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Theory of the MaN, netoresistive Effect in Semiconductors*
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Experiments show that the application of a magnetic field increases the resistivity of a semiconductor and
produces a decrease in the magnitude of the Hall coeKcient. Existing theoretical treatments predict much
smaller e6'ects than are actually observed in semiconductors. The present calculation has been carried out
to see if theory is brought closer to experiment by considering (1) scattering of conduction electrons by
impurity iona as well as by the lattice, and (2) conduction by both holes and electrons at high temperatures.
The calculation shows that the prepence of impurity scattering decreases the magnitude of the effects
produced by a magnetic field and thus increases the gap between theoretical and experimental values. It is
noted that the discrepancy decreases with falling temperatures and is no longer present for data measured
on a Ge sample at 20'K. The calculated magnetic field effects are very much greater for an intrinsic semi-
conductor than for an impurity semiconductor. The fractional changes in resistivity and Hall coefficient are
given, for several different values of the electron-hole mobility ratio, as functions of a parameter containing
magnetic field strength and temperature. The absence of experimental values of the magnetic field effects at
high temperatures prevents comparison of theory and experiment for the intrinsic semiconductor.

I. INTRODUCTION

HE magnetoresistive effect is studied by measuring
the resistance of a sample in the presence of a

magnetic field which is perpendicular to the electric
current density. Just as for metals, it is observed that
the application of the magnetic 6eld increases the
resistivity of a semiconductor' ' and produces a
decrease in the magnitude of the Hall coe%cient. ' '
The first theoretical treatment of this eGect is that of
Gans this early work has been extended by Harding, '
Sangupta, " and Davis. "More recently, theories have
been developed by Seitz" and by Pearson and Suhl~ to
apply to cubic crystals in various orientations relative
to the electric and magnetic fields. It is generally found
that theory predicts a much smaller magnetoresistive
eGect than is actually observed in semiconductors. The
present calculation has been carried out to 6nd the
changes produced in theoretical values by considering

(1) scattering of conduction electrons by impurity ions
as well as by the lattice, and (2) conduction by both
holes and electrons in high temperature semicon-

ductors.
The eGect of magnetic field upon the resistivity and

Hall coeKcient is calculated from the electric current
density equations. ' Assume that no temperature
gradients exist, electric current Rows in the X direction
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(j ), a magnetic field is applied in the Z direction (H),
and that there is no current Row in the F direction. The
sample is assumed to be ohmic, homogeneous, and
isotropic. The electric current densities j, and j„are
related to the electric 6eld intensities E, and E„by the
equation"

j.=HE.—BE„,

j„=BZ,+AS„=0,

where, if current is carried by electrons only,

(1.2)

4sres itf
A= — — les(1+s') '—de

86
(1.3)

4sre' t "j itf
B=— ' s$v'(1+ss) ' de—

86
(1.4)

in which
s= e/H/rrte,

and t. denotes the magnitude of electronic charge, l the
mean free path, m the effective mass of conduction
electrons, f the classical distribution function

f= N(rrt/(2srkT) ) '* exp( —e/kT), (1.6)

e the number of conduction electrons per unit volume,
and e the kinetic energy srte'/2.

Equations (1.1) and (1.2) yield for the conductivity
o and Hall coeKcient R

a= j,/Z, =A+(B'/A),

R=E„/(j,H) = —B/(H(A'+B') ) .

(1 7)

(1.g)

If the current is carried only by holes, Eq. (1.7) is
unchanged and the negative sign in Eq. (1.8) becomes
positive.

'3 All derivations in this paper are carried out in electromag-
netic units.
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TAnxz I. Values of J&(P,y), ' and P(P).s

2/3 3/2 24

0.00
0.01
0.04
0.10
0.20
0.50
1.00
2.00
4.00
p(p)

1.00000 0.71609
0.99041 0.71391
0.95649 0.70723
0.88828 0.69437
0.78806 0.67401
0.66884 0.61982
0.59639 0.54727
0.44530 0.44470
0.25949 0.32516
1.0000 0.7957

0.59156 0.42182
0.59024 0.42129
0.58642 0.41970
0.57889 0.41658
0.56678 0.41147
0.53345 0.39698
0.48618 0.37513
0.41374 0.33848
0.32010 0.28438
0.7395 0.7030

0.28701 0.15698
0.28680 0.15693
0.28620 0.15680
0.28500 0.15652
0.28303 0.15608
0.27731 0.15476
0.26836 0.15262
0.25239 0.14860
0.22631 0.14137
0.7175 0.7849

a JI(p, y) is the integral defined by Eq. (2.5).
b F(P) is defined as the ratio of the sum of resistivity owing to lattice

scattering only and the resistivity owing to impurity scattering only to the
total resistivity when both types of scattering are present; the parameter P
is defined as 6 times the ratio of resistivity owing to impurity scattering to
resistivity owing to lattice scattering.

