),. These are the derivatives which we want, because in this
work p and 7 are taken as the independent variables. We have, from (2)

(5).=E),+(E), (F).-
and from (3)
GG (), (5). -

(5).= -G/ (), = (5).-5 ).

Substituting and solving, we obtain
L) S (2) e ()
V(ar)p—(ar)p/ G apl,’ @

I{0v vy |/

v(ap),_(&')p/ Co- (5)
Now differentiating (1) logarithmically, and eliminating (1/»)(d»/07),
and 1/»)(9»/0p), we have immediately

But

and

2(5) ==,/ e ©

1 P. Debye, Wolfskehl. Conference, Gottingen, 1914, p. 19-60.
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I (0 I v \2? dv

2.1(5;),,=5;"(a7)p//cv(51;),- @
These equations give, therefore, the variation of both » and « in any
direction in terms only of quantities of thermodynamic nature.

The numerical magnitudes of these quantities first claim attention.
The relative pressure coefficient of amplitude is negative, and its magni-
tude is in general six to nine times the linear compressibility. The
amplitude increases with increasing temperature, approximately as 1/27,
since the term (09/07),%/(C,(09/0p),) is small. The frequency increases
with increasing pressure, the rate of increase being the same as the rate
of decrease of the amplitude, and the frequency decreases with increasing
temperature, but the rate of decrease is small compared with the rate of
increase of amplitude.

and

TaBLE I.
1 (gv 1 (97 (& 1 (da 1 [(da T (v
et | —3(5) .| 5(5), e, 25, | 23| 2 (E),
In...... (2)2.0X10°8 .0;13 15.2 2.39X107% | 8.6X10°% 55.5%x107%
Sn...... 1.86 .0,51 16.8 1.92 3.03 8.3
TI...... 2.26 .0492 15.4 2.06 5.96 24.3
Cd...... 2.06 .0,90 19.2 2.04 4.7 20.4
Pb...... 2.28 .04879 14.0 2.07 6.27 24.3
Zn...... 1.66 .0478 26.8 1.97 2.91 13.7
Mg..... 2.84 .0478 17.7 1.96 4.4 12.1
Al...... 1.44 0474 23.1 2.00 3.19 16.5
Ag...... .99 .0455 24.1 1.96 2.30 12.9
“Au...... .628 .0,429 24.8 1.95 1.73 11.8
Cu...... 735 .0451 34.2 1.94 1.49 10.3
Ni...... 42 .04375 40.0 1.88 .94 8.4
Co...... ? .50 .0437 37.0 1.91 1.00 7.5
Fe...... .58 .04375 34.6 1.90 1.08 7.0
Pd...... .53 .04355 294 1.92 1.21 8.1
Pt...... 272 .04292 28.5 1.94 1.02 10.9
Mo..... .45 .0,108 24.7 1.84 44 1.13
Ta...... .52 .04237 22.8 1.88 1.04 4,85
W...... .265 .0,4101 27.6 1.84 37 1.39

In Table I. are collected the numerical values of the changes of ampli-
tude and frequency for the metals whose pressure coefficient I have
measured. In the table are also included the fundamental thermody-
namic data used in the calculations. There is often considerable un-
certainty as to the best experimental values to choose. I have in general
used for thermal expansion the most consistent values from the last
edition of Landolt and Bérnstein and for compressibility the values of
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Richards. A more detailed discussion of the manner of choice of these
data may be found in the American Academy paper.

With the numerical values of the changes of amplitude at hand, we are
now in a position to search for a connection between the changes of
resistance and amplitude. It turns out that there is a very simple
approximate relation between these two quantities, which I offer as the
most important result of this paper. The relation is that the change of
resistance with temperature or pressure or any other thermodynamic
variable is twice the relative change of amplitude under the same con-
ditions. It is perhaps worth mentioning that I was led to search for a
relation between resistance and amplitude by the view I have outlined
of the nature of resistance, and that the view was not suggested by observ-
ing the relation.

Consider first the variation of resistance with temperature. In order
to simplify this first discussion, we consider the temperature coefficient
at constant volume, thus avoiding a very small correction for changing
volume. From the formulas already given, it follows immediately that

I(0a) I
2 (5; ),, T
Now the temperature coefficient of most metals is nearly the reciprocal
of the absolute temperature, so that we have here an approximate ex-
pression for the change of resistance in terms of the change of amplitude.
The temperature coefficient as ordinarily given, however, is the coefficient
of the observed resistance at constant pressure. The coefficient at
constant volume is more nearly equal to 1/r than is the coefficient at
constant pressure. In Table II. are shown the temperature coefficients
at constant volume of the specific resistance at 0° C. In comparing
these values with others it must be remembered that we are giving here
the specific resistance, and not the observed resistance, and also that we
are listing the instantaneous coefficient at 0° and not the average coef-
ficient between 0° and 100°.

