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Multiple Compton Scattering of Low Energy Gaznxna-Radiation
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The exact problem of multiple Compton scattering in an infinite plane parallel medium is set up for a
monochromatic primary spectral distribution normally incident upon a semi-infinite medium for isotropic
scattering. It is treated by a different approach to that previously used by the author, the new approach
being based in part on Marshak s method of spherical harmonics. Numerical results are presented for the Pi
approximation to this problem. This result is compared with the corresponding solution obtained pre-
viously. The present method shows that the broadening is not as severe as the previous method had
indicat'ed.

SECTION 1. BASIC EQUATIONS AND
METHOD OF SOLUTION

' 'N a previous paper' the author found approximate
~ ~ solutions to several problems of multiple Compton
scattering of low energy (E«0.5 Mev) gamma-radia-
tion. The present paper contains a diferent approach
to the problem, based in part on Marshak's' method of
spherical harmonics. None of the approximations of the
first paper are made. The problem is to Grid accurate
expressions for the broadening of a primary mono-
chromatic spectral distribution as a function of the
distance into the medium and the angle (measured from
the direction of the primary beam).

Referring to (I), the appropriate tra, nsport equation
which must be solved in the case of Compton scattering
with no photoelectric absorption and for an inGnite
plane-parallel scattering medium (semi-infinite or of
finite thickness) is the following

8
p I(r, p, o)+—I(r, p, o)

BT

d pp'(1+ cos'8)I(r, p', a'), (1.01)

where r=(8 /3)X sr/. Z, Z=actual distance into me-
dium in cm, rp ——classical electron radium in "cm,
E=number of electrons per cm', p, =cos8; p'=cos8',
a = (mc/h)X, o p=primary "wavelength" (mc/h))b, p, a' ——o.

—1+cos8, and

cos8= pp, '+ (1—p') ~ (1—p") costp'.

To begin with, we shall carry out, the problem of
isotropic scattering in which s(1+cos'8) is set to unity.
This is done because it is one of the purposes of this
paper to check the results of (I), where isotropic scat-
tering was also considered. An appendix shows the
modifications necessary in order to solve the noniso-
tropic problem (1.01). The only limitation on the
methods to be presented is the usual one; namely, the
exact Klein-Nishina differential cross section, which is

' R. C. O' Rourke, Phys. Rev. 85, 881 (1952) Preferred to here-
after as (I)j.' R. Marshak, Phys. Rev. 71, 445 (1947).

energy dependent, cannot be handled by the operational
methods below.

8
p—I(r, p, a)+I(r, p, a)

8T
p+1

dp,
4x ~Jp

dq'I(r, p', o'). (1.02)

This transport equation will now be solved for the case
of a plane parallel semi-infinite scattering medium with
a monochromatic beam of gammas incident normal to
the face s=o. The unscattered component is singular in
wavelength and direction, and one can therefore intro-
duce the spectral density J(r, p, o) of all gammas scat-
tered at least once as follows:

I(r, p, o) =7rFe 'b(1 p)5(a op—)+J(r,—p, o). (1.03)

The delta function 8(1—p) is normalized to unity over
the whole solid angle. The transport equation for
J(r, p, o) then 'becomes

8 p
p J(r, p, —o)+J(r, p, o) = e 'h(o. o.

p
—1+—p)— —

BT 4

p+l ~ 2m'

+— dp' ' dy'J(r, p', o'), (1.04)
4s t p

in which the singular factor (1—p) b(1—p) occurred and
was considered identically zero, operationally speaking,
since it would. drop out in what follows below. One now
makes a Fourier integral decomposition in wavelength
shift (a'—o'p—:y) where, again, op is the dimensionless
primary wavelength (mc/h)) p.