& y is defined as (922-/16)(pg0)'II2, where H is the magnetic field strength
in gauss and p1.0 is the mobility associated with lattice scattering only if
H =0, measured in cm8/abvolt-sec.

TAnzz II. Values of Js(P,y), the integral
defined by Eq. (2.10).

II. RESISTIVITY OF AN IMPURITY SEMICONDUCTOR

A samp1e may be termed an impurity semiconductor
if conduction is practically due only to electrons excited
to the conduction band from impurity donor levels (or
to holes formed in the 61led band by excitation of elec-
trons to impurity acceptor levels); conduction owing to
intrinsic electrons and holes is negligible in an impurity
semiconductor. It is assumed that the conduction elec-
tron density does not exceed the limit of applicability
of classical statistics.

Analysis" "of measured resistivity data for impurity
semiconducting samples, especially silicon and ger-
manium, has shown that the temperature behavior can
be explained only by the existence of another scattering
process in addition to the scattering of conduction
electrons by the lattice. Such an additional process,
which has the appropriate temperature behavior to
account for the experimental results, is scattering of
conduction electrons by the impurity ions. A satis-
factory model" for describing impurity ion scattering is
based upon Rutherford scattering; the mean free path

where

and

1 t
"x'e—*(x'+p)dx

p~o J (g2+P)2+~as

p= 6pr'/pr. ',

7= (92r/16) (pr o)2H

(2.5)

(2.6)

(2 7)

in which p&, the mobility associated with lattice scat-
tering only, if H=O, is given by

fsr, o=4elz, (182rmkT) & (2.8)

Denote the integral on the right side of Eq, (2.S) by
J,(p, y) so that

associated with this process is approximately propor-
tional to e'. If an electron experiences collisions with
both the lattice atoms and the impurity ions inde-
pendently, the mean free path / is related to EI„ the
mean free path if only lattice scattering exists, and l&.

the mean free path if only impurity scattering exists,
by the relation:" .

1/J = 1/ls, +1/tr (2.1)

This expression for / is now used to evaluate the quan-
tities 2 and B.

The quantity lI. is approximately independent'
of e, it is also independent of the magnetic 6eld
strength. Equations (1.3) and (1.7) may be used to
relate lL, to pL, ', the resistivity for H=O when only
lattice scattering exists

lr, =3(22rmkT)l(422e pr, ) ' (2.2)

Let lt = cr res; then Eqs. (1.3) and (1.7) relate err to pro,
the resistivity for H=O when only impurity scattering
exists

err = (srm)'"(2"'eespr') '(kT) "'. (2.3)

A combination of Eqs. (2.1), (2.2), and (2.3) leads to
the mean free path

l=lrlr(lL+lr) '=lre2(s2+lr/err) '
f&e2(e2+. 6pro(kT)2/p o}-1 (2.4)

Use Eq. (2.4) for /, replace e/kT by x, and express fL,

by Eq. (2.2) to convert the quantity A of Eq. (1.3) into

O 2/3 3/2 4

z,(p, ~) =p, '~.
In a similar manner, one obtains

(2.9)

0.00
0.01
0.04
0.10
0,20
0.50
1.00
2.00
4.00

0.88623 0.39704
0.87132 0.39569
0.82537 0.39190
0.74423 0.38454
0.63769 0.37289
0.52255 0.34197
0.45711 0.30076
0.328/1 0.24289
0.18613 0.17606

0.27416 0.14674
0.27348 0.14649
0.27164 0.14591
0.26804 0.14475
0.26225 0.14286
0.24633 0.13751
0.22382 0.12946
0.18947 0.11602
0.14537 0.09633

0.07334
0.07323
0.07306
0.07272
0.07215
0.07051
0.06796
0.06342
0.05608

0.02484
0.02481
0.02479
0.02473
0.02464
0.02438
0.02396
0.02318
0.02178

K. Lark-Horovitz and V. A. Johnson, Phys. Rev. 69, 258
(1946); K. Lark-Horovitz, Elec. Eng. 68, 1047 (1949).

'5 G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949)."E.Conwell and V. F. Weisskopf, Phys Rev. 69, 258 .(1946);
77, 388 (1950).

p(&)

pro A'+v@2 pro
(2.11)

"V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 82, 977
(1951).