The temperature coefficient at constant pressure involves a correction
for changing volume, as already suggested. If the view of conduction
given above is justified, we would expect that decreasing the number of
atoms would, other things being equal, increase the resistance. The
increase is proportional to the change of linear dimensions, that is to
1(1/2)(8v/d7) ,, because an increase of length and an increase of one of the
cross sectional dimensions work in opposite directions on the resistance.
It turns out that to the same degree of approximation to which
(1/w)(0w/d7), is equal to 2(1/a)(da/d7)s, 1/w(0w/dT), is also equal to
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2(1/a)(0a/d7), + 3(1/v)(9v/d7),. It is hardly worth while to give a
special table for this other temperature coefficient. The correction for
volume averages about % per cent.

TasLE II.
1 7w
75;(%})7' Ratio of y calc. (Q_")
Metal. X (a—w) . byFGrﬁnelis:n’s 0t/ w*
w\9r /» " ormula to ar
YObs. Cate. v Obs. (aﬁ)a'
YObs.

In........ .00360 —12.9X107¢ 1.39 1.063 0.875
Sn........ 402 111 0.597 0.420 1.62
TL........ 463 13.9 0.91 0.813 0.932
Cd........ 357 11.3 0.894 0.643 1.21
Pb........ 350 15.2 0.875 0.671 1.23
Zn........ 389 5.95 1.066 0.718 0.99
Mg....... 380 6.4 1.547 1.094 0.72
Al........ 409 4.64 '1.48 1.157 0.665
Ag........ 384 3.83 1.288 0.973 0.800
Au........ 369 3.33 1.132 0.877 0.949
Cu........ 414 2.45 1.315 0.985 0.738
Ni........ 605 1.72 1.09 1.197 0.568
Co........ 358 1.10 1.975 1.328 . 0.573
Fe........ 545 2.60 0.905 0.807 0.815
Pd........ 308 2.16 1.205 0.792 1.057
Pt........ 367 2.07 1.030 0.865 1.007
Mo....... 432 1.48 0.601 0.338 1.443
Ta........ 290 1.66 1.356 0.814 1.007
W........ 313 1.37 0.598 0.305 1.354

We next compare the pressure coefficient of resistance at constant
temperature with the change of amplitude with pressure at constant
temperature, corrected for the effect of changing volume as just explained.
The pressure coefficient computed in this way is given by the formula

L) o E(2) 4 ai(2).

w\dp/, a\dp/, v\ap/,

The last term, which is the correction factor for changing volume,
amounts to from 5 to 10 per cent. of the total effect. In Table II.,
Column 4, the ratio of the observed value of the pressure coefficient of
specific resistance at 0° C. and o kg. to the value computed as above is
shown.

The agreement is not as good as could be desired, but it should be
remembered that the classical free electron theory did not give even the
right sign to the pressure effect, to say nothing of the numerical magni-
tude, and that there has been only one other theory proposed which has
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attempted to account for the pressure effect. This other theory is that
of Griineisen,! who modifies the theory of Wien,? who regards the elec-
trons as moving with constant velocities independent of the temperature.
The formula of Griineisen is

1 (0w 1/0u 1 (AN 1fdv I I{0v I (dw
Hap) =2 (@) v ()3 ). (), [ m(;);]’
where # is the velocity of the free electrons, and N is their number per
cm?®. In column 5 of Table II. the ratio of the values computed by
Griineisen’s formula to the observed values are listed for purposes of
comparison. It will be seen that on the whole the new formula agrees
better with experiment than does that of Griineisen. Griineisen has
discrepancies amounting to a factor of three for both Mo and W, whereas
the greatest discrepancy of the new formula is by a factor of two for Co,
which was known to be impure. There is also this difference between
the new formula and that of Griineisen, apart from jts much greater sim-
plicity. Griineisen’s formula does not give the pressure coefficient in
terms only of other quantities of non-electrical nature, but, besides the
first two terms which are small, introduces the temperature coefficient
of resistance, which must be determined by experiment. It is of course
true that the temperature coefficient is approximately equal to 1/7, so
that the last factor in Griineisen’s formula might have been written 2,
but the formula would then have lost its theoretical significance, and
become merely empirical. Furthermore, the agreement with observation
would not have been so good if this simplification had been made, the
departures of the temperature coefficients from equality with 1/7 playing
a real part in the numerical values given by the formula.

It is interesting to notice that by a combination of Griineisen’s formula
with that suggested above, an empirical relation may be obtained much
better than either. The relation is

Yo/ Yobs + Yous/ s = Const.

where v = (1/w)(0w/dp), and the subscripts indicate whether the coef-
ficient is observed or calculated according to Griineisen’s or my formula.
The “constant’ varies for the 19 normal metals from 1.54 to 1.97, or a
range of 14 per cent. about the mean, whereas the variation in Griineisen’s
formula, omitting Co, is 53 per cent., and that of the proposed formula
above, omitting Co, is 37 per cent. It is curious, however, that the
formula cannot be reversed, that is solved for vq,, to give an approxi-

1 E. Griineisen, Verh. D. Phys. Ges., 15, 186200, 1913.
2 W. Wien, Columbia Lectures, 1913, 20—48.
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mately correct value. It will be found, if one tries to operate with a
fixed average value of the constant, that some substances give imaginary
values for o

A result of some interest to be deduced from the expressions above for
temperature and pressure coefficient is that the resistance is approxi-
mately constant along a line of constant amplitude. Column 6 in Table
I1. shows the ratio of (87/3p)w to (37/0p),. This ratio of course should
be unity if resistance were strictly constant at constant amplitude.