J(r, p, o) =—~ M(r, p,, a)e' "dcr. (1.05)
2Ã

One must note the important fact that physically the
scattered radiation consists only of wavelengths larger
than Xp(a —ap&~ 0). This indicates that one should
perhaps use a one-sided Laplace transform in wave-
length shift which is ideally suited for variables which
range from zero to ir6nity. This is however not prac-
ticable since the inversion of such transforms leads to
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complex integrals which are very dB5cult to handle. one is led to the result
The inversion of Eq. (1.05) is, of course,

lK't t+(1+1)K'tpt+(21+1)Kt

M(r, p, n)=)t J(r, p, y)e ' "dy,
dpe

—to(1—p)P (p)

which is formally an integral over negative values of
o —oo. By representing J(r, p,'o) as a Fourier integral
one must hand the function M(r, p, a) to be such a
function that there is no "violet shift" i.e., J(r, p, o)
should turn out identically zero for o.—o-o~&0. One
however has no control over the function M(r, p, n),
as will be seen since it is obtained by successive approxi-
mations in the spherical harmonic method. In any Pip
approximation one must expect a small violet shift

t see (I)j. As will become evident, the violet shift is

quite small even in the P~ approximation, and the
amount of violet shift seems to be a critical method of
evaluating the success of the spherical harmonic
method in handling problems of the type under con-
sideration here.

Proceeding then, one substitute Eqs. (1.05) into
(1.04) and obtains

P ] ~+1 ~2m

p +M= e'e —' (' &)+ I dp,
'

I d(o'
Bv 4 4w "-t o

+ Q St ((r)K (r, (r), (1.08)

where the prime means derivative with respect to v,
and where

All of the integrals can be carried out in closed form
and are actually quite simple. To see this, introduce the
well-known expansion, '

e' "'8=+ i"(2n+1)j„(n)P„(cos8), (1.09)

and the addition theorem for spherical harmonics,

(2l+1)(2m+1) 1 (
+' (.+'

et„((r)=
4 2' ] ] Q

Xe—(N(1-oosB)P (p)P (p~)

Xe ' ( ' )M(r, p, , o(). (1.06) p ( g) p ()p ( )
One now represents the angular dependence of
M(r, p, (r) by the method of spherical harmonics as .

follows,
to 2l+1

M(r, p, u) =g Kt(r, a)pt(p),
l=O

where
~+1

Kt(r, a) = dppt(p)M(r, p, rr).

(tt —E)!
+2 P P„~(p)p„~(p') cosKq'; (1.10)

)r=t (rt+E)!

the second term gives nothing since one integrates over
q' from 0 to 2x. One has then

4e' e)

(2l+ 1)(2m+ 1)
Since only low energy gamma-scattering is being con-

sidered one expects that one will not need a large value
of /p to represent the solution. As in the case of problems
of diffusion with no wavelength shift this is fortunate
since, here as well, only the Pj and P2 approximations
can be carried out with limited numerical facilities. This
statement is also made here because the transport
equation for high energy gamma-scattering is mathe-
matically equivalent to the problem being considered
here, if one makes the same approximations that Foldy'
does in his work. One could not, however, expect to
represent the high energy angular dependence (which
is predominantly forward) by only a small cut-off
value of /~.

To proceed, then one substitutes Eq. (1.07) into
Eq. (1.06) multiplies by P (p) and integrates over
—1~& p&~+1. Using the recurrence relation

(2l+1)pPt(p) =1Pt-t(p)+(l+1)Pt+t(p)
'L. Foldy, Phys. Rev. 81, 395 (1951).

00 Q+
~p i"(2n+1)j„(n)

n-O

r
+~

dp) dp
. —1

Xp (p)p. (p)p (p, ')P.(p')

00

P i"(2m+ 1)j.(n)St„S „.
(2l+1)(2m+1) o=e

Therefore only diagonal elements survive,

et (rr)=e '"i'(2l+1)jt(a)i)t . (1.12)

e' &Pt(p)d p = 2i'jt(rr).
—1

(1.13)

' J. Stratton, E/eetrorwogeeteo Theory (McGraw-Hili Book
Company, Inc., New York, 1941), p. 4O9.

