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gamma-rays alone nor Bohr orbit transitions alone will
explain the observed spectra. This conclusion is based
on the assumption that the residual thallium nuclei are
not unstable with a lifetime short enough to be within
the resolving time of the cloud chamber ( 0.05 second).
It is unlikely that there are such short lifetimes among
the residual nuclei. If we take the experimental evidence
on the emission of neutrons and protons from meson
capture, then from a Segre chart the most unfavorable
lifetime is about three minutes.

Nothing definite can be said about the existence of a
2p —1s Bohr orbit transition. For if the 2p —1s transi-
tion is emitted from the assumed spectra the spectra

which remain are consistent with the data. The data is
consistent with the assumed spectra being totally due
to bremsstrahlung photons from positrons and stray
background photons. It is extremely unlikely, however,
that the data could be accounted for by stray back-
ground photons alone, and the data could not be
accounted for by bremsstrahlung photons alone because
of the large numbers of electrons associated with
negative mesons.

We wish to thank Professor R. Ronald Rau for
encouragement and helpful discussions. We are grateful
to Professor George T. Reynolds and Dr. J. W. Keuffel
and Dr. Georgio Salvini for assistance.
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A new eGect, the acousto-electric effect, is predicted on the basis of theoretical calculations. This effect
deals with the generation of an electric current by a traveling longitudinal acoustic wave. The time-average
of the generated current is found to depend on the sound power but not on the frequency of the acoustic
wave. Illustrative calculations on a metal (sodium) and a semiconductor (n-type germanium) indicate
that the effect should be experimentally measurable. An interesting analogy with the thermoelectric effect
is pointed out.

I. INTRODUCTION

' N this paper we discuss the effect on the conduction
~ - electrons of a crystal resulting from a single traveling
longitudinal acoustic wave in the crystal. It is not
dificult to see qualitatively how the electrons will be
affected when the amplitude of the acoustic wave is
small. The presence of a sinusoidal traveling acoustic
wave gives rise to a sinusoidal electric field, this field
traveling through the crystal with the same velocity
as that of the acoustic wave. Consider the component
of velocity of a conduction electron parallel to the
velocity of the acoustic wave. For most of the conduc-
tion electrons, this component of velocity will be much
larger in magnitude than the speed of the acoustic wave,
so that these electrons are "out of phase" with respect
to the traveling electric field. Thus, the time average
of this field over their trajectories is zero, and these
electrons are essentially unaffected by the presence of
the acoustic wave. There are a few electrons, however,
having components of velocity parallel to the wave
which are comparable to the speed of the wave. These
electrons are capable of being trapped by the moving
electric field so that their time-averaged velocity in the
direction of the field is exactly that of the 6eld. Among
these electrons, those having a maximum energy will

be found to give rise to a net electric current. In a

*This work was supported by the U. S. Once of Naval Re-
search.

metal, these electrons are at the Fermi level. In an
m-type semiconductor, these electrons are in the con-
duction band. Such a generation of an electric current
by a traveling acoustic wave may be called the acousto-
electric effect. It is interesting that the qualitative
explanation of this eBect which has just been given is
analogous to the qualitative explanation of the opera-
tion of a linear accelerator. '

Let us consider a single traveling longitudinal acoustic
wave moving along a long uniform rod of material, the
ends of the rod being electrically insulated. The travel-
ing acoustic wave could be induced by driving one end
of the rod with a vibrator while matching the other end
to the proper acoustic impedance to insure no reQection
of the wave at the termination. The ends of the rod
being electrically insulated, the acoustic wave would

drag conduction electrons to one end of the rod, creating
a deficiency of electrons at the other end. The resultant
electric field along the rod will generate a conventional
electric current which exactly cancels the current
associated with the acousto-electric effect. The acousto-
electric effect, therefore, may be measured by deter-

mining the electric potential difference between the tyro

ends of the rod. An interesting comparison pointed out
to the writer' is the striking analogy between this

' J. C. Slater. Revs. Modern Phys. 20, 473 (1948). See especially
p. 483.