We may summarize the results of these numerical calculations by the
statement that the change of specific resistance with either pressure or
temperature, and therefore with any other thermodynamic variable, is
given by

idw = 2—I'da + %dv,
w «

to at least as good a degree of approximation as that of any other formula.
The term containing the change of volume is comparatively unimportant,
so that we may say that the relative change of specific resistance in any
direction is approximately equal to twice the corresponding change of average
amplitude of atomic vibration. The agreement with the pressure coeffi-
cient is better than that of the only previously proposed formula, and the
temperature coefficient is correctly reproduced in the majority of cases.
I know of no attempt to account for the departures of the temperature
coefficient from 1/7 except that of Wien, and his attempt to bring the
departures into connection with the average frequency of atomic vibration
cannot be considered a success.

The theoretical significance of this general relation becomes immedi-
ately obvious from the viewpoint outlined above that the resistance is
proportional to the number of gaps between atoms. If the number of
gaps is proportional to the square of the mean amplitude, then the
change in the relative resistance will be proportional to twice the relative
change of mean amplitude, plus a correction term for changing volume.
Now it is easy to see how the number of gaps may be proportional to the
square of the mean amplitude. A gap is formed when two neighboring
atoms each have an‘amplitude enough greater than the mean so that the
maximum distance of separation, when they are at opposite parts of their
swing, shall exceed a critical value. That is, a gap is only produced by
the chance coincidence in two neighboring atoms of two amplitudes both
larger than the mean. If we suppose the amplitudes are distributed at
random, the chance that there be two such coincident large amplitudes
in two neighboring atoms is evidently proportional to the square of the
chance that a single atom have an amplitude large enough. If then, the
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‘chance that a single atom have an amplitude of the requisite magnitude
be proportional to the mean amplitude of oscillation of all the atoms, and
this is certainly the simplest assumption that can be made, the con-
nection becomes at once obvious. Of course in any actual case the con-
ditions are much more complicated than we have supposed above; the
amplitude of a single atom need not exceed a definite critical value before
it can under any conditions form a gap with a neighboring atom, but the
amplitude necessary to form a gap will depend on the relative phases of
the two atoms. Such modifying features as this will not change the
general result that the number of gaps is proportional to the square of
the number of atoms with amplitude above a certain value, but will only
change the numerical value of the factor of proportionality.

It is evident that these general considerations must be modified by
many factors that vary from substance to substance. Consider first the
manner of distribution of amplitudes about the mean. This is a subject
which has not yet been worked out, but which can perhaps be solved in
the not too distant future by such methods as those initiated by Born!
in his recent book. Whatever the precise manner of distribution will
turn out to be, we may be sure that it will not be Maxwell’s distribution.
I have obtained independent evidence on this point from the time rate of
transition of polymorphs.2 If one does assume Maxwell’s distribution,
the variation of number of gaps with mean amplitude may be worked out,
and will be found proportional to some higher power of the mean ampli-
tude than the second. This is sufficient to show that the manner of
variation of number of gaps depends on the manner of distribution of
amplitudes about the mean. The manner of distribution may well be
expected to vary from substance to substance.

It is obvious, if all amplitudes are concentrated in a narrow band about
the mean, that as temperature is increased from 0° Abs. there will be a
definite temperature at which a finite number of gaps will suddenly
appear, and the metal will suddenly become conducting, as do tin, lead,
and mercury. This suggestion as to the sudden appearance of resistance
must not be taken too seriously at present until it has been settled that
this discontinuity is not due to a polymorphic transition, but in any event
the new point of view leaves open such a possibility. If, on the other
hand, the distribution is not so sharp, the appearance of resistance will
not be so sudden, but in any event it is pretty evident that the resistance
will at first, after it has once appeared, increase more rapidly than the
increase of temperature itself. This is of course true for most pure
metals; at low temperatures the resistance increases approximately as the

1 M. Born, Dynamik der Krystallgitter, Teubner, 1915.
2 P. W. Bridgman, Proc. Amer. Acad., 52, 80, 1916.
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fourth power of the temperature. The fact that the manner of variation’
of resistance with temperature is much the same for all metals at low
temperatures suggests that at low temperatures, at least, the manner of
distribution of amplitudes must be much the same for all substances. At
higher temperatures individual differences in the behavior of resistance
appear, and it seems not unlikely that similar differences in the manner
of distribution should also appear.