Similarly, for the other integral in Eqs. (1.08), one can

use the same method,
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SECTIO N 2. THE SEMI-INFINITE MEDIUM-P1
APPROXIMATION

One could apply a I.aplace transformation to the
system (1.14) in the variable r and reduce it to a system
of algebraic equations for the transforms of the
Ks(r, a). However, for the Ft and Fs approximations
it is easier to solve the system directly. In the I'j
approximation (i.e., lp

——1) one cuts the system off by
keeping only terms in Eo(r, n) and Et(r, a). This
method of cut-oG can only be judged by its success in
the numerical sense of doing both the I'~ and P2 ap-
proximations (and higher if possible) and seeing how
the successive solutions to Es(r, n) compare with each
other. '

In the Ft approximation, then, the system (1.14)
becomes simply

Et'+Eo= ooo(Eo+ ', Fe '), --
2.01

Ep'+3Kt est(Et+-,'F——e '),
where

ts'oo(n) =e " jo(a), 0'tt(n) =3ie 'j t(a)
Uncoupling these equations leads one to the following
equation:

where

Eo"—Q'E'p ———,'F(Q' —3)e ' (2.02)

Q'(n) = (1—epp)(3 —est) =At+i'—s,

A&(n) =3t 1—cosnjo(n) —sinnjt(n)+sin2ajo(n)jt(n)],
A s(a) =3Lsinajp(a) —cosn jt(n)+ cos2njp(n) j&(n)).
The solution of Eq. (2.02) is simply

Eo(r, n) = sF[A(a)e "'+B-(n)e"'+e—'/(1 Q')]- —
(Q' —3) (2.03)

where
Q(a) =e,(a)+se, (a),

e (n) = 2»LAt+ (At + X, )»7», e,(n) =A $2e (n)]-'.
The boundary conditions for the determination of
A(n), B(n) are the following:

J'(0, 44, o)44dp=O, for all o; (2.04)

J(r, p, a)dp=O, for all o. (2.05)

' M. Wang and E. Guth, Phys. Rev. S4, 1092 (1951).

Finally, the system of equations (1.08) reduces to

/E'4 4+ (l+ 1)E'4+g+ (2l+ 1)Ks

=-,'Fi'(2l+1)e—* j (n)e

+i'(2l+1)e ' j&(a)E&, (1.14)

and then the formal solution would be:
'o 2l+1 1

J(r, y, X) =P F,(I ) —E,(r, n)e'"dn
l=0 2m. ~

These are to be used for a semi-infinite plane parallel
medium. The 6rst condition simply states that the net
Aux of gammas scattered at least once "into" the
medium must vanish at r =0.This is the exact boundary
condition because the incident beam and the unscat-
tered beam are equal at v-=0, and the Rux of the latter
has been separated completely from the problem. The
second boundary condition (2.05) simply assumes that
the spectral distribution averaged over angles ap-
proaches zero properly as v=+~, for all finite o.. Since
photoelectric absorption is being neglected, one of course
cannot assign physical significance to wavelengths
larger than those wavelengths at which photons would
be lost by absorption. This is always a diQiculty in
treating a semi-in6nite medium. As far as broadening
is concerned, however, the results of (I) have indicated
already that at a distance v & into a semi-infinite medium
one has a broadened spectral distribution which does not
diBer greatly from the corresponding solution for a
finite medium of the same thickness ~&. A quantitative
answer to the above difhculty can of course only be
obtained by solving the present problem for a finite
scattering medium (see below). One would then replace
Eq. (2.05) by the exact condition

J(rt, 14, ~)14d@=0, for ,all o (vacuum for r & rt).

(2.06)

Proceedings with the semi-infinite medium one sub-
stitutes Eqs. (1.05) and (1.07) into the boundary
conditions (2.04) and (2.05) and obtains B(n) —=0 and

26yy 5—Cgy
A(n) = (2.07)

3+2Q —Stt 3—Qs 1—Q'

The results in the Ft approximation are then (after
some tedious but simple algebra)

At+iAs
Ko(r, a) =-',F ~

—0~

~s+ i~4 ~s+s~s
+ e "~+ e & (20g)

where the 6's are defined below;

ht ——Qt(5 —3Ct) —3Csgs,

As ———3Csgt —Qs(5 —3Ct),

6,= 2(5—C ) (Q Q +A Q )—2C (Q Q —h Q,),
6 =2(5—C )(~,g,-g,g )-2C, (Q,Q,+X,g,),
a =g, (X —3)—X,s,

hs ——Qsks+ 2(At —3),
&v=gt'+Qs',
~s= Qs'+ ~ss,

Qt(n) =3 C+2e. t, —
Q, ( )=2e,—c„
Qs(n) = 1—As,
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and, 6nally,
eii(u) —=Ci+sCs,

Ci(a) = (3 Sinu/a) (Sina/a —COSa),

Cs(u) = cotaC1(a).