's A. Sommerfeld and H. Bethe, Hamdbtsch der Pfsyssk (J.
Springer, Berlin, 1933), 24, No. 2, p. 560.

r" x'~'e —dx

,~ (P v) (2 1o)
pr, ' "o (&'+p)'+Vsc' pr. '

Algebraic combination of Eqs. (1.7), (2.9), and (2.10)
yields the result
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FrG. 1. Fractional increase in resistivity with rising magnetic
field for an impurity semiconductor. The numbers at the ends of
the curves are the values of the parameter P, defined as six times
the ratio of resistivity resulting from impurity scattering to re-
sistivity owing to lattice scattering. The abscissae, given h,s
squares of the product of magnetic field strength and carrier
mobility in the absence of magnetic field and scattering by im-
purities, may be converted into O'T ' values by taking pl.'=1.7
X 10 T & for germanium, or 5)&10 T & for silicion, or 2.6&& 10 T &

for tellurium, where T is the temperature in 'K.

directly proportional to the square of the magnetic Aux
density at weak magnetic fields, (b) the predicted mag-
netoresistive effects are quite small, under 2 percent for
the mobility-field combinations likely to be encountered
except at very low temperatures, and (c) the eBect of
impurity scattering is to decrease the calculated re-
sistivity change, thus increasing the gap between
measured and calculated values.

Figure 2 gives a comparison between theory and
experiment for germanium sample 33K, an n-type
polycrystalline sample of rather low resistivity, pre-.
pared by doping with antimony. This sample was
chosen because its magnetoresistive eGect had been
measured at liquid nitrogen and liquid hydrogen tem-
peratures as well as at room temperature, and also
because a previous study" of resistivity and Hall coef-
ficient for this sample gave information about the ratio
of impurity to lattice scattering at various tempera-
tures. As may be seen from Fig. 2, there is a great
discrepancy between theory and experiment at 295'K,
a much smaller discrepancy at 77'K, and relatively
little discrepancy at 20'K.

III. HALL COEFFICIENT OF AN IMPURITY
t SEMICONDUCTOR

The dependence of the Hall coeKcient of an impurity
semiconductor upon magnetic Geld strength is com-
puted from Eq. (1.8) with the use of the mean free path

where p& is the total resistivity at zero magnetic field.
The ratio pz, '/pro can be replaced by F(P)(1+P/6) ',
where the quantity F(p), defined as (pz, '+ pz')/pz', has
been previously evaluated" as a function of the ratio
of impurity scattering to lattice scattering. Finally,
the magnetoresistive eGect is calculable from the
relation

0.05-

0.04

MEASURED

————CALCULAT ED

J» 0.03

Pr PT

Tables I and II give the values, as found by numerical
integration, of the integrals J» and J2 for selected values

P and y. The P values are chosen to correspond to
pzo/(pro+ pz, ') values of 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8.
Table I also includes the values of F(P) corresponding
to the chosen P values. Figure 1 shows the behavior of
the ratio Ap/pp' as a function of the quantity (zzz, ')'H'.
The quantity p, or (pz, 'H)', is used because the theo-
retical plot of Ap/pz' against y, for a given value of p,
is the same for all materials. From Fig. 1 one can get a
plot of Ap/pro against H' for a given material at a
chosen temperature T by using the appropriate value
of pl, '. One can also consider Fig. 1 to be a plot of
magnetoresistive change against H'T ' if pL,

' is propor-
tional to T &, as is expected" for a classical semicon-
ductor.

It is observable that (a) the change in resistivity is

0.02

O.OI

0.00 20 40

IN GAUSS

60 80 x IO

FIG. 2. Comparison between measured and calculated values of
the fractional increase in resistivity with magnetic field for ger-
manium sample 33K, an n-type polycrystalline sample, prepared
by doping with antimony, having a room temperature resistivity
of 0.05 ohm-cm, and found to be quite homogeneous. The measured
curves are from Estermann and Foner. 6

'~ K. Lark-Horovitz, National Defense Research Committee
Report NDRC 14-585, 1945, unpublished, Fig. 7.