Another important consideration is that of frequency. We have
entirely neglected this factor in the considerations above. If frequency
has no effect, then the effective number of gaps is not changed by a change
of frequency. This means that if we double the frequency of oscillation
we have thereby halved the time during which two atoms are separated
by the critical distance during a single encounter, or doubling the rapidity
of mean oscillation doubles the rapidity of every stage of the motion.
This seems the most natural hypothesis, but judging by analogy with the
collisions of elastic systems, it is by no means a necessary hypothesis.
If the law of action between atoms is different for different kinds of atoms,
there may be differences in the proportional length of time occupied in a
collision. It does not seem unlikely that there should be such variations,
and probably some of the discrepancies are to be explained by this neg-
lected factor. The fact, however, that we have obtained as good agree-
ment as we have probably means that the atoms of all normal metals are
much alike. It ought to be possible to obtain information about the law
of force between atoms by considerations of this character.

Perhaps the most striking factor that has been neglected is the effect of
change of volume, apart from the effect on the number of atoms in unit
volume. If the atoms are of finite size, and if this size remains constant,
it is evident that when volume is decreased at constant amplitude, for
example, the number of gaps and therefore the resistance should decrease.
If the total volume occupied by the atoms is a large fraction of the total
volume of the solid, such an effect should be rather large. According to
Wien’s theory, on the other hand, the resistance should increase instead
of decrease as volume is decreased at constant amplitude. As a matter
of fact, there seems to be no such effect; for some metals the resistance
decreases with decreasing volume at constant amplitude, and for others
the resistance increases. In any event the effect is small; in fact, to a
first approximation, resistance is constant for all normal metals at
constant amplitude, as has been shown in Table II. The point is an
important one, and seems to me to indicate that under pressure the atom
undergoes some sort of distortion so as to become effectively smaller.
The same conclusion is strongly suggested by the fact that at pressures
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high enough to compress the volume to less than its value at 0° Abs.
the temperature coefficient is practically unaffected. This would seem to
indicate that the solid in some way remains similar to itself as pressure is
increased, and this might be brought about by such a decrease of volume
of the atoms themselves as to keep pace with the change of volume of
the entire solid.

Another possibility to be kept in mind is that the boundary of the
atom which determines the elastic collisions may not be the same as the
boundary which determines the ‘gaps for the passage of electrons. The
latter may be inside the former, much in the same way as the effective
radius of the atom as determined from dielectric measurements has been
found to be less than the effective radius as found from kinetic theory.
In fact, this view of the nature of conduction demands fundamentally
a certain amount of interpenetration of the outer parts of the fields of force
surrounding the atoms when they are in contact under normal circum-
stances in a solid, or else a very considerable distortion of the atom under
changes of temperature. Or again, the atoms may not be absolutely
separated in order to form a gap, but may be merely in contact over a
smaller area, thus affording less chance for the passage of electrons.

In view of all these neglected factors it does not seem strange that the
variations from the formula are as large as they are, but rather that they
are no larger. It must be one of the next tasks of this theory to attempt
to bring the variations from agreement with the formula into connection
with the neglected factors, and obtain if possible a closer approximation
to the observed values.

This is as far as. I have been able to get quantitatively according to
this view point. Qualitatively, however, many other facts may be
brought into line if we consider that at high temperatures the gaps begin
to function in a new way. Consider a metal kept at constant volume as
temperature increases. If the volume is initially small, the number of
gaps will increase, as already explained, as the average amplitude of oscil-
lation is increased. But if the initial volume is large, the atoms may be
separated so far that the electrons cannot pass freely from atom to atom
under ordinary conditions, but can pass only when two atoms are
brought especially close together during a collision of unusual violence.
The number of such favorable opportunities will evidently increase as the
mean amplitude increases. An increase of amplitude functions in two
ways, therefore; at small volumes it increases the resistance by increasing
the number of gaps, and at large volumes it decreases the resistance. If
the metal is heated at constant pressure, being allowed to expand, there
will be a progression from the first state of affairs toward the second. We
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may represent this by saying that effectively the atoms of the metal are
divided into two classes; those of the first class are the ones to which we
have already applied our formulas, and their resistance increases with
increasing amplitude, while those of the second class tend to decrease in
resistance as mean amplitude increases. The atoms of the first class have
a low specific resistance, and those of the second class a high resistance.
As the metal is heated the resistance will be affected in three ways; there
will be an increase of resistance of the atoms of the first class, an increase
of resistance due to the passage of atoms from the first to the second
class, and a decrease of resistance of the atoms of the second class.

We now enumerate the various kinds of effect that can be brought into
line by these considerations. This enumeration will include the facts
that have already received quantitative treatment. (1) The temperature
coefficient of resistance of solid metals at constant pressure is very nearly
equal to 1/r. It is, however, greater than 1/7, and for nearly all metals
becomes increasingly greater at higher temperatures. (2) The temper-
ature coefficient of most liquid metals, on the other hand, is much less
than 1/7, and for some metals (Cd and Zn) may actually be negative.
(3) The only liquid metal for which measurements have been made,
mercury, has a negative temperature coefficient of resistance at constant
volume. (4) At constant volume the temperature coefficient of solid
metals becomes increasingly less than 1/r as temperature is raised, and if
the same tendency persists will eventually become negative. (5) At
very low temperatures some metals show a sudden drop of resistance to
sensibly zero. (6) The pressure coefficient of resistance at constant
temperature of nearly all pure metals is negative. The pressure coef-
ficient of the only liquid metal measured, mercury, is much larger than
that of solids. (7) The relative pressure coefficient at constant temper-
ature decreases with increasing pressure. (8) The decrease with pressure
of pressure coefficient at constant temperature is less at higher temper-
atures for most metals, but for a few metals with low melting point is
greater. (9) If a metal is stretched by a force in tension, the resistance
along the line of stretch is increased, but is decreased at right angles.
(10) Two metals, Bi and Sb, have a positive pressure coefficient. This
may be brought into direct connection with their abnormally small ther-
mal expansion and the fact that both expand on freezing. (11) The high
specific resistance of alloys compared with that of their constituents is
what one would expect. The negative temperature coefficient of some
alloys may also be explained by the same mechanism, and possibly the
positive pressure coefficient. ‘