'- H. Brooks, private communication.
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potential difference and that occurring in the thermo-
electric effect when the two ends of a metal rod are
maintained at di6erent temperatures. The net Qow of
phonons along a temperature gradient may be con-
sidered as a net fl.ow of traveling acoustic waves along
the gradient.

s=Ssine (r Ct), — (3)

where the displacement s, the amplitude S, the acoustic
wave vector e, and the wave velocity C all have the
same direction. Let p+(r, t) be the macroscopic charge
density resulting from the ion cores of the crystal, an
ion core being an atom of the crystal without its
conduction electrons. If po is the average value of p+,
then

(p+ po)/ps= ——& s,

i.e., the fractional variation of the ion-core charge
density equals the negative of the dilation & s. This
variation of the ion-core charge density from its average
value will be partially, but not completely, cancelled by
a corresponding variation of the conduction-electronic
macroscopic charge density p (r, t) from its mean value
—po. This question has been discussed byBardeen, 'who
points out that for decreasing acoustic wavelength
(increasing o) the cancellation becomes less complete.
We will assume that this eGect may be expressed as

(-. -")/(.,-")=g(-)

We know that for infmite wavelength (o =0) cancella-
' J. Bardeen, Phys. Rev. 52, 688 (1937).

II. THE PERTURBATIVE POTENTIAL

In order to discuss the acousto-electric effect quanti-
tatively, wave mechanics is necessary. We will use the
one-electron approximation in solving Schrodinger s
equation. Thus, a conduction electron of the crystal is
assumed to move in an effective potential resulting
from the nuclei plus all the other electrons of the
crystal. We will assume that this potential V(r, t) may
be written

V(r, t)= Vs(r)+V, (r, t), (1)

-where Vs(r) is the correct potential in the absence of
the traveling acoustic wave and Vt(r, t), the pertur-
bative potential, is an additional term resulting from
the presence of the acoustic wave. We will make the
approximation that V& is a slowly varying function of
position (on the atomic scale).

The perturbative potential can be broken into two
parts,

Vr= Vr.+Vxs,

where V&, results from the charge unbalances set up by
the acoustic wave, while V~g results from the changes
in interatomic spacing set up by the acoustic wave.
We shall first determine V~ .

Consider a simple longitudinal traveling acoustic
wave

tion will be complete so that g(0) = 1. For 6nite wave-
length cancellation will be incomplete so that g&i.
Since g should be independent of the orientation of e,

. it may be expanded as a power series in 0-'.

g(e) = 1—Po'+ (6)

Having determined the macroscopic charge density
(p++p ) resulting from the acoustic wave, we may
now obtain V&, from Poisson's equation4

where
Vr, (x, t)='0, cos e (r—Ct),

'0,= (Ss.Ppp/e)(e S).

In order to determine V~~, we make use of the idea
of a deformation potential as suggested by Bardeen
and Shockley. ' A uniform dilation or compression of a
crystal will cause the bottom (or top) of some energy
band of the crystal to shift its energy. For suKciently
small dilations the shift in energy of a given portion
of the band will be directly proportional to the dilation.
Starting with the potential acting on an electron in the
undilated crystal, we can correctly express the eGect of
the dilation on a given portion of the band by adding
to the original potential a constant perturbative po-
tential equal to the shift in energy of that portion of
the band. This perturbative potential is called a defor-
mation potential. The assumption is now made that
such a procedure is also valid for non-uniform dilations
of the crystal, whereupon a non-uniform deformation
potential is required. This assumption seems plausible
provided that the dilation varies very slowly with
position (on the atomic scale); i.e., the dilation results
from a long wavelength acoustic wave. Taking V~q

proportional to the dilation, we have'

Vga=A'& s

Substituting (3) into (11), we obtain

where
Vts(r, t)='Us cose (r—Ct),

~,=a'(e S).

(12)

(13)
Throughout this paper we will use atomic units; i.e. mass and

charge are measured in units of the electronic mass and charge,
respectively, energy is measured in Rydbergs (13.6 ev), distance
in units of the Bohr radius, velocity in units of ao (the 6ne-
structure constant multiplied by the velocit ot light), time in
units of 0'/ms', wave number in units ot ms' 2s.its.' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

6 We may disregard the fact that the constant of proportionality
A' is a function of position in the band. It will later be shown
that the acousto-electric effect results from conduction electrons
lying in a very small energy range. Over such a small energy
range A' may be assumed constant.