V. A. JOHNSON AND W. J. WH ITESELL

defined by Eq. (2.4). Simplification with the use of
Eqs. (2.2), (2.9), and (2.10) yields

TABLE III. Values of the Hall ratio r = me ( R j as a
function of P and y.

~J 2 —I 3X'~ pl pL, J2

4 ~i'+v~s'

Since pr, '=(Nepl. ') ', one can write

3'
R———

4ee Jrs+v Jss

(3.1)

(3.2)

0.00 1.1781
0.01 1.1718
0.04 1.1591
0.10 1.1441
0.20 1.1264
0.50 1.0996
1.00 1.0762
2.00 1.0545
4.00 1.0356

1.0289
1.0289
1.0289
1.0286
1.0282
1.0270
1.0253
1.0226
1,0188

1.0411
1.0411
1.0411
1.0410
1.0407
1.0399
1.0386
1.0366
1.0334

2/3 3/2

1.0962
1.0959
1.0958
1.0956
1.0953
1.0942
1.0928
1.0900
1.0853

1.1833
1.1828
1.1826
1.1824
1.1820
1.1808
1.1788
1.1751
1.1685

24

1.3399
1.3390
1.3389
1.3386
1.3381
1.3369
1.3346
1.3306
1.3230

0.0000
0.0005
0.002
0.005
0.025
0.050
0,250
1.000

1.9328
1.8616
1.7561
1.6558
1.4565
1.3750
1.2183
1.1251

If one defines a ratio r by

iRi =r/(m e),

one can also write
(3.3)

(3.4)

this limiting case are given as a function of a new
parameter p*, defined by

v*= (ir/64) (pre)'Ep. (3.5)

a The parameter 7=(9m./16)(pL, 0)'H2, where pjr„0 is the mobility when
only lattice scattering is present, becomes meaningless for P= ~, which
corresponds to the absence of lattice scattering. Hence r for P = ~ is given
in terms of a parameter y*, defined as (x/64)(p10)'II', where p10 is the
mobility when only impurity scattering is present.

If P is taken equal to zero, corresponding to the
absence of impurity scattering, Eq. (3.2) yields the
magnetic field dependence of Hall coefficient calculated
by Harding/ If P is set equal to infinity, one finds the
magnetic Geld dependence of Hall coefficient for a
sample in which impurity scattering completely
dominates; this case was worked out earlier by Johnson
and Lark-Horovitz. se The values of the ratio r(P, v) for
these limiting cases and for p values corresponding to
pre/(pre+ pre) =0.1, 0.2, 0.4, 0.6, and 0.8 are given in
Table III. Because @~0 no longer has significance when
only impurity scattering exists (P~ao), the r values for

),40

l,32

1.24

ne)R)—

I.08

Figure 3 shows a plot of r es BT & for six different p
values. The y-parameter has been converted into terms
of HT' &, by assuming that p, &' is proportional to T &,

the behavior expected" for lattice scattering in any
classical semiconductor; the constant of proportionality
is found by setting pr, ' at 300'K equal to 3300 cm'/volt-
sec, a value characteristic of germanium. "It is apparent
that the introduction of impurity scattering lessens the
variation of r with magnetic field strength. Scanlon'
and Cleland4 have observed that pure germanium
samples show more variation in Hall coefficient with
changing magnetic field than do relatively impure
samples. However, a quantitative comparison between
the behavior of Hall coeKcients in a magnetic Geld as
predicted by Eq. (3.2) and as measured' ' shows that
the theoretical values are almost always too low,
usually by a factor between 2 and 10.

IV. RESISTIVITY OF AN INTRINSIC SEMICONDUCTOR

At high temperatures, thermal energy is sufEcient to
excite appreciable numbers of electrons from the filled
band to the conduction band of a semiconductor; for
each electron excited to the conduction band, there
exists a conducting hole in the filled band. Conduction
by such electron-hole pairs is termed intrinsic.

Since both holes and electrons act as current carriers,
the electrical current density equations must include
terms characteristic of each carrier. Thus one replaces
Eqs. (1.1) and (1.2) by

l.00
0 4 6 8

-3/2 -3/2HT, i~ GAuss-'K

IO
j,= (At+As)Eg —(8) J3s)E„, (4.1)—
y„= (8 —8 )E + (A +A )E„, (4.2)

FiG. 3. Dependence of Hall eGect upon magnetic field strength
«r germanium. The ordinate r is defined as the dimensionless
product of the Hall coefficient, electronic charge, and carrier
density. The numbers on the various curves are the values of P,
defined as six times the ratio of resistivity owing to impurity
scattering to resistivity owing to lattice scattering.