We now consider these points in detail. (1) The temperature coef-



Yo 1x METALLIC RESISTANCE. 281

No. 4.

ficient of solid metals, both at constant pressure and constant volume has
already been discussed. One would be tempted to explain the fact that
the coefficient is greater than 1/r by the passage of atoms from the first
to the second state on raising temperature, but this explanation is seen
not to be justified on considering that the coefficient at constant volume
is also too large, and that the discrepancy at constant pressure is no
greater than at constant volume. An explanation of the variations of
temperature coefficient is much to be desired; as yet there seems to be
no suggestion as to any possible connection with other physical proper-
ties. As already remarked, Wien's attack does not 'seem fruitful.
Possibly a suggestion may be found in a distortion of the atoms with
increasing violence. of vibration, even at constant volume, which ef-
fectively decreases their volume, and so increases the number of gaps
and the resistance. The upward curvature of the resistance curves, on the
other hand, is probably to be explained by the increasing number of atoms
in the second condition.

(2) The temperature coefficient of liquid metals, which are to be
thought of as largely in the second condition, would be expected to be
less than that of a solid because the temperature coefficient of atoms in
the second class is by themselves negative. In any actual liquid the
negative temperature coefficient of the second-class atoms is modified
by the atoms which are passing from the first to the second class, and
which produce an effect of the opposite sign. If the total number of
atoms in the second class is large enough to outweigh this other effect,
the coefficient will be negative, as it is for liquid Cd and Zn. In any
event, we expect the coefficient for the liquid to be less than for the solid,
and in general to be less than 1/r. The accompanying table shows this.

TasLE III.
Temperature Coefficient of Resistance of Liquid Metals.

Metal. Temp. °C. Temp. Coeff, % . C°;§‘g:;‘;1‘;i§g}id
Na.....oooovvvinn 100° .00330 .00268 .00348
Koo, 100 .00342 .00268 .00369
Al ..o 657 .00051 .00107
Cu....oovvvennn 1100 .00037 .00073
Sn..iiii 500 .00048 .00115
Au............... 1100 .00045 .00073
Hg............... 100 .00094 .00268
Pb....ooiieiii, 500 .00044 .00115
Bi.............ol 271 .00042 .00184 .0020+

Only two of the metals, K and Na which have low melting points, have
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a coefficient greater than 1/7, and for all the metals the coefficient of the
liquid is less than that of the solid at the same temperature. The coef-
ficients of the solids listed in the table were obtained by an extrapolation;
the coefficients of the solids not listed are in all cases greater than 1/7.

(3) If a liquid metal is heated at constant volume, the relative number
of atoms in the two classes is probably little affected, and we would
expect the temperature coefficient to be negative, if the number of atoms
in the second group is larger than those of the first, as we suppose it is
for a liquid. This is verified by the only liquid metal for which the data
exist, liquid mercury. This observation was first made by Barus.!

(4) One meaning of a pressure coefficient of resistance for solids inde-
pendent of temperature is that as temperature is increased at constant
pressure (say atmospheric) the temperature coefficient at constant
volume becomes more nearly negative, and if the same tendency persists
will ultimately become negative, as it is for liquid mercury. This in-
dicates that at higher temperatures the solid metal approaches a con-
dition in which most of its atoms are in the second group, and is exactly
what one would expect.

The fact that there is a tendency toward the behavior of the liquid
may be seen on considering that the thermal expansion and the com-
pressibility of a metal are both little affected by temperature at constant
pressure, and that the relation between temperature and resistance is to
a first approximation linear. This means that at high temperatures the
same increment of pressure and temperature will be required to maintain
volume constant as at low temperatures. The same increment of tem-
perature will produce the same increment of actual resistance, but the
decrement of resistance under a constant increment of pressure will
increase, because the relative pressure coefficient is constant, while the
actual resistance, on which the coefficient is calculated, becomes higher.

(5) The sudden drop of resistance of some metals at low temperatures
has already been touched on. It means, according to this view, a cluster-
ing of the amplitudes closely about the mean.