(P++P-)=(/8 )~'V., (7)

where e is the dielectric constant. Equations (4), (5),
(6), and (7) give

s = —(e/SepoPe') ~Vt

Substituting (3) into (8) gives
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Equation (2) now gives of 4(r, t). In the appendix to this article it is shown that,

where

V, (r, t) =u cos e (r—Ct),

'0=A(e S),

A =A'+ (8prPpp/e).

(14)

(15)

(16) v(k) = 0*vp( i v)—+dr ~%*%dr.

p)

E(k)=2i
~

4*—@dr
~

4*+'dr,
8t

(24)

(25)

III. THE WANNIER-SLATER THEOREM

Having determined V(r, t), we are in a position to
write down Schrodinger's equation for the problem,
namely

$—V'+ U(r, t)]P(r, t) = 2i 8/Btg(r, t)

The method we shall use in solving this equation was
6rst used by YVannier~ in studying excitons in crystals.
The importance and generality of the method was 6rst
pointed out by Slater, ' who showed that the motion of
an electron in a periodic potential plus a slowly varying
perturbative potential can be derived from the energy
of the electron in the periodic potential alone. Slater
restricted himself to time-independent perturbative
potentials, but we can easily remove this restriction. In
the absence of the traveling acoustic wave Schrodinger's
equation is

L
—V'+ Vp(r))1tp(k, r, t)=2iB/Btpp(k, r, t), (18)

where the wave vector k is a parameter determining
the translational properties of the wave function; i.e.,

(J'„dr denotes an integral over the entire crystal. )
vp(k), the velocity of an electron in the undeformed
lattice, is given by

vp(k) = —',VkEp(k). (26)

At this point we will introduce the effective-mass
approximation, i.e., over the 61led portion of the
conduction band Ep(k) will be approximated by

Ep(k) = nk'. (27)

vp(k) = nk,

whereupon (25) becomes

(28)

v(k) = inst %*V—+dr ~t4*+dr. (29)

Substituting (27) into (23), we get

Here the zero of energy is taken at the bottom of the
band. Substituting (27) into (26), we get

Pp(k, r+r„, t) =e'k'"Pp(k, r, t), (19) L
—nV'+ V~(r —Ct))@(r, t) = 2iB/BtO(r, t) (30).

r„being the position vector to the eth unit cell of the
undeformed crystal. The wave function may be written
in the form

where

leap(k r t) = Q %p(k r t)G(r r )

+ (k r t) —&~(k r tsot)—
(20)

(21)

a(r) is the Wannier function, r while Ep(k) (a function
of k) is the energy of the electron. Following Slater,
we assume that in the presence of the traveling acoustic
wave, the wave function can be expanded in terms of
the Wannier function, i.e.,

P(k, r, t) =P„4(k, r„, t)a(r —r„), (22)

P being the solution to Eq. (17). The Wannier-Slater
theorem states that

pEp( iV)+ V~(r ——Ct) 1+(r, t) = 2i 8/Bt@(r, t) (23).
This form of the theorem, -including time explicitly,
can be derived straightforwardly by the methods used
in the appendix of reference 8. It is possible to determine
the expectation values of the energy and the velocity
of an electron in the deformed lattice from a knowledge

' G. H. %annier, Phys. Rev. 52, j.91 (1937).
s J. C. Slater, Phys Rev. 76, 1592. (1949).

The power of the Wannier-Slater method lies in the
interpretation we may attach to Eq. (30). It is clear
that (30) may be interpreted as Schrodinger's equation
for a particle of mass )ps/n moving in the potential
Vl(r —Ct). (r)s is the mass of the electron. ) @(r, t) is
thus the wave function determining the motion of the
particle. A comparison of Eqs. (24) and (29) with
Eqs. (39) and (34), respectively, of Sec. IV shows that
this particle of mass m/n moving in the potential Vq
has the same energy and velocity as an electron moving
in the potential Vs+ V&. Henceforth we need concern
ourselves only with the determination of 0' rather than
the true wave function f, since 4 may be interpreted
as a wave function for the purpose of determining
expectation values of physical quantities.