~0 V. A. Johnson and K. Lark-Horovitz, Phys. Rev. ?9, 176
(1950).

where subscript 1 applies to electrons and subscript 2
to holes. The coeKcients A& and A2 are defined by Eq.
(1.3) with the electron mean free path /r, the effective
electron mass ns1, and the electron distribution function

fi used in A i and the corresponding quantities for holes,

"Pearsou, Hayues, aud Shockley, Phys. Rev. 78, 295 (1950).
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TABLE IV. Values of El(y), ' and E2(y). The terms B~ and 82 reduce to

0.0000
0.0025
0.01
0.05
0.15
0.35
0.70
1.00
2.00
5.00

Ki(v)

1.00000
0.99760
0.99041
0.95649
0.88828
0.78806
0.66884
0.59639
0.44530
0.25945

K2(y)

0.88623
0.88217
0.87132
0.82537
0.74423
0.63769
0.52255
0.45711
0.32871
0.18613

Dehne
p 00

x&e- (x+y)-'dxE2(V) —=

Jp

= m.&/2 —y x&e-*(x+y)-'dx.
Np

(4.10)

Bl, 2 22L 2elLLL 2 Yl, 2~ x~c (x+pL 2) 'd*. (4.9)
~Jp

a K1(y) =J'0 x&g-x(x+y) -1dx.
b K2(y) =Jo x&e (x+y} 'dx.

j, (Al+A2)'+(Bl —B2)'

Al+A2
(4.3)

l2, 2122, and f2, used in A2. The symbol e represents the
magnitude of the electron charge; the proper signs for
electrons and holes have been considered in writing
Eqs. (4.1) and (4.2). The terms Bl and B2 are found
from Eq. (1.4) by the appropriate insertions of /1, 2121,

and fl, for Bl and of /2, 2222, and fs fol B2.
Equations (4.1) and (4.2) lead. to the relations

The integral in E2(y) has been evaluated numerically
for a series of y-values; the results are presented in
Table IU along with the corresponding values of El(y).

I,et c denote the ratio of electron to hole mobility,
pie/pss, and, in addition, take 221——222=22. Then it
follows that

C P2. (4.11)

The resistivity at zero magnetic field is

P = (Neyl +22ey2') (4.12)

The algebraic combination of Eqs. (4.3), (4.5), through
(4.12) yields an expression for the magnetoresistive
eGect

~2 —(Bl—B2)
R=.~,H H{(A1+A2)'+(Bl—B2)') pp

p(&) p'—
(4.4) —= = (c+1) cE1(y,)+El(72)

pp

Resistivity due to scattering by impurity ions
decreases rapidly as temperature rises," whereas re-
sistivity because of scattering by the lattice rises as the
—,
' power of the temperature;" hence impurity scattering
is treated as negligible in an intrinsic semiconductor.
Further simplification comes from assuming that the
temperature of the sample is high enough that the con-
centration of impurity electrons or holes is negligible in
comparison to the concentration of intrinsic electrons
and holes; in this case, one takes e~, the electron con-
centration, equal to e2, the hole concentration.

Since l& and 12 are independent of the velocity v the
terms A~ and. A2 reduce to

2.0

I.6

l.2

'Ysjc E2(Y1) E2(72))

CE1( Yl)+ El( Y2)

—1. (4.13)

and

Ay=syep, y

Jp
xse *(x+yl) 'dx (4.5) 0.8

A2 ——e2ep, 2'
~J p

xse (x+y2) 'dh, (4.6)
0.4-

71, 2
——(92r/16) (p L 2'll)'. (4.7)

where p, ~' and p, 2 represent the electron and hole
mobilities, respectively, in zero magnetic field, and

0 0.4 0.8 1.2 l.6xlOe

P, H (Qf JJ,H), l& GAUSS-c~~volt-sec

Dehne

El(y)
—= . xsc—(x+y) 'dh

0

=1—p+p'e l —Ei(—p)}.
(4.8)