(6) The negative pressure coefficient has already been explained at
some length. It is primarily due to a decrease of atomic amplitude
brought about by an increasing frequency at higher pressures. Added
to this effect must be another effect, in most cases considerably smaller,
due to the crowding of atoms from the second condition into the first.
We have already seen that under ordinary conditions the number of
atoms in the second condition is small, but in the case of liquid metals
the number in the second condition is relatively larger, and we should

1 C. Barus, Bull. U. S. Geol. Sur. No. 92, 1802, p. 74.
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expect the decrease of resistance due to this cause to be higher. This
is verified by the only liquid metal for which we have data, mercury.

(7) The decrease of relative pressure coefficient under increasing pres-
sure is to be accounted for by the disappearance of atoms in the second
class. This number is not large, and so the effect would be small, as it
actually is. The rate of decrease of coefficient at rising pressures is a
rough measure of the rate at which the atoms of the second group are
being exhausted. If the rate of decrease of atoms of this group were
constant at all pressures, we would, of course, have no decrease of the
coefficient at higher pressures.

(8) The surprising fact that the decrease of coefficient with pressure
is greater at low than at high temperatures is to be explained [by the
fact that at low temperatures the atoms of the second group are being
exhausted more rapidly, since there are fewer of them, and therefore
they contribute a more rapidly decreasing term to the negative pressure
coefficient. The more rapid decrease at higher temperatures of some of
the metals with low melting points is, on the other hand, probably to
be explained by the greater decrease of the thermodynamic quantities
which enter the formulas for the amplitude. It is for just these metals
that one would expect the greatest decrease, although such a decrease
has not yet been proved by experiment.

(9) When a metal is stretched by a mechanical tension the atoms are
separated along the line of tension, but are brought closer together in a
direction at right angles to the tension. We would expect therefore the
number of gaps to increase if the path of the electrons is along the tension,
but to decrease if it is at right angles. This corresponds with the observed -
changes of resistance under tension.

(10) The positive pressure coefficient of resistance of Bi and Sb next
engages us. A positive pressure coefficient, according to this view, means
that the number of gaps increases as volume decreases at constant tem-
perature. Such an increase may be accounted for by an increase in
amplitude, or what is the same thing, a decrease in frequency at constant
temperature. A decrease in frequency with decreasing volume is not
what we would expect, but may be brought into immediate connection
with two other abnormal features of the behavior of Bi and Sb. Both
Sb and Bi contract instead of expanding when melted, and the thermal
expansion of both is unusually small. If a diagram is plotted of thermal
expansion against compressibility (or melting point) of all the metals of
these experiments, Sb and Bi will be found to occupy a position apart
from the others, with abnormally small expansions. Now it is a conclu-
sion most strongly suggested by the analysis of Debye, and also by my
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own examination! of the properties of a gas composed of only one atom
already mentioned, that the thermal expansion is intimately connected
with the law of force between atoms. The subject has by no means been
worked through as yet to a satisfactory conclusion, but we may probably
assume with safety that an abnormally high thermal expansion means a
restoring force increasing with unusual rapidity as the atoms are brought
together, and that a small expansion means that the restoring force
increases less rapidly than normal with decreasing volume. If we admit
the conclusion as justified by the results above that the restoring force
in normal metals is linear and independent of the volume, then for a
substance with small expansion the restoring force decreases as the volume
decreases. Such a decrease of restoring force means a decrease of mean
frequency with decreasing volume, and hence an increase of amplitude.
It is not difficult to imagine a law of force which will lead to such an
unusual result.

In Fig. 1 is represented what we may suppose to be the action between
three adjacent atoms. We suppose atom B to vibrate, and atoms 4
and C to remain at rest. The curve (1) shows the force with which 4
and B act on each other as a function of their distance apart. At infinite
separation there is no force (indicated
by the dotted horizontal line); as the
atoms approach the force is at first an
attraction, indicated by (1) lying above
the horizontal line, but on closer ap-
proach the force rapidly becomes an
intense repulsion. The law of force be-

Fig. 1. tween B and C is precisely similar to

that between 4 and B and is shown by

the curve (2). The dotted part of curves (1) and (2) is what we may im-
agine for normal atoms, while the heavy curve is perhaps like that of Bi
and Sb. The anomaly consists merely in a temporary acceleration of the
rate of increase of the repulsive force followed by a retardation, as com-
pared with the normal atom. The restoring force on B as it oscillates
between 4 and C is evidently the difference of the forces exerted in
opposite directions by 4 and C, and will therefore be proportional to the
angle between (1) and (2) multiplied by the displacement of B from its
equilibrium position. It is evident from inspection of the figure that
as atoms A and C approach, that is as volume decreases, the angle of
intersection between (1) and (2) decreases, and the restoring force
therefore decreases. This decrease of restoring force means a small

1 P. W. Bridgman, Proc. Amer. Acad., 49, 107, 1913.
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thermal expansion, and at the same time a decrease of frequency, and so
an increase of resistance.