IV. TRANSFORMATION OF SCHRODINGER'S
EQUATION

In attempting to solve Eq. (30), we are faced with
the problem that the equation is not separable since
the Hamiltonian contains the time explicitly. The key
to the method of attack is given by the observation
that the time dependence of Vl(r —Ct) can be removed
by the Galilean transformation

r'= r—Ct, t'= t.

Let us therefore study the general properties of the
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wave function 4 under such a transformation, this so that condition (1) is satisfied by Eq. (36). The
wave function being associated with a particle of mass energy of a particle of mass m/n is given by
m/n moving in the potential Vi(r —Ct). Equation (30),
the Schrodinger s equation for such a particle, will

transform into

8=2i 0*—'Ild7
Bt

We can now determine the transformation properties
with the aid of (31). We now ask ourselves for the of E under a Galilean transformation. Thus,
relation between 4'(r, t) and 4'(r', t'). This relationship
is determined by the following three conditions:

(1) Equations (30) and (32) must be equivalent. J Bt~

(2) The velocity of the particle of mass m/n as
measured in one coordinate system must be related to
its velocity in the other system by the equation

v'= v —C,

where the velocity of the particle is given by

(33)

+2iC I %*@%dr I +*+d +C'/

v= —in %*VM~
f

,

%*Cd~, (34)

v'= —ia~ +' V'4'dr'
~

N'*4'd~'

= —in( —iC/n) —in) e*Vedv

and similarly for v'.
(3) Probability density must be invariant to coordi-

nate transformations, i.e.,

4'*(r', t')4'(r', t') =0'*(r, t)%(r, t) (.35)

These three conditions can be satished, ' provided

.%'(r', t') = @(r, t) exp[ —i(C r 2C't)/n]—. (36)

Condition (3) is obviously satisfied by Eq. (36).
Condition (2) follows from (36) since

=E 2C v/n—+C'/a. (40)

In analogy with Eq. (19), we may define the wave
vector k' in the transformed system by

&0'(k', r'+r» t') = e' ""&0'(k', r' t'). (41)

V. SOLUTION OF SCHRODINGER'S EQUATION

Having transformed Eq. (30) into (32), we may
separate variables in the wave function +',

@'(k', r', t') = e—&'~"C '(k', r'). (43)

C' satis6es the time-independent Schrodinger equation

[—nV"+ Vi(r')]C'= E'C'. (44)

We may now apply Eqs. (19) and (41) to the case of a
particle of mass m/n Making .use of Eq. (36), we get

k'= k —C/a, (42)

so that k has the transformation properties of mo-
mentum.

Making use of the equations

V =V,
B/Bt'=B/Bt+C v

we have

(45)
(46)

where

Let us orient our coordinate system such that the
acoustic wave is moving along the x axis. Then we
may wnte

C"(r') = v.'(~') V w'(y') V.'(s'),
(38)

[—nV'2+ Vi(r') —2iB/Bt']4'(r', t')
= [—nV'+ V, (r Ct) —2i—C V 2iB/Bt]—

&&+(r, t) exp[ —i(C.r—-', C't)/n]
= exp[ —i(C r——',C't)/n][C'/n+2iC ~

V2+ V, (r—Ct) —2iC V —2C2/

+C'/a 2i B/Bt]%'(r, t)—
= exp[ —i(C r—2C't)/n][ —nV2+ Vi(r —Ct)

2i B/Bt]4'(r, t), —
W. Pauli, Handbuch der Physi k {Springer, Berlin, 1933),

Vol. 24, Chap. 2, p. 100.

I

—nB'/»"+ Vi(&')]v"'= E*'v *',

nB'v „'/By"= E„'—p„',
—nB'q, '/Bs"= E,' p, '

F.quations (48) and (49) give

py' ——exp(ik„'y'),

v, '= exp(ik, 's'),

Ey' ——aky",

E,'= O.k,".

(47)

(48)

(49)

(5o)

(51)

(52)

(53)
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Making use of the transformation properties of energy
and velocity previously given, we can now determine
these quantities in the unprimed coordinate system.
For (k,—C/a)')

I 'U/aI,

/

/~
r ~

~ 0/2

IZ /at

kx

E=E'+2C v'/n+C'/n
= n(k'+ C/n)'
= nk' )

s.= nk. '+C
=ok .