Finally, one needs Ei(7, a) since in this Pi approxima-
tion the spectral density J(r, )((, o) is given by

1
J(r, 14, y) = —(-',Es(r, u)+asiAE1(r, a))e' ada

2X QQ

(2.09)
From the original Eqs. (2.01) one finds

Ei(r, a) = 1/(3 —S)1)f —E(&'+-,'FQ)ie '), (2.10)

and

Re fE,e(~) )
= sFe "LBR) COS(esr —ay)+Did's Sin(esr —uy) j

+ ,'Fe 'f-5R-s cosay —BR4 sinuyi. (2.13)

The spectral distribution is Anally given by the fol-
lowing Fourier integral, in the I'i approximation,

&O

J(r, 14) y) =— i Re(LsE()+ s(((E&fe' ")da (2.14)

01

Ei(r a) =iFLe & 1+' »'(BR1+s5Rs)

+e '(8Rs+ZDR4) j, (2.11)

where the BR's are defined below.

mt, (u) =r(a) f (3—Ci) (8,~1—e,o),)—C,(ceo)1+e,~,)},
m, ( )=r( )((3—c,)(e, ,+e, ,)+c,(e, ,—e, ,)},
9Rs(a) = I'(u) ((3—Ci)~s—Cso)s },
Orts(u) = r(u)((3 —C,)(o4+C,~s),
where,

o)1 ~l~s+ +s, (ds =+4+Cl+867

o)s= &2&s+ &4, ( 4= As+Csasar,

r(u) = La,~s((3—C,) yc,s) j-).

J(r p y)=sFLk8'"(r y)+sf 8'"(r y)1
-g—el&

8"&(r y)=-
7j p

(o)1 cos(esr —ay)
Agks

+o)s siri(esr —ay) }
T

+ {hscosay —hs sinuy)
~s

+BRs sin(esr —ay) )

+e (5Ks cosay —5K4 sinay) j.

go&(r, y) =- due e-» (On, cos(e,.—uy)

(2.15)

Re(E()e(~"}
= -,'F(e "/hvhs) p(di cos(esT —uy)

+o)s sin(esr —uy)$
+-,'F(e '/hs) Lhs cosay —iI)4 sinuyj, (2.12)

TABLE I. Values of the integrals / &4&(r, y) and (i &'&(r, y) for r = 1,
r=2 as defined in Eq. (2.15).

—0.50
0.00
0.25
0.5
1.0
2.0
3.0

—0.50
0.00
0.25
0.50
1.0
3.0
5.0

(i(())/2

—0.01
+0.07
+0.14
+0.14
+0.13
+0.12
+G.ii

0.00
0.04
0.08
0.09
0.08
0.08
0.07

tm2

3
—(i (()
2

0.23
0.31
0.26
0.16—0.04—0.16

+0.07

0.08
0.14
0,15
0.12

~ 0.04
0.05
0.01

(i(4)—+—(io)
2 2

0.22
0.38
0.40
0.30
0.09—0.04

+0.18

0.08
0.18
0.23
0.21
0.12
0.13
0.08

Finally, for the solution one needs only the real parts of
E()(r, a)e' s and Ei(r, a)e'~", which are: (y —=o —o())