The slight anomaly in the law of force shown in Fig. 1 is also consistent
with the solid having a larger volume than the liquid. To simplify the
argument on this point suppose that the solid is at 0° Abs. We will try
to show that the atoms are in equilibrium in a position of abnormally
large volume. Equilibrium is found in that configuration in which the
work done by the attractive forces during a virtual decrease of volume is
exactly equal to the work done on the repulsive forces. We may suppose
that the repulsive forces act only between immediately adjacent atoms,
whereas all the more distant atoms exert attractive forces. Equilibrium
will therefore be found where the few repulsive forces balance the many
attractive forces. If there is a region in which the repulsive forces are
unusually intense at an unusually large distance from the center of the
atoms, as we have supposed the case for Bi and Sb, the repulsive forces
will balance the attractive forces when the atoms are separated more than
usual, and we will have a solid of abnormally large specific volume. If
we suppose that this particular law of force is valid only when the atoms
have the regular orientation of the crystal, but that the average law of
force for haphazard orientations is more nearly normal, we have immedi-
ately a suggestion as to why the metal contracts on melting.

The abnormality we have imagined to account for the pressure effect
has little effect on the temperature coefficient. The reason for this is that
the temperature axis is very nearly normal to the line of constant ampli-
tude in any event, so that a relatively large change in the direction of the
line of constant frequency will produce a relatively small change in the
temperature derivative of frequency. It is true that the temperature
coefficients of resistance of Bi and Sb are not at all abnormal.

(11) The fact that the resistance of an alloy is always greater than
that of its components is simply explained by the failure of the atoms of
the two metals to fit closely together. In an alloy there are, therefore, a
greater number of gaps permanently present than in the pure metal, and
consequently the resistance is greater. As far as I know the conductivity
of every alloy is less than that of its best conducting component, and in
many cases is less than that of either component. The positive pressure
coefficient of some alloys may be explained by supposing some such effect
as that imagined for Bi, which is plausible enough if we are dealing with
molecules instead of atoms, or by supposing that under the constraint
of increasing pressure the atoms assume less natural positions, in which
the number of gaps is greater. This latter alternative would be suggested
by all my experiments on polymorphic transitions, in which the applica-
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tion of pressure at constant temperature drives the molecules ultimately
into such a configuration that some other configuration is more stable.

In conclusion a few critical remarks are not out of place. I do not
offer the view of conductivity here explained as the only possible one
consistent with all the facts, but merely as the one which seems to me at
present most probable in the light of the facts now at our disposal. In
one essential particular it does seem to me likely, however, that this view
is like that which will be finally adopted. In the mechanism of conduc-
tion the properties of the atomic framework play a preponderating part;
the atoms are not merely the trees of a forest among which a breeze of
electrons plays, as in the classical free electron theory. The new ex-
perimental justification for this broad requirement in any new theory is
the observation that the change of resistance is intimately connected with
the amplitude of atomic vibration. Even if one is still so unconvinced
of the truth of quantum theory as to be unwilling to admit the validity
of the fundamental equations (1), (2) and especially (3), the fact cannot
be escaped that we have found an approximate relation between the
change of resistance and certain quantities of a purely thermodynamic
character, which are certainly intimately connected with atomic proper-
ties.

This theory of conduction is not complete in the sense of the old free
electron theory because it does not at present explain Ohm’s law. We
merely postulate, without searching for a detailed mechanism, that the
electrons encounter resistance when they jump a gap between atoms,
and that the resistance of the gap is on the average a resistance which
obeys Ohm's law. This point is, however, probably one that it will not
be difficult to meet. If, for instance, the force encountered by an electron
in jumping a gap is like an ordinary fluid frictional force, proportional
to the velocity, the requirements are met. The assumption of such a
force is already familiar in various branches of electron theory.

The picture which I have presented of conduction in a metal is of a
chain of electrons, which are normally at rest, getting under way under
an applied electromotive force down a coherent chain of atoms, and
gaining in speed until suddenly the continuity of the chain is interrupted
by a break which appears somewhere between two neighboring atoms of
the chain. The chain of electrons is not entirely stopped by the formation
of the gap, but drives itself across by its own electromagnetic momentum,
using up some or all of its store of energy in so doing. The gap absorbs
the energy by a mechanism not specified, just as a spark absorbs the
energy of an interrupted circuit, and from the gap the energy is
ultimately absorbed as heat energy.
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An alternative picture is that the gaps are not of sporadic, isolated
occurrence as above, but that between every pair of neighboring atoms
there is a resistance which on the average is proportional to the square of
the mean amplitude. An objection to this view is that we must assume
the square law, without at present even attempting to make it plausible,
as we have above.

Still another point of view is possible, connecting so closely with the
old free-electron theory as to account for Ohm’s law. When the atoms
are at rest at 0° Abs. we may suppose that the electrons travel freely
through the substance of the atoms, as the atoms of a gas freely traverse
interatomic space, but as the amplitude of atomic vibration is increased,
the electrons collide with the gaps between the atoms, precisely as they
collided with the atoms on the old view. Ohm’s law follows immediately,
as on the old view. An objection to this viewpoint is that it brings up
again the specific heat difficulty. We will have to suppose the electronic
velocity independent of temperature, as does Wien. This does not seem
to me a formidable difficulty; in fact such a constant velocity seems more
plausible under the supposed circumstances than under the conditions
imagined by Wien. For there must be some electrons always traversing
the substance of the atoms as B-particles, continually emitted by the
break-up of the outer ring of electrons in the atoms, and continually
reabsorbed. Velocities from such a source as this must be independent
of the temperature.