, For (k.—C/n)'& Iv/nI,
E=E'+C'/a

=E.'+ n(k„'+ k.')+C'/n,

(58)

(59)

(60)

(61)

FIG. 1. E ' versus k, .

Substituting Eq. (14) into (47), we get

I
- ~'/~. "+~-s( *')3~*'=E.'~.' (54)

D jviding Fq. (54) by n, we obtain an equation
mathematically equivalent to Schrodinger's equation
for an electron traveling in a one-dimensional sinusoidal
potential (Mathieu's equation). This problem has
recently been exhaustively studied by Slater, "whose
results indicate that the following approximate conclu-
sions may be drawn concerning the energy levels
associated with Eq. (54). For energies larger (in abso-
lute value) than the amplitude I'U I, the curve of E,'
versus k ' is essentially unchanged from its form in the
absence of the acoustic wave; i.e., E '=nk ". For
energies smaller (in absolute value) than the amplitude
I*t) I, the curve of E,' versus k, ' resembles a staircase
function, E,' being independent of k,' throughout a
given Brillouin zone associated with the deformed
lattice. These discrete allowed values of E ' correspond
to the energy levels of the harmonic oscillator formed
by each trough of the perturbative potential. We will
assume that the staircase function rises uniformly from
the energy —I'U

I
to the energy + I'U I. Each step will

have a width 0/2. The curve of E,' versus k, ' is shown
ln Flg. 1.

Equation (44), like (18), is Schrodinger's equation
for a periodic potential, so that, like Eq. (26), we have

v'(k') = —',~ ' I'E( )k, (55)
so that for k '2) I'U/a I,

/
8~ =Ak~ )

(v.)= v.(k)dr„)t dry, (63)

Because of the reQection symmetry of v(k) and of the
Fermi surface (surface in k space for which E=Er)
with respect to k„and k„ it follows that

(v.)=(')=0.
Thus the electronic current density J is

J=~(v.), (65)

where n, the number of conduction electrons per unit
volume, is given by

(66)

For metals, I can be expressed in the form

Because of Eq. (60), surfaces of constant E do not
have inversion symmetry in k space, as can be seen
from Fig. 2, showing the surface of E=Er (the Fermi
level).

VI. APPLICATION TO A METAL

In this section we shall apply our previous results to
the calculation of the electronic current density in a
metal. The average value of velocity in the direction of
the acoustic wave for the conduction electrons is given
by

(')=r..".( )/Z. 1, (62)

the prime denoting a summation over the occupied
states. We will assume that the energy levels below a
certain energy Er (the Fermi energy) are all filled,
while those above this energy are all empty. Since the
levels are very closely spaced, we can replace the sums
in Eq. (62) by the equivalent integrals over k space,
1.e.)

whQe fo»*"&
I 0/a I

e '=0. (57)
I=n,e,/0, (67)

'0 J. C. Slater, Phys. Rev. 87, 807 (1952). See especially Fig. 3,
p. 8l3.

where n, is the number of conduction electrons per
atom, m, is the number of atoms per unit cell of the
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crystal, and 0 is the volume of the unit cell. It will be to C. It immediately follows that in range III
necessary to compute (m,) separately for the following
three ranges of the variable l'U/u

l

'*. (73)

R.n,e I l&/nl-:& lZ./ul-: —C/n;
range» l&~/ul'+C/u& I&/ul'& l~~/ul'-C/u
~~~g~ III I&/ul'& l&~/ul'+C/n.

First we c'onsider range I,

4 ~E/q &

dr/, ———s
l3I n)

~o/~+I~/~l& - ( C )+- s.—~ lk —l-
n4 0/a —Ju/a/~ ( n )

Combining Eqs. (65), (67), and (73), we get

z= (~,~./Q)c

for the current density in range III.
We shall not bother to determine (v,) in range II

since this intermediate range covers only a very small
variation in the variable l'U/n l. This can be seen from
the fact that lE//nl & is about 300 times the size of
C/u in a typical metal. Henceforth we will assume

range I
l
'U/n

l
t & [E/./n l

',

~~~g~ » I&/ul'& l&F!ul:

c~ |z,) &

1+——
3 Eu) 3 u

—LE/ —uk, ') dk,

(68)

It can be seen that at the upper limit of range I, Kq.
(71) goes into Eq. (73).