FIG. 4. Fractional increase in resistivity with magnetic field
strength for an intrinsic semiconductor. The ratio of electron
mobility to hole mobility is denoted by c. The abscissa is the
product of magnetic field strength and electron mobility when
c= 1, —,', 3, or ~, or the product of magnetic field strength and hole
mobility when c=i, » 3, or 0.
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TABLE V. Relation between y1 and H for
intrinsi'c germanium. ' Thus the ratio R/Ro becomes

0.01
0.05
0.15
0.35
0.70
1.00
2.00
5.00

P1oH
gauss-cm~/volt-sec

0.0/522 X 10s
0.16821X10'
0.29135X10s
0.44504X ios
0.62938X10s
0./5225X 108
1.06385X 108
1.68209X 10'

H (gauss)
at 295'K

2250
5030
8710

13 300
18 800
22 500
31 800
50 300

H (gauss)
at 625'K

6900
15 420
26 700
40 800
57 700
69 000
97 500

154 300

R 2 (c+1)

Ro m& (c—1)

c'K, (y,)—E,(y,)
X . (5.3)

{CEi(Yl)+El(r2) l + r2{c E2(71)—K2(r2) l

The change in Hall coe%cient with magnetic 6eld
may be described by

a Values based upon taking p~o =1.7 )&106T & cm2/volt-sec, corresponding
to pl' =3300 cm'/volt-sec at 300'K.

AR/Ro ——(R/Ro) —1. (5.4)

Inspection of Eq. (4.13) 'shows that Ap/p~ clepends

upon the ratio c as well as upon the quantity p& or
pioH. For this reason, the dependence of hp/p' upon
@10'is shown for four c values in Fig. 4. Because of the
symmetry of terms arising from electron conduction
and from hole conduction, one finds that hp/p' for
given c and pioH values is equal to hp/p' for 1/c and

p~ H. The curve in Fig. 4 for c= ~ or 0 corresponds to
the curve of Fig. 1 with P =0 (i.e., to Harding's curve).
Thus, Fig. 4 indicates that the introduction of a second

type of carrier causes an increase in the magnetore-
sistive eGect, which becomes greatest when the two
carriers have the same mobility.

Table V indicates the magnetic field intensities cor-
responding to various y1 values for intrinsic germanium
at temperatures of 295'K and 625'K. Thus, relatively
large magnetoresistive e8ects should be observed in
pure samples which become intrinsic at comparatively
low temperatures, whereas magnetic field strengths
several times stronger would be required to produce
the same 6p/p' value in an impure sample that becomes
intrinsic only at very high temperatures.

f d R ) 2 K2(yi)
Z.im(' (Ro ) m & {Ki(yi)) '

(5.5)

a positive value, which is indicated on Fig. 5.

+0.05

!C= I.I

! (Or 03l)

This quantity depends upon the mobility ratio c as
well as upon pi'H; in fact, hR/Ro for given c and pi'H
equals M/Ro for 1/c and p2'H, in analog to the resis-

tivity behavior. Figure 5 shows the dependence of
AR/Ro upon pioH for several mobility ratios. As Jj,i0H'

increases, E. decreases to a value about 85 percent of Eo.
When c= ~ (or 0), R approaches 0.85R& asymptotically,
as was found by Harding. ' For other c values, the
hR/Ro curve shows a minimum at about —0.15 with
the position of the minimum moving to smaller p, 1 II
values as c goes toward unity. Although Ro becomes
zero as c approaches unity, th'e ratio hR/R0 has a deter-
minate limit;

V. HALL COEFFICIENT OF AN INTRINSIC
SEMICO-NDUCTOR

The Hall coeKcient of an .intrinsic semiconductor is
given by Eq. (4.4). By employing Eqs. (4.5) through
(4.10) and taking ei N2=e, ——one obtains an expression
for the Hall coeKcient

0.00

-0.05

37r-: c'K2(vi) —K2(v2) -O. IO

4me {cKi(yi)+ Ki (y2) )'+ y2{c'K~(yi) Km(y2) }'—
(5.1)

For very weak magnetic fields, this equation reduces to
-O.I5

0 l.e x los

'' (Oi2/~)
iC- (or /~), C=m(oro)

I

0.4 0,8 l.2

JJI, H (Of II~H)& IN GAUSS" &r /volt sec
a3' c—1

Eo ——

8ne c+1
(5.2)

FxG. 5. Fractional change in Hall coefficient with magnetic 6eld
strength for an intrinsic semiconductor, given for several values
of the ratio of elec&ron Inobility to bole ~obility.
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Thus, it is found that the calculated variation of

resistivity and Hall coeKcient with magnetic Geld

intensity is very much greater for an intrinsic semi-

conductor than for an impurity semiconductor. At the

present time experimental investigations of the mag-

netic Geld dependence of resistivity and Hall coefficient

have not been published, and hence theory and experi-
ment cannot be compared for such conditions.