Wien's original picture of electrons passing freely through alley-ways
between atoms is not a remote possibility consistent with a close con-
nection between change of resistance and amplitude. The picture may
contain much that is true, but probably the details of working out, as
given by Wien, must be modified in any event. In particular Wien's
assumption must be given up that at very low temperatures the quanta
of energy are all located in a few isolated atoms, the rest of the atoms
being at rest. It seems more probable now that the quanta are located
in modes of elastic vibration. To explain the absence of any specific
effect of a change of volume as such, we must suppose according to this
view also that the atoms are distorted by pressure.

A combination of Wien’s point of view with that advocated by this
paper offers many attractive features: We may suppose that the electrons
pass freely through the substance of the outer part of the atoms, en-
countering no resistance even when passing from atom to atom. The
electron may, however, collide with the positive nucleus, which is so small
that it acts like a point charge. The number of collisions will evidently
be directly connected with the amplitude of oscillation of the nuclei.
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According to this point of view the absence of any specific volume effect
is not so serious a difficulty, because we would not expect it to be nearly
as large. I do not at present, however, see the possibility of bringing
into line with this view the wide range of facts dealt with qualitatively
above. ‘

The chief claim to consideration of the old free electron theory was
that it offered an explanation for the Wiedemann-Franz ratio. Wien
regretted as one of the weak points of his theory that he had to give up
hope of explaining the Wiedemann-Franz ratio when he assumed elec-
tronic velocity independent of temperature. The view of conduction
offered above does not attempt as yet to explain the Wiedemann-Franz
ratio, but such an explanation does not seem to me beyond the bound of
~ultimate possibilities. In the first place, any mechanically consistent
theory, irrespective of whether it assumes thermal conduction performed
by electrons or not, must give a ratio involving the electronic charge in
the correct way, simply by dimensional reasoning, but need not give the
correct form for the coefficient of the charge. This is all the old theory
does, the coefficient it predicts is not of the correct form. It is commonly
held that because electrical conductors are so much better thermal
conductors than electrical insulators the electron must play a large part
in the thermal conduction of metals, and that therefore no theory can
be correct which does not assign some part of the energy of temperature
agitation to the electrons. This conclusion seems to me not necessary;
all that is indicated is that the same mechanism which makes easy a
transfer of electrons from atom to atom should also make possible an
easy heat transfer. Now this is immediately indicated by the view above.
Electrons pass freely from atom to atom without break of continuity
when the outer parts of the fields of force of the atoms so merge that the
effective individuality of the atom is lost. But when the atoms are so
merged as to lose their individuality they will function as one large atom,
and the energy of heat vibration will jump over whole ranks of atoms, as
we know it must if the thermal conductivity of metals is to be accounted
for by an atomic mechanism only.

SUMMARY.

The most important result of this paper is the observation that the
variations of resistance of a normal solid metal are preeminently con-
cerned with one factor only, the average amplitude of vibration of the
atoms, irrespective of whether the change of amplitude is brought about
by a change of pressure or of temperature. The proportional change of
resistance is approximately twice the proportional change of amplitude.
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This suggests that a successful theory of metallic conduction must discard
the old viewpoint, which explained resistance in terms of the properties
of an assemblage of electrons little affected by the inert framework of
atoms, and substitute an explanation in terms of the properties of the
atomic framework. There are several possible ways of giving such an
explanation, of different physical complexions, all of them suggesting an
intimate connection between resistance and amplitude. The view which
I have adopted above seems to me that best adapted to bring into line
the entire range of facts. This view is that the electrons normally
pass freely from atom to atom, but if the atoms are separated beyond a
critical distance, as by temperature agitation, gaps appear between the
atoms which offer resistance. The resistance at ordinary temperatures
is proportional to the number of gaps, and it is not unplausible to expect
the change in the number of gaps to be twice the proportional change in
the amplitude. At higher temperatures, however, that is large volumes,
as in liquid metals, the passage of electrons from atom to atom is on the
average difficult, but is facilitated by a collision of unusual violence. An
increasing amplitude functions in opposite ways, therefore, at large and
at small volumes. Under actual conditions there must be a combination
of these two effects in varying proportions. I have shown in detail how
the play against each other of these two different effects offers an ex-
planation of the most important features of the behavior of both normal
and abnormal metals.

Another point of extreme suggestiveness is that a pressure high enough
to compress the metal to less than its volume at 0° Abs. is powerless to
change its temperature coefficient of resistance. Consistency with the
view advanced here seems to me to demand a distortion of the atom
under pressure. Such a distortion has been suggested by many other
aspects of my work on high pressures.

The experimental work on which this paper is based was assisted in
large part by generous grants from the Bache Fund of the National
Academy of Sciences and from the Rumford Fund of the American
Academy of Arts and Sciences.
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