We wish to express the current density J in terms of
the acoustic intensity T (the acoustic energycrossing
unit area in unit time). T may be expressed in terms
of U, the acoustic energy per atom, by

e, (k) dr/, T= (I CU/Q). (75)

If M is the mass of the atom, then from Eq. (3) we get

U= Ms,„'=M(a SC)'.

Combining Eqs. (15), (75), and (76), we get

l
V/nl = lA/nl (QT/e. MC')&.

(69) Combining Eqs. (72), ('N), and (77), we get

J=BY&, Y~& Y~,

—LEp —nk, '7nk dk,

=2~Clz/nil.

In obtaining (68) and (69), we have made use of the
fact that

(76)

(77)

(78)

(79)

a) p

E,'(k, ')dk, '= 0.

Combining (63), (68), and (69), we get

(v*)=3Cl:1+2I&~/'UI'7 '.

Combining (63), (65), (66), and (69), we get

(70) where

(71)

2 A &/ QC I ~

(2~C)', n Er/, M)

J~——(n,rs.C/Q),

T~= (&/s/&)'".

(80)

(82)

J= (C/2m-')
l
'U/n

l
'. (72)

It should be pointed out that (n,) fails to vanish in

range I not because of the form of v, (k) but rather
because of the shape of the Fermi surface (see Fig. 2).
For example, if the Fermi surface were cylindrical in

shape with the axis of the cylinder parallel to the k,
axis, then (v,) would vanish in spite of Eqs. (59) and
(61). The net. average velocity results entirely from a
thin ring of electrons in k spac" this ring being those
electrons lying near the Fermi surface which have
v,= C, the velocity of the acoustic wave.

In range III, however, all the electrons contribute
equally to the net electronic current. This follows from
the fact that all the occupied states are associated with
a value of k such that (k,—C/u)'& l'U/ul, so that
each electron moves with an average value of v, equal

I/2

i/2~ R)V'II

Fro. 2. The Fermi surface in k space.
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As an example, let us compute the current density in
sodium, where 0=257.5, JA(=0.161, &=4.22X10',
N, =1, +,=1, C=1.75X10, and a=1. (As is noted in
Appendix B of reference 5, —,

'
~A

~
is equal to the "inter-

action constant" of Sommerfeld and Bethe, a constant
which may be determined from high-temperature con-
ductivity data. The value of the interaction constant
for sodium quoted by Sommerfeld and Bethe" has been
used to determine the above value of ~A ~.) Using the
above values, we obtain 8=0.199, Y~=1.11)&10 ',
and J~=6.80)&10—'. If, in place of atomic units, we

wish to express T in units of ergs/cm' sec and J in

units of microamperes/cm', then 8=601, T))r ——3.60

X 10"ergs/cm' sec, and J~——1.60X 10)5 //a/cm'= 1600
X10' amperes/cm'. The above values of Y~ and J))/

show that it would be experimentally impossible to
ever reach saturation, so that range I is the only range

of interest. The above value of 8 indicates that- it
should be possible to detect the acousto-electric effect

experimentally. For example, if T=10 ' ergs/cm' sec

(equivalent to an intensity level of 50 db), then

J=0.601 pa/cm'.

where E& is the Fermi energy and ~ is Boltzmann's

constant. Thus

f
p (k)e

—(&()v) —EI')/v&dry

(~*)=

fe—(s()v) /v v'l/v&d~—
(83)

Since E(k) differs from nk' only over a very small

region of k space, we may make the approximation

7e E(k)/vTd~ ~ e (—a/vT) )'v d~—

VII. APPLICATION TO AN N-TYPE SEMICONDUCTOR

We wish to calculate the current density resulting

from the electrons in the conduction band of an e-type
semiconductor. It is assumed that, in the conduction

band, the Fermi factor can be approximated by the

Boltzmann factor ))

exp —[E(k)—E) ]/~T,

E(k)~ ak'.

~~T pC/a+ft//af4

p (k)e—E(k)/vTdr
n vl 0/a —

) v/a) ~

C'/a((/(T,

(~ f«.2'.