The authors wish to thank Dr. K. Lark-Horovitz for
his advice and encouragement during the progress of
this work, and R. Bray, J. W. Cleland, and W. W.
Scanlon for discussions of their experimental studies- of
magnetic Geld e8ects.
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Tables for Second Born Approximation Scattering from Various Potential Fields
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By means of a variational approach, the scattering amplitude for electron scattering from various po-
tentials is calculated. Numerical values for the functions involved are tabulated as a function of energy
and scattering angle.

ECENTLY variational methods have been applied
to scattering problems in nuclear physics; it was

of interest to see with what success these methods
would meet in problems on the atomic scale. At the
same time it was felt that it was important to make

, available in tabular form the various functions involved.

Here, scattering of a, particle from various static
potentials is considered. The variational principle used
is essentially that as introduced by Schwinger and is in
the form suited for determining scattering amplitudes
as presented by Lax' and by Morse and Feshbach. '
It is as follows:

e'""U(r)p, *(r)dv e '" '1U(r )Ib—;(rr)dvr

4pr ~p,*(r)U(r)p, (r)dv+ ~, p,*(r)U(r)(e's~' '&~/(r rr~)U(rr)ib, (—rt)dv, dvr

Potential

Yukawa
U(r) = U(pX r/) exp( —) r)

Exponential
U(r) = UpXP exp( —Xr)

Mixed
U(r) =—Up(2/ap) (1/r+ X/2)

Xexp( —Xr)
where

S;{0)

8„=—Uo(1+x'c') Iy '

S.= Uo(1+xoc')'I,

S = Uo(2/Xao)(1+xoco)PI /
(2+xoco)

xc i A+x'cI„=(2/xcA) arctan —+—In

I,=a+i b+dI„,
a=4/Lc'A (A +x c')g —(2+xo) (4—gxo —2x'c )/A (A +xoco)—2/(x'c'+4)'
b ~x/A c'(1+x')—3x(2+x')'/A'(1+ x')
d =—2/A'c'+4/A' —6(2+x')'/A',

I~= [1+2(x'+2)/AP]I„+(4 xpco)/A'(A'+x'—cs)
+ix(2+x') /AP(1+x') I,/2, —

and where we have also used the notation:
x= 2k/X, A~ =4+4x~+x4c~,
c=sin8/2, cose =k,"k, /hs,
h= [k;( = (k. [ =(mc/h)(2E/mc')&

E denotes the energy of the incident electrons, m their mass,
and k Planck's constant.

& See reference 3.

TAszx I. Algebraic values for S;(tt), where S;(tt) is essentially
the ratio of the second to the 6rst Born approximation for the
indicated potentials.

TAnrz IL Algebraic values for S;(0) for it =0 and for the
potentials indicated.

Potential

Yukawa
Exponential

Mixed

S„=—Up(1+ix) /2 (1+x')
S,= —2 Up/(15+10x +3x') /24(1+x )P

+ix(3+3xo+x4) /3 (1+xo) Pj
S = (Uo/2aoX) L(75+106xo+39x4)/24(1+xo)P

+ix(12+18x'+7x') /3 (1+xo) og

9M. Lax,!f'Phys. Rev. 78, 300 (1950).
p P.IM. Morse and H. Feshbach, Methods of Theoretical Ph'ysics,

to be published.

This quantity J(e), the scattering amplitude which we
wish to minimize, was calculated for various potentials
U(r); namely, an exponential, Yukawa, and a potential
of the form —2(Up/ap)(1/r+k/2) exp( —r/) ). The trial
wave function which was used in the above expression
for J(9) was P,=exp(ik; r) and P,*=exp( ik, r)—,
where k; is the momentum vector in the direction of
the incident wave, k, is the momentum vector in the
direction of the scattered wave,

~
k, ('=

( k; Is, and 8 is
the angle between the two vectors.

Many of the integrals involved have been calculated
previously; the evaluation of those integrals not readily