These Fourier integrals g"1(r, y) and go&(r, y) have
been evaluated for v = 1, r =2. The results are presented
in Table I. Then from Eq. (2.15) one can obtain
J(r, 14, (r) for any angle L& where (14=cost&). Figure 1

shows the spectral distribution for @=1, F=i, for
both v. =1 and r=2 along with the corresponding
results obtained in (I). One sees that the two methods
agree quite well for 7 = 2 in giving the magnitude of the
maximum intensity but disagree as to the location of
the maximum and the shape of the distribution. The
present method yields a rather poor result in the I'&

approximation for small r-values (say r(2) in the
practical sense that the Fourier integrals are more
difficult to handle, and the results indicate rather large
oscillations in the tails of the spectral distributions, i.e.,
at wavelength shifts beyond the maximum (see Fig. 1).
For 7 = 2 these oscillations damp out and approximate a
monotonic decreasing function as one expects. We will

forego a detailed discussion of the numerical aspects of
the problem at this time since they are not complete.

The net Qux across a surface of unit area per unit 0.

interval is given by

+I

rrP(r, g) = 2)r) J(r, 4(, (r) I4d)4+ 7rFo(y) e
—1

= rrF(l &)&(r, y)+)rF()(y)e '. (2.16)
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Thus, only g&'~(r, y) survives in the calculation of net
Qux. This is true, of course, in all higher orders of
approximation /0= 1, 2, . and is one of the attractive
features of the spherical harmonic method. At the same
time one may have to calculate all the E&(r, a),
l=0, 1, . lo in order to determine E~(r, a) from which
cI&'&(r, y) follows.

The corresponding results for a finite medium of
thickness v.l can be readily solved by using the boundary
conditions (2.04) and (2.06) along with Eqs. (2.01) and

(2.03). The results are not recorded here because of
their length and a lack of numerical facilities which
makes it impossible to evaluate the Fourier integral
solutions at the present time.

O.&0

P.2$

ohio

4
o.]5

a18

P, lo

~ dgb5

I I I I

APPENDIX

For the problem of anisotropic scattering one must
solve Eq. (1.01) as it stands. Only a few modifications
are introduced and these will be indicated here. One
introduces Eqs. (1.03) and (1.01) and obtains

Fe 'b(o oo
—1+g—)—

16m.

«0.05
4

FIG. 1. Spectral distribution of all gammas scattered more than
once are shown for distances v =1 and v=2. The unscattered
spectral component vrould be a delta-function at y=o, The cor-
responding solutions obtained in an earlier paper are drawn for
comparison. The primary intensity is unity. The solutions are for
p=1 in both cases.

where

3 ~+1

16m 4
Gp,

40

e' e( (a)dy'(1+cos'e) J(, Jx', '). (A.01) (2)+1)(2yg+])

One again makes a Fourier integral decomposition
(1.05) which gives

3 ~+1

8m~ l.
~+1.

dp, Jp,
40

d q '(1+cos'8)

)(e~a ccseP (+)P (+~)

8
p M(r, p, , a)+—M

BT'

3
Fe—c(1+ 2) e

—~c(&—»
16

3
d y'(1+ cos'8)+ dII )16m ~ I p

Xe-'c&i—cc.e)M(r ~ a) (A 02)

Introducing the "spherical harmonic" expansion (1.07)
for 3II(r, y, a) leads one to

/E'i g+ (/+1)E')+i+ (21+1)Ei

3 a+I
Fe '(Pl+1) ~' dy(1+ p—')e '&' »P((p)—-

16 —1

lp

+Q 8,( (a)E (r, a), (A.03)
0

For the small values of l, m needed in the I'~ and I'2
approximations these integrals can be readily evaluated
just as above. The only difference is that 8& (a) is not
diagonal and therefore the system of Eqs. (A.03) will
differ slightly from (1.14). This case of anisotropic scat-
tering has not been studied (numerically) and should
not until the I'2 approximation to the above isotropic
scattering problems is better understood (i.e., in the
numerical sense of the convergence of the method which
can be estimated by the decrease of the "violet shift"
in passing from the P~ to the P2 approximation). In the
I'2 approximation one can again uncouple the system of
equations. One obtains again a second-order differential
equation for Eo(r, a) just as above and Eq(r, a),
Ey(r, a) can be expressed in terms of Eo(r, a) and the
entire solution carried through in the same manner as
in the I'j approximation.
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