(87)

(88)

It will later be shown that these two conditions are
satisfied under almost all practical experimental condi-
tions. After some manipulation (85) becomes

w, (k)e
— (""""d

p
——2m-Ci'U/nil,

so that

(v )= (2C/Qm~)
~

'0/KT
~

—:. (90)

If the semiconductor is doped with impurity atoms
having a valence one unit greater than that of the
semiconducting atoms, then for sufFiciently high temper-
atures the number of conduction electrons per unit
volume is e f/Q, f being the fraction of atoms which
are impurity atoms, while e, and 0 have the same
meaning as in Sec. VI. For low temperatures, however,
most of the excess electrons will be trapped in donor
levels lying below the bottom of the conduction band,
so that there will be very few conduction electrons. We
will assume that there are two donor levels (one for
each spin) for each impurity atom, these levels lying
below the bottom of the conduction band. The energy
of these levels will be denoted by ED. (Taking the
zero of energy at the bottom of the conduction band
will make ED negative. ) The number of conduction
electrons per unit volume can now be written in two
forms:

X [C exp{—(1//(T) [E '(k —C/n)+ C'/n]}

—nk, exp{—(a//(T)k, '}]dk,. (85)

For the purpose of evaluating the above integral, we
may take

E

E.'(k.—C/a) =2nl'U/al '(Ik-—C/al —l I'0/al ')

We will also assume the temperature is large enough
such that

(m/(Tq &

E )n
(84)

m=[2/(2gr) ] ~~e (91)

This approximation is not sufBcient for the numerator

of (83), however, since the total nonvanishing contri-

. bution to (v,) comes from this small region where

"A. Sommerfeld and H. Bethe, Ifandblch der Physik (Springer,
Berlin, 1933), Vol. 24, Chap. 2, p. 524.

~= (~.f/Q) [1—2{e(s~ ~~)/" +1}—'] (92)

It should be noted that the Fermi factor ccemot be
approximated by the Boltzmann factor: in Eq. (92),
since the Fermi level may lie very close to the donor
levels. Combining Eqs. (84), (91), and (92), we may
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solve for n in terms of E&. De6ning the quantity

g = (Q/4N« f) («T/rr0() te (93)

we may consider the two limiting cases of g)&1 (high
temperature) and g((1 (low temperature). For q»1,

while for g«1,
~=~.f/a,

I= «(«T/7ra) 'e I Dl I"

(94)

(95)

Combining Eqs. (65), (77), (90), (94), and (95), we

get, for q))1,
(96)J= (Itf(V/T2)t,

where

while for g«1,

2 t'm~q & t'Ay t

(m)&WC ( DC ) ( «)

J=Be-~~&~I"~Y&

(97)

(98)

8 being given by Eq. (80). From (96) and (98), it can
be seen that J vanishes both at very low and at very
high temperatures.

As an example, we take germanium, where 0=306.4,
IA I

=0.125, M=1.335X10', Ne ——2, C=2.46X10—',
(«=1, and )En(=2.94X10 '. (The above value of (A(
was obtained from reference 5.) Expressing J in units
of microamperes/cm', T in degrees Kelvin, and T in

ergs/cm' sec, we have

= 7.10X10',
&e—I ~~~'"~= 78.4X &0

—&'~~~~,

1.10(Tg/f) X 10 ('+'m(r).

Condition (87) for germanium is

T&&0.955,

while condition (88) is

T»3.06X 10 'QY.

so that these two conditions are completely satis6ed
under most. experimental conditions. The above values
of 8 and S indicate that it should be possible to detect
the acousto-electric e6ect in germanium. For example,
if f=10 ', T=273'K, and T=1 erg/cm' sec (90 db),
then g=9.05, and J= 1.57 tia/cm'. lf f= 10 ', T
=100'K, and Y=1 erg/cm' sec, then q=0.105, and
J=0.75 tia/cm'

The writer is indebted to Professors J. C. Slater, J.
Bardeen, and H. Brooks and to Dr. E. P. Gross for
discussion and correspondence.

APPENDIX

In order to prove Eq. (24), we start with the definition
of the expectation value of energy,

8
E(k)=2i

~

P* /dr-
at

Making use of Eq. (22), we get

P„,„.@*(k,r„, t)(8/Bt)%'(k, r„, t) a*(r—r„)a(r—r„)dr

E(k) =2i

P„,„@*(k,r„, t)%'(k, r„, t) a~(r —r„.)a(r —r„)dr

(2a)

In reference 7, it is shown that

I a (r—r„)a(r—r )dr=8„,„,
J~

(3a)

in the appendix of reference 8. The Wannier function
may be written

a(r —r„)=X—'p«e '("""&so("'&'&—ilia(k', r, t), (6a)

so that

P„@*(k,r„, t) (8/Bt) +(k, r„, t)
E(k) =2i . (4a)

P„+*(k,r„, t)+(k, r„, t)

Since the perturbative potential is slowly varying on
the atomic scale, N will also be slowly varying, and the
crystal sums in (4a) may be replaced by the corre-
sponding integrals, i.e.,

Q„e'(" «'&'"=S if k=k'

=0 if krak',
(7a)

where X is the number of unit cells in the crystal. The
sum is over all the allowed values of k in the first
Brillouin zone of reciprocal space. To check the correct-
ness of (6a), we multiply both sides of the equation by
expiQ r„—-,'E0(k)t) and sum over N. Using the fact
that

8
E(k) = 2i 4* %dr ' 4'*%dr-

at

we immediately obtain Eqs. (20) and (21). Applying
(5a) (6a) to (22), we get

X%'(k, r„, t)f0(k', r, t), (8a)

y(k r t) Q—lg, e i(«'ra —iso—(«')ii
The proof of Eq. (25) is somewhat more involved. .

The method to be used is similar to that used by Slater
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Since vp(k), as a function of k, has the periodicity of
the reciprocal lattice, we may expand vo as a Fourier
series,

(9a)

P*(k, r, t) p'f(k, r, t)dr

v(k) = i—
vp(k) =Q„.A„„.ea" ~r.. r— (14a)

where
~P*(k, r, t)P(k, r, t)dr A =1V 'Pl, v (k')e '"' &'"'—'"' (15a)

(15a) may be checked by multiplying both sides of the
equation by exp$ik (r„—r„)$ and summing over e',
whence, with the aid of (7a), Eq. (14a) is obtained.
Combining (14a) and (15a), we may write the operator
equation

We will have occasion to use the orthogonality property
of the Pp's,

I Pp*(k', r, t)Pp(k, r, t)dr = IS(k, k'), (10a)

so that the P's are expanded in terms of the fp's. The Using (7a), we obtain the obviously correct relation
proof of Eq. (25) starts with the definition of the

,~ik- (r~~—re)expectation value of velocity,

where b(k, k') is the Kronecker delta, and I is some
normalization constant independent of k. Another
useful property is the fact that

—i Pp*(k', r, t) ~Pp(k, r, t)dr = Ivp(k) 8(k, k'). (11a)

(11a) follows from (9a) and (10a) when k=k'. The
fact that the integral vanishes when krak' is mathe-
matically equivalent to the well-known fact that optical
transitions between two energy levels in the same band
are forbidden. If we now substitute (8a), into (9a) and
simplify with the help of (10a) and (11a), we obtain

v(k)

P„„~.@*(k,r„,t) vp(k') e '"' ' i'"' ' i+(k, r„,t)'
. 12a

P„„p O'P(k r t)e ' ""' '"i4'(k, r„, t)

vp( i&)

vp(k')e '"' '"' '"' exp((r„.—r„) zj. (16a)

%e have need of the relation

4(k, r„, t) =exp/(r„—r„) .~j%(k, r„, t), (17a)

which is Taylor's expansion in a vector form. Combining
(16a) and (17a) gives

Evp( —ip')+(k, r„, t)

=P„,p vp(k')e '~' i'"' '"&4'(k, r„, t). (18a)

The numerator of the right-hand side of (12a) may be
simplified with the aid of (18a). Substituting (13a) and
(18a) into (12a) gives

P„+*(k,r„, t) vp( —p~) +(k, r„, t)
v(k) = . (19a)

O*(k, r„, t)@(k, r„, t)

The denominator of the right-hand side of (12a) may Since + is slowly varying on the atomic scale the
be simplihed by the relation crystal sums in (19a) may be replaced by the corre-

sponding integrals; i.e.,

(13a) may be checked by multiplying both sides of the
equation by exp$ik (r„—r„)j and summing over I'. v(k) =,~e*vp( i~)ed r— (20a